

BXT7059 / BXTS7059

7059-xxx

No. 87-007062-000 Revision J

HARDWARE

TECHNICAL REFERENCE

Intel® Xeon® E5-2400 v2 Series & Intel® Xeon® E5-2400 Series 10, 8, 6 and 4-Core

PROCESSOR-BASED

SHB

WARRANTY

The following is an abbreviated version of Trenton Systems' warranty policy for PICMG[®] 1.3 products. For a complete warranty statement, contact Trenton or visit our website at www.TrentonSystems.com.

Trenton PICMG[®] 1.3 products are warranted against material and manufacturing defects for five years from date of delivery to the original purchaser. Buyer agrees that if this product proves defective Trenton Systems Inc. is only obligated to repair, replace or refund the purchase price of this product at Trenton Systems' discretion. The warranty is void if the product has been subjected to alteration, neglect, misuse or abuse; if any repairs have been attempted by anyone other than Trenton Systems Inc.; or if failure is caused by accident, acts of God, or other causes beyond the control of Trenton Systems Inc. Trenton Systems Inc. reserves the right to make changes or improvements in any product without incurring any obligation to similarly alter products previously purchased.

In no event shall Trenton Systems Inc. be liable for any defect in hardware or software or loss or inadequacy of data of any kind, or for any direct, indirect, incidental or consequential damages arising out of or in connection with the performance or use of the product or information provided. Trenton Systems Inc.'s liability shall in no event exceed the purchase price of the product purchased hereunder. The foregoing limitation of liability shall be equally applicable to any service provided by Trenton Systems Inc.

RETURN POLICY

A Return Material Authorization (RMA) number, obtained from Trenton Systems prior to return, must accompany products returned for repair. The customer must prepay freight on all returned items, and the customer is responsible for any loss or damage caused by common carrier in transit. Items will be returned from Trenton Systems via Ground, unless prior arrangements are made by the customer for an alternative shipping method

To obtain an RMA number, call us at (800) 875-6031 or (770) 287-3100. We will need the following information:

Return company address and contact Model name and model # from the label on the back of the product Serial number from the label on the back of the product Description of the failure

An RMA number will be issued. Mark the RMA number clearly on the outside of each box, include a failure report for each board and return the product(s) to our Utica, NY facility:

TRENTON Technology Inc. 1001 Broad Street Utica, NY 13501 Attn: Repair Department

Contact Trenton for our complete service and repair policy.

TRADEMARKS

IBM, PC/AT, VGA, EGA, OS/2 and PS/2 are trademarks or registered trademarks of International Business Machines Corp.

AMI and AMIBIOS are trademarks of American Megatrends Inc.

Intel, Xeon, Intel Quick Path Interconnect, Intel Hyper-Threading Technology, Intel Virtualization Technology and Intel Active Management Technology are trademarks or registered trademarks of Intel Corporation.

MS-DOS and Microsoft are registered trademarks of Microsoft Corp.

PICMG, SHB Express and the PICMG logo are trademarks or registered trademarks of the PCI Industrial Computer Manufacturers Group.

PCI Express is a trademark of the PCI-SIG

All other brand and product names may be trademarks or registered trademarks of their respective companies.

LIABILITY DISCLAIMER

This manual is as complete and factual as possible at the time of printing; however, the information in this manual may have been updated since that time. Trenton Systems Inc. reserves the right to change the functions, features or specifications of their products at any time, without notice.

Copyright © 2014 by Trenton Systems Inc. All rights reserved.

E-mail: <u>Support@TrentonSystems.com</u> Web: <u>www.TrentonSystems.com</u>

TRENTON Systems, Inc. 2350 Centennial Drive • Gainesville, Georgia 30504 Sales: (800) 875-6031 • Phone: (770) 287-3100 • Fax: (770) 287-3150 This page intentionally left blank

Table of Contents

CHAPTER 1		
Intr	oduction	1-1
Dua	al-Processor Models	1-1
	gle-Processor Models	
	itures	
	T7059 (7059-xxx) – Dual-Processor SHB Block Diagram	
	T7059 (7059-xxx) – Dual-Processor SHB Layout Diagram	
	TS7059 (7059-xxx) – Single-Processor SHB Block Diagram	
	TS7059 (7059-xxx) – Single-Processor SHB Layout Diagram	
Pro	ocessors	1-8
	tform Controller Hub (PCH)	
	ial Interconnect Interface	
	a Path (max speed supported*)	
	ial Interconnect Speeds	
Inte	el® Quick Path Interconnect Between CPUs	1-8
Inte	el® Direct Media Interface 2 (DMI2) Between Processor and Intel® C604 PCH	1-8
	mory Interface	
	A Channels	
	errupts	
	s (Flash)	
	erating Systems	
	che Memory	
	R3 Memory & SHB Memory Population Rules	
	iversal Serial Bus (USB)1 leo Interface	
	I Express Interfaces1 Vord About PCI Express 3.0 Interfaces1	
	ernet Interfaces	
EUI	TA/600, Serial Attached SCSI (SAS) and SATA/300 Ports1	11
	tchdog Timer (WDT)	
Pov	ver Fail Detection	-13
	itery1	
Pol	ver Requirements – Dual-Processor BXT70591	-15
	ver Requirements – Single-Processor BXT/000	
	nperature/Environment	
	chanical1	
	ard Stiffener Bars & Backer Plate1	
	nfiguration Jumpers1	
	WP4B Ethernet LEDs and Connectors	
	tus LEDs	
	st Code LEDs - LED0 through LED71	
	stem BIOS Setup Utility	
	nnectors	
CHAPTER 2	2 PCI EXPRESS [®] REFERENCE	2-1
••••••	oduction	
	Express Links	
	B Configurations	
PC	l Express Edge Connector Pin Assignments	2-2
	Express Signals Overview	
	tional PCI Express Link Expansion	
• •		
CHAPTER 3	3 BXT7059 / BXTS7059 SYSTEM POWER CONNECTIONS	5 4
	oduction wer Supply and SHB Interaction	
	ctrical Connection Configurations	
Ele	Curical Connection Connyulations	J-2
CHAPTER 4		
	oduction	
	B Edge Connectors	
	-Board Video Card Usage	
BX	T7059 & BXTS7059 and Compatible Trenton Backplanes	4-3

CHAPTER 5 I/O EXPANSION BOARDS – IOB33 & PEX10	5-1
IOB33 Overview	5-1
IOB33 Models	5-1
Model #	5-1
Model Name	
Description	5-1
IOB33 Features	
IOB33 Temperature/Environment	5-2
IOB33 (7015-xxx) Block Diagram	
IOB33 (7015-xxx) Layout Diagram	5-3
IOB33 (7015-xxx) I/O Plate Diagram	5-3
IOB33 Connectors	
PEX10 Overview	
APPENDIX A BIOS MESSAGES	A-1
Introduction	
Aptio Boot Flow	A-1
BIOS Beep Codes	A-1
PEI Beep Codes	A-1
DXE Beep Codes	A-2
BIOS Status Codes	A-3
BIOS Status POST Code LEDs	A-3
Status Code Ranges	A-4
SEC Status Codes	A-4
SEC Beep Codes	A-4
PEI Beep Codes	A-7
DXE Status Codes	A-7
DXE Beep Codes	A-9
ACPI/ASL Status Codes	A-10
OEM-Reserved Status Code Ranges	A-10

HANDLING PRECAUTIONS

WARNING: This product has components that may be damaged by electrostatic discharge.

To protect your system host board (SHB) from electrostatic damage, be sure to observe the following precautions when handling or storing the board:

- Keep the SHB in its static-shielded bag until you are ready to perform your installation.
- Handle the SHB by its edges.
- Do not touch the I/O connector pins.
- Do not apply pressure or attach labels to the SHB.
- Use a grounded wrist strap at your workstation or ground yourself frequently by touching the metal chassis of the system before handling any components. The system must be plugged into an outlet that is connected to an earth ground.
- Use antistatic padding on all work surfaces.
- Avoid static-inducing carpeted areas.

RECOMMENDED BOARD HANDLING PRECAUTIONS

This SHB has components on both sides of the PCB. Some of these components are extremely small and subject to damage if the board is not handled properly. It is important for you to observe the following precautions when handling or storing the board to prevent components from being damaged or broken off:

- Handle the board only by its edges.
- Store the board in padded shipping material or in an anti-static board rack.
- Do not place an unprotected board on a flat surface.

Before You Begin

INTRODUCTION

It is important to be aware of the system considerations listed below before installing your BXT7059 or BXTS7059 (7059-xxx) SHB. System performance may be affected by incorrect usage of these features.

DDR3 MEMORY

Trenton recommends ECC registered DDR3-1600 Mini-DIMM memory modules for use on the BXT7059 / BXTS7059 SHBs and these ECC registered (72-bit) DDR3 Mini-DIMMs must be PC3-12800 compliant. Unbuffered ECC DDR3 Mini-DIMMs are also supported on the BXT/BXTS boards, however you cannot mix the ECC registered and unbuffered ECC memory types on the same board.

Each processor on a BXT7059 / BXTS7059 SHB supports three direct-connect DDR3 memory interfaces. The maximum possible memory interface speed obtained depends on the specific Intel[®] Xeon[®] E5-2400 v2 or Intel[®] Xeon[®] E5-2400 series processor(s) used on the board and other board configuration options listed in the notes section below. The table below illustrates the maximum DDR3 **memory speed** supported as a function of each specific Intel[®] Xeon[®] processor when using the recommended PC3-12800 compliant Mini-DIMM modules and an SHB with the latest BIOS support.

Max. DDR3 Speed	Processor	Cores / Threads	Cache	Long-Life Availability	Maximum Thermal Design Power (TDP)	Operating Temperature Range*
DDR3-1600	Intel® Xeon® E5-2450 v2	8 / 16	20MB	Yes	95W	0°C to 40°C
DDR3-1600	Intel® Xeon® E5-2430 v2	6 / 12	15MB	Yes	80W	0°C to 50°C
DDR3-1600	Intel® Xeon® E5-2448L v2	10 / 20	25MB	Yes	70W	0°C to 50°C
DDR3-1600	Intel® Xeon® E5-2428L v2	8 / 16	20MB	Yes	60W	0°C to 50°C
DDR3-1333	Intel [®] Xeon [®] E5-2418L v2	6 / 12	15MB	Yes	50W	0°C to 50°C
DDR3-1600	Intel® Xeon® E5-2448L	8 / 16	20MB	Yes	70W	0°C to 50°C
DDR3-1333	Intel [®] Xeon [®] E5-2430	6 / 12	15MB	Yes	95W	0°C to 50°C
DDR3-1333	Intel® Xeon® E5-2428L	6 / 12	15MB	Yes	60W	0°C to 50°C
DDR3-1333	Intel® Xeon® E5-2418L	4 / 8	10MB	Yes	50W	0°C to 50°C

*Requires a continuous airflow across the board of 350LFM.

NOTES:

- To maximize system performance and reliability, Trenton recommends populating each memory channel with DDR3-1600 Mini-DIMMs and using an even number of memory modules on the BXT7059 dual-processor board configuration.
- All memory modules must have gold contacts.
- Low-voltage (DDR3L) Mini-DIMMs are not supported.
 - The SHB supports the following memory module memory latency timings:
 - 9-9-9 for 1600MHz DDR3 Mini-DIMMs
- Populate the memory sockets starting with the Mini-DIMM socket closest to the CPU and work your way toward the edges of the SHB as illustrated in the chart below:

Mini-DIMM Population Order	CPU0*	Mini-DIMM Population Order	CPU1*
1	BK00	1a	BK10
2	BK01	2a	BK11
3	BK02	3a	BK12

- *CPU0 and CPU1 are both available on BXT7059 SHBs.
- Using a balanced memory population approach with the BXT7059 configuration; meaning an equal number of Mini-DIMMs per processor, ensures maximum memory interface performance.

The memory DIMMs on the SHB connect directly to the CPU and at least one memory module must be installed on the board. The BXTS7059 SHB versions feature one processor; however, memory slots BK10, BK11 and BK12 are installed on the SHB but are not active in this single-processor board version.

SAS / SATA RAID OPERATION

The SHB's Intel® C604 Platform Controller Hub (PCH) features Intel® Rapid Storage Technology, which enables SHB support for RAID 0, 1 and 10 implementations. To configure the SAS / SATA ports as RAID drives, you must install the Intel® RST enterprise driver software. This link takes you to version 3.2 that was tested and validated on the SHB. A later version 3.5 is also available for download, but this version has not been tested on the board. Links to both driver versions are located on Trenton's website by accessing the Downloads tab of either the <u>BXT7059</u> or the <u>BXTS7059</u> product detail web pages or the RAID Drivers section of the Technical Support page.

PCI EXPRESS 3.0 LINKS AND PICMG® 1.3 BACKPLANES

The A0 through A3 PCI Express® links on the SHB connect directly to processor CPU0. These links can operate as either PCI Express 3.0, 2.0 or 1.1 links based on the end-point devices on the backplane that are connected to the SHB and the backplane's PCIe link design itself. In addition to automatically configuring themselves for either PCIe 3.0, 2.0 or 1.1 operations, the links also configure themselves for either graphics or server-class operations. In other words, the multiple x4 links from CPU0 (links A0, A1, A2 and A3) can be utilized on a backplane as a single x16 PCIe electrical link, two x8 links, or four x4 links. CPU0's x4 links can train down to x1 links, but cannot bifurcate into multiple x1 links. PCIe link B0 comes from the board's PCH and is a PCIe 2.0 interface. Link B0 has a x4 default configuration that can automatically bifurcate into four, x1 PCIe links. An optional PEX10 module connects to the second processor (CPU1) on the dual-processor BXT7059 board to extend the PICMG 1.3 base specification by providing four additional x4 PCIe links. These additional links may also operate as either PCI Express 3.0, 2.0 or 1.1 links and can be combined into one x16, or two x8 or four x4 PCIe interfaces on a PEX10-supported PICMG 1.3 backplane. This BXT7059 capability provides additional PCI Express Backplane Usage chapters of the BXT7059 / BXTS7059 Hardware Manual for more information.

A WORD ABOUT PCI EXPRESS 3.0 INTERFACES

PCIe 3.0 doubles the PCIe 2.0 per lane interface speed from 500MB/s (5GT/s) to 1GB/s (8 GT/s) via speed changes and protocol enhancements. As with all previous versions of the PCI Express specification, the PCIe 3.0 interface is backwards compatible and will run Gen 3, Gen 2 and Gen 1.1 I/O cards on the same interface link. Running a PCIe 3.0 target device such as a Gen 3 I/O card at the actual PCIe 3.0 interface speed of 1GB/s <u>requires</u> that the PCIe 3.0 link from the root complex (i.e. the processor on the BXT7059) to the target card be tuned and optimized to meet the speed requirements of PCI Express 3.0. If these tuning conditions are slightly off and not fully optimized, then the interface will operate at a slower interface speed. Contact Trenton for more details regarding the specific of your particular PCIe 3.0 implementation.

PICMG 1.3 BACKPLANE I/O

The BXT7059 and BXTS7059 enable the following PICMG 1.3 backplane I/O connectivity via the SBC's edge connector C:

- Four USB 2.0 interfaces
- One 10/100Base-T Ethernet interface
- One SATA/300 interface

PICMG 1.3 BACKPLANE CLASSIFICATION

Virtually all of Trenton's PICMG 1.3 backplanes may be used with the BXT7059 and BXTS7059 system host boards without restrictions. The BXT7059 and BXTS7059 are system host boards that can operate as either a Server or Graphics-Class PICMG 1.3 SHB. The BXT SHBs are essentially combo-class boards because of the capabilities of the PCI Express links built into the SHBs' processors. To take advantage of the extra x16 PCIe link available on CPU1 of the BXT7059 dual-processor SHB configuration; use a Trenton combo-class PICMG 1.3 backplane such as the Trenton BPC7009 or BPC7041. This extra x16 link is not available with the single-processor BXTS7059 board configuration. See *Appendix C, PCI Express Backplane Usage* for more details.

OFF-BOARD VIDEO CARD USAGE

If the system design requires an off-board video card, then the card must be placed in a backplane slot driven with PCI Express links from the BXT7059's first processor. This is an Aptio[®] 4.x BIOS limitation that may be corrected in future software revisions. Listed below are the acceptable BPC7041 backplane slots for use with an off-board video card:

BPC7041 - Card slot PCIe6, PCIe7, PCIe8, PCIe9 or PCIe10

BIOS

The BXT7059 and BXTS7059 feature the Aptio[®] 4.x BIOS from American Megatrends, Inc. (AMI) with a ROM-resident setup utility called the Aptio Text Setup Environment or TSE. Details of the Aptio TSE are provided in the separate *BXT7059 / BXTS7059 BIOS Technical Reference* manual.

OPERATING SYSTEMS

Trenton's BXT7059 and BXTS7059 have been tested using a number of popular and readily available operating systems including: Microsoft Windows XP X64, Windows Server 2003, Windows Server 2008 R2, Windows 7 and a number of variations of Linux including Red Hat. This testing process confirms the SHB's PCI Express interface and device I/O functionality. Trenton does not recommend using the Microsoft Windows XP32 SP2 or SP3 operating system due to limited functionality concerns. <u>Contact Trenton Tech Support</u> for additional information.

MOUSE/KEYBOARD "Y" CABLE

If you have an IOB33 I/O board in your system and you are using a "Y" cable attached to the bracket mounted mouse/keyboard mini Din connector, be sure to use Trenton's "Y" cable, part number 5886-000. Using a non-Trenton cable may result in improper SHB operation.

POWER CONNECTION

The PICMG® 1.3 specification supports soft power control signals via the Advanced Configuration and Power Interface (ACPI). The BXT7059/BXTS7059 supports these signals, controlled by the ACPI and are used to implement various sleep modes. When control signals are implemented, the type of ATX or EPS power supply used and the operating system software will dictate how system power should connect to the SHB. It is critical that the correct method be used. Refer to *- Power Connection* section in the BXT manual to determine the method that will work with your specific system design. The *Advanced Setup* chapter in the manual contains the ACPI BIOS settings.

FOR MORE INFORMATION

For more information on any of these features, refer to the appropriate sections *BXT7059 / BXTS7059 Hardware Technical Reference Manual*. The BIOS and hardware technical reference manuals are available under the **Downloads** tab on the <u>BXT7059</u> or <u>BXTS7059</u> web pages.

This page intentionally left blank

Chapter 1 Specifications

Introduction

The BXT7059 and BXTS7059 are combo-class, PICMG[®] 1.3 system host boards that support either the Intel[®] Xeon[®] E5-2400 v2 Series or the Intel[®] Xeon[®] E5-2400-series processors. The CPUs featured on the board were formally codenamed "Ivy Bridge-EN" and "Sandy Bridge-EN" respectively. The Ivy Bridge-EN processors are built using the 22nm Intel Micro-Architecture while the Sandy-Bridge-EN processors were built using the 32nm Intel Micro-Architecture while the Sandy-Bridge-EN processors were built using the 32nm Intel Micro-Architecture while the Sandy-Bridge-EN processors were built using the 32nm Intel Micro-Architecture while the Sandy-Bridge-EN processors were built using the 32nm Intel Micro-Architecture. The 22nm micro-architecture enabled several performance improvements including additional executing cores, better TDP ratingss and improved power utilization. Both processor families feature PCI Express 3.0 I/O support and a three-channel DDR3 integrated memory controller. The three-channel memory controller in most of the processors support DDR3-1600 memory interface speeds. The three memory channels per processor results in six direct access memory interfaces on the BXT7059 board version and the interfaces connect to six DDR3-1600 Mini-DIMM sockets. With 4GB DDR3 Mini-DIMMs the total system memory capacity for a BXT7059 is 24GB and doubles to 48GB when using 8GB DDR3 Mini-DIMMs. If 16GB DDR3-1600 Mini-DIMMs become a reality, the maximum practical system memory capacity supported on the BXT7059 will grow to 96GB; with 192GB being the maximum theoretical capacity. The system memory capacities are cut in half for the single processor BXTS7059 board version.

Each processor option supports twenty-four (24) PCI Express 3.0 links. In the BXT7059 board design, sixteen of these links from CPU0 plus four additional PCIe 2.0 links from the board's Intel[®] C604 Platform Controller Hub (PCH) comprise the PICMG 1.3 edge connector A & B backplane interfaces. CPU0 also provides an additional x4 PCIe PCIe 3.0 link for use on a backplane equipped with an I/O expansion slot that supports an optional IOB33 I/O expansion module attached to either a BXT7059 or BTXS7059 SHB. CPU1 on the BXT7059 dual-processor board configuration delivers a x16 PCIe 3.0 interface to the PEX10 expansion module and these PEX10 extra links provide added bandwidth to systems equipped with a backplane such as the Trenton BPC7041. The Intel[®] Quick Path Interface (Intel[®] QPI); with a maximum transfer speed for some processor versions of up to 8GT/s, provides the communication path between CPUs on the BXT7059 to enable resource sharing. All of the PCI Express interface links needed for a PICMG 1.3 compliant backplane are provided by the links out of CPU0 and the additional PCIe link out of the Intel[®] C604 Platform Controller Hub (PCH).

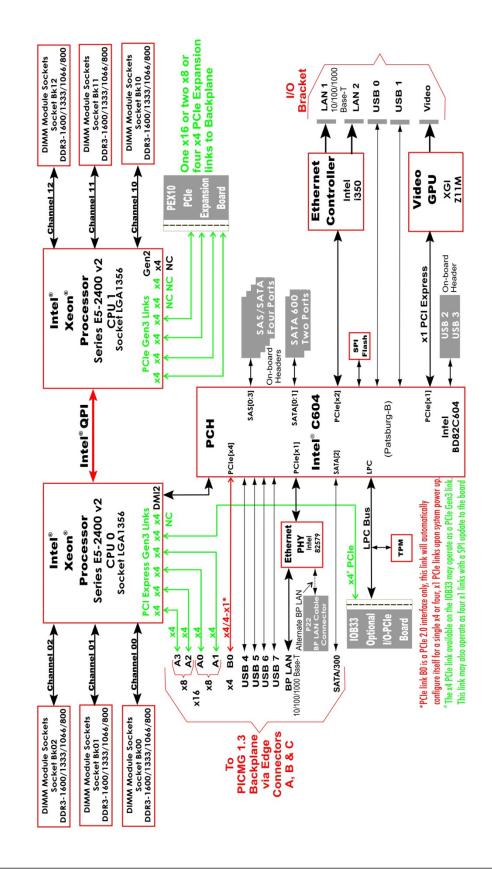
Video and I/O features on the BXT boards include:

- A Graphics Processing Unit (GPU) driven with an internal x1 PCIe link and capable of supporting pixel resolutions up to 1920 x 1200 (WUXGA) with a 64k color depth
- Three Gigabit Ethernet interfaces with two on the I/O plate and one available for use on a PICMG 1.3 compliant backplane or via the P22 alternate backplane cable connection.
- Two SATA/600 ports that can support independent drives or RAID drive arrays
- Four SAS / SATA/300 ports that can support independent drives or RAID drive arrays
- Eight USB 2.0 interfaces, with four routed to edge connector C for use on a backplane
- One SATA/300 interface routed to edge connector C for use on a backplane

The listing below summarizes the available versions of the BXT7059 and BXTS7059 system host boards.

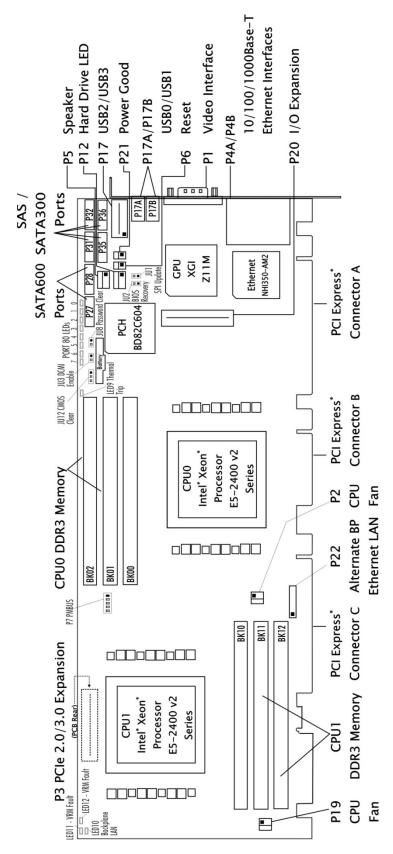
Dual-Processor Models - Intel [®] Xeon [®] E5-2400 v2 Series (22nm Intel [®] Micro-Architecture/Ivy Bridge-EN)							
<u>Model #</u>	<u>Model Name</u>	Speed	Intel Product Name				
Dual Intel Xeon E5-2430 v2 Processors (Ivy Bridge-EN) - 8-core, 20MB cache, 7.2GT/s QPI, With H-T*:							
392705970400000	BXT/2.5SRV20		Intel [®] Xeon [®] Processor v2 E5-2450 ^E				
	* H-T	= Intel [®] Hyper-Th	reading ^{, E} = Embedded/Long-life processor version				
Dual Intel Xeon E5-2430 v2 Processors (Ivy Bridge-EN) – 6-core, 15MB cache, 7.2GT/s QPI, With H-T*:392705971700000BXT/2.5SRV152.5GHzIntel® Xeon® Processor v2 E5-2430 E							
392705971700000	BXT/2.5SRV15	2.5GHz	Intel [®] Xeon [®] Processor v2 E5-2430 ^E				
Dual Intel Xeon E5-2448	L v2 Processors (Ivy Bridge-EN) – LV, 10-core	e, 25MB cache, 8.0GT/s QPI, With H-T				
392705972200000	BXT/1.8LTRV25	1.8GHz	Intel [®] Xeon [®] Processor v2 E5-2448L ^E				

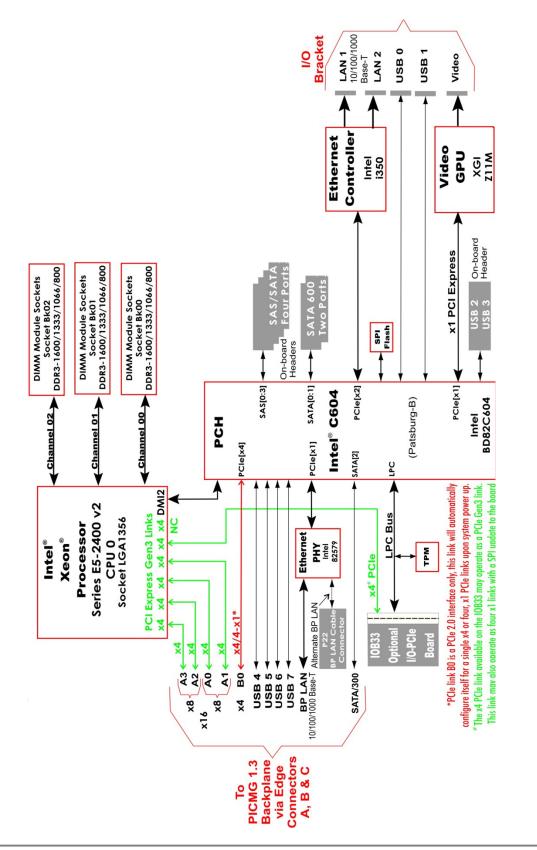
Model #	Intel [®] Xeon [®] E5-2400 v2 Se <u>Model Name</u> v2 Processors (Jur Bridge EN)	Speed	d) <u>Intel Product Name</u> 20MB cache, 7.2GT/s QPI, With H-T
392705973200000	BXT/1.8LERV20	1.8GHz	Intel [®] Xeon [®] Processor v2 E5-2428L ^E
Dual Intel Xeon E5-2418I 392705974300000	BXT/2.0LSRV15	1.8GHz	15MB cache, 6.4GT/s QPI, With H-T* Intel [®] Xeon [®] Processor v2 E5-2418L ^E reading ^{, E} = Embedded/Long-life processor version
Model #	<u>Model Name</u>	Speed	ntel [®] Micro-Architecture/Ivy Bridge-EN) <u>Intel Product Name</u> 3 cache, 7.2GT/s QPI, With H-T*:
392705980400000	BXTS/2.5SRV20	2.5GHz	Intel [®] Xeon [®] Processor v2 E5-2430 ^E
Single Intel Xeon E5-2430	v2 Processor (Ivy Bridge-EN) –	6-core, 15ME	B cache, 7.2GT/s QPI, With H-T*:
392705981700000	BXTS/2.5SRV15	2.5GHz	Intel [®] Xeon [®] Processor v2 E5-2430 ^E
Single Intel Xeon E5-2448	BL v2 Processor (Ivy Bridge-EN)	– LV, 10-core	e, 25MB cache, 8.0GT/s QPI, With H-T
392705982200000	BXTS/1.8LTRV25	1.8GHz	Intel [®] Xeon [®] Processor v2 E5-2448L ^E
Single Intel Xeon E5-2428 392705983200000	BL v2 Processor (Ivy Bridge-EN)	– LV, 8-core,	20MB cache, 7.2GT/s QPI, With H-T
	BXTS/1.8LERV20	1.8GHz	Intel [®] Xeon [®] Processor v2 E5-2428L ^E
Single Intel Xeon E5-2418	BL v2 Processor (Ivy Bridge-EN)	– LV, 6-core,	15MB cache, 6.4GT/s QPI, With H-T
392705984300000	BXTS/2.0LSRV15	1.8GHz	Intel [®] Xeon [®] Processor v2 E5-2418L ^E
	Processors (Sandy Bridge-EN) – BXT/2.2SRB15	6-core, 15MB 2.0GHz	[®] Micro-Architecture/Sandy Bridge-EN) cache, 7.2GT/s QPI, With H-T*: Intel [®] Xeon [®] Processor E5-2430 ^E reading ^{,E} = Embedded/Long-life processor version
Dual Intel Xeon E5-2448I	^E Processors (Sandy Bridge-EN)	– LV, 8-core,	20MB cache, 8.0GT/s QPI, With H-T
392705903200000	BXT/1.8LERB20	1.8GHz	Intel [®] Xeon [®] Processor E5-2448L ^E
Dual Intel Xeon E5-2428I	^E Processors (Sandy Bridge-EN)	– LV, 6-core,	15MB cache, 7.2GT/s QPI, With H-T:
392705904100000	BXT/1.8LSRB15	1.8GHz	Intel [®] Xeon [®] Processor E5-2448L ^E
Dual Intel Xeon E5-2418I	^E Processors (Sandy Bridge-EN)	– LV, 4-core,	10MB cache, 6.4GT/s QPI, With H-T*:
392705905300000	BXT/2.0LRB10	2.0GHz	Intel [®] Xeon [®] Processor E5-2448L ^E
Dual Intel Xeon E5-2407 # 392705902400000	BXT/2.0QB10	2.0GHz	0MB cache, 6.4GT/s QPI, No H-T^N: Intel [®] Xeon [®] Processor E5-2448L ^E r , ^N No H-T = Intel [®] Hyper-Threading <u>Not</u> Supported
Model #	s (32nm Intel [®] Micro-Architec <u>Model Name</u> 60 ^E Processor (Sandy Bridge-EN BXTS/2.2SRB15	Speed	idge-EN) <u>Intel Product Name</u> MB cache, 7.2GT/s QPI, With H-T: Intel [®] Xeon [®] Processor E5-2430 ^E
Single Intel Xeon E5-2448	BL ^E Processor (Sandy Bridge-EN) – LV, 8-core	, 20MB cache, 8.0GT/s QPI, With H-T
392705913200000	BXTS/1.8LERB20	1.8GHz	Intel [®] Xeon [®] Processor E5-2448L ^E
Single Intel Xeon E5-2428 392705914100000	BL ^E Processor (Sandy Bridge-EN) – LV, 6-core	, 15MB cache, 7.2GT/s QPI, With H-T:
	BXTS/1.8LSRB15	1.8GHz	Intel [®] Xeon [®] Processor E5-2448L ^E

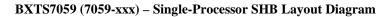

Single-Processor Models (32nm Intel[®] Micro-Architecture/Sandy Bridge-EN, continued)

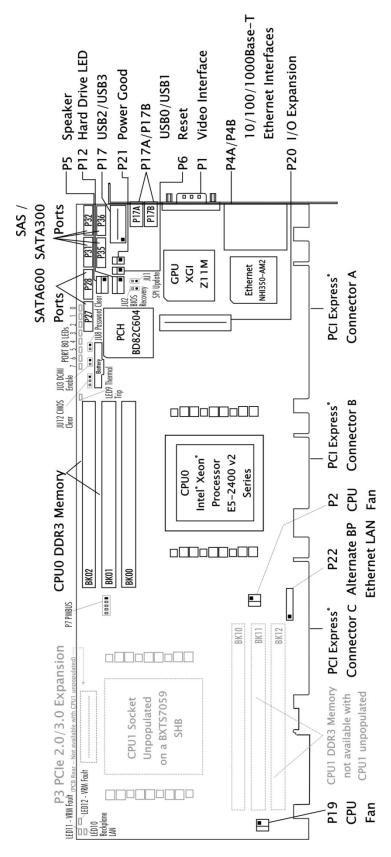
Model #	Model Name	Speed	Intel Product Name
Single Intel Xeon E5-2418	8L ^E Processor (Sandy Bridge-EM	$\overline{(N) - LV}$, 4-core	, 10MB cache, 6.4GT/s QPI, With H-T*:
392705915300000	BXTS/2.0LRB10	2.0GHz	Intel [®] Xeon [®] Processor E5-2448L ^E

Single Intel Xeon E5-2407[#] Processor (Sandy Bridge-EN) – LV, 4-core, 10MB cache, 6.4GT/s QPI, No H-T^N: 392705912400000 BXTS/2.0QB10 2.0GHz Intel[®] Xeon[®] Processor E5-2448L^E


Board Features


- Intel[®] Xeon® E5-2400 v2 Series Processors (Ivy Bridge-EN)
- Intel[®] Xeon[®] E5-2400 Series Processors (Sandy Bridge-EN)
- Intel[®] C604 Platform Controller Hub (Patsburg-B)
- Direct PCI Express[®] 3.0 links into the Intel[®] Xeon[®] E5-2400 Series Processors
- A Combo-class SHB that is compatible with PCI Industrial Computer Manufacturers Group (PICMG) 1.3 Specification
- BXT7059 provides a total of 40 lanes of PCI Express for off-board system integration
- Direct DDR3-1600 Memory Interfaces into the Intel[®] Xeon[®] E5-2400 Series Processors
- Six DDR3 Mini-DIMM sockets capable of supporting up to 192GB of system memory on a dualprocessor BXT7059, 24GB maximum capacity with readily available 4GB DDR3 Mini-DIMMs
- Video interface utilizing XGI[®] VolariTM Z11M Graphics Processing Unit
- Two 10/100/1000Base-T Ethernet interfaces available on the SHB's I/O plate
- Four on-board Serial Attached SCSI (SAS) / SATA/300 ports support independent SATA storage devices or may be configured to support RAID 0, 1 or 10 implementations
- Two on-board SATA/600 ports support independent SATA storage devices or may be configured to support RAID 0, 1 or 10 implementations
- Eight Universal Serial Bus (USB 2.0) interfaces
- Off-board I/O support provided for one, SATA/300 interface, one 10/100Base-T Ethernet interface and four USB 2.0 port connections on a PICMG 1.3 backplane
- Legacy I/O, dual serial port and x4 PCIe link expansion available via Trenton IOB33 expansion board
- An additional x16 PCI Express 3.0 lanes are available when using an optional PEX10 board on a BXT7059 connected to a Trenton BPC7041 PICMG 1.3 backplane
- Full-length stiffener bars and backer plate on the rear of the SHB enhances the rugged nature on the board by maximizing component protection and simplifying mechanical system integration
- Full PC compatibility


BXT7059 (7059-xxx) – Dual-Processor SHB Block Diagram



BXTS7059 (7059-xxx) – Single-Processor SHB Block Diagram

Processors

- Intel[®] Xeon[®] E5-2400 v2 Series Processors (Ivy Bridge-EN)
- Intel[®] Xeon[®] E5-2400 Series Processors (Sandy Bridge-EN)
- Processors plug into LGA1356 sockets

Platform Controller Hub (PCH)

Intel[®] C604 (Patsburg-B)

Serial Interconnect Interface

PCI Express[®] 3.0, 2.0 and 1.1 compatible

Data Path (max speed supported*) DDR3-1600 Memory - 72-bit (per channel) * Processor dependent

Serial Interconnect Speeds

PCI Express 3.0 - 8.0GHz per lane (with proper PCIe 3.0 root complex to the target card tuning and optimization) PCI Express 2.0 - 5.0GHz per lane PCI Express 1.1 - 2.5GHz per lane

Intel® Quick Path Interconnect Between CPUs

The Quick Path Interconnect enables processor-to-processor resource sharing and fast data transfers between CPUs. The Intel[®] QPI speed between CPUs in a dual-processor BXT7059 configuration is a function of the specific processors used on the board as illustrated in the following table.

Processor	Intel [®] Quick Path Interconnect (QPI) Speed
Intel [®] Xeon [®] E5-2450 v2,	
Intel [®] Xeon [®] E5-2448L v2 and	8.0GT/s
Intel [®] Xeon [®] E5-2448L	
Intel [®] Xeon [®] E5-2430 v2,	
Intel [®] Xeon [®] E5-2430,	7.2GT/s
Intel [®] Xeon [®] E5-2428L v2 and	7.201/8
Intel [®] Xeon [®] E5-2428L	
Intel [®] Xeon [®] E5-2418L v2 and	6.4GT/s
Intel [®] Xeon [®] E5-2418L	0.401/8
Intel [®] Xeon [®] E5-2407	6.4GT/s

Intel® Direct Media Interface 2 (DMI2) Between Processor and Intel® C604 PCH

This x4 PCIe 2.0 interface provides the data communication path between the PCH and processor. On a dualprocessor, BXT7059 the CPU0 connects directly to the PCH and the CPU1 feeds its information to the PCH via QPI link between processors and the CPU0 DMI link.

Memory Interface

Three DDR3-1600MHz memory channels per processor provide a peak memory interface bandwidth 38.4GB/s when using PC3-12800 Mini-DIMMs <u>and</u> the Intel[®] Xeon[®] E5-2448L v2 processor(s). Unlike past Trenton single board computers; the BTX7059's peak memory bandwidth is a function of both the Mini-DIMM type and the specific processors used in the SHB configuration.

DMA Channels

The SHB is fully PC compatible and the Intel[®] C604 PCH used on the SHB provides seven independently programmable DMA channels. Channels 0–3 are hardwired to 8-bit, count-by-byte transfers, and channels 5–7 are hardwired to 16-bit, count-by-word transfers. Any two of the seven DMA channels can be programmed to support fast Type-F transfers.

Interrupts

The Intel[®] C604 PCH incorporates the functionality of two 8259 interrupt controllers that provide system interrupts for the ISA compatible interrupts. These interrupts are: system timer, keyboard controller, serial ports, parallel ports, floppy disk, mouse, and the DMA channels. In addition, this interrupt controller can support the PCI based interrupts, by mapping the PCI interrupt onto the compatible ISA interrupt line.

Bios (Flash)

The Aptio® 4.x BIOS from American Megatrends Inc. (AMI) resides in the BTX board's 128MB SPI flash device U62A. The BIOS features built-in advanced CMOS setup for the SHB's operational parameters plus management menus for configuring peripherals and other system configuration parameters. The BIOS may be upgraded from a USB thumb drive storage device by pressing $\langle Ctrl \rangle + \langle Home \rangle$ immediately after reset or power-up with the USB device installed in drive A. Contact <u>Trenton Technical Support</u> for more information on the latest BIOS revision for your system board. Custom BIOSs are also available, contact Trenton for more information.

Operating Systems

Trenton's BXT7059 and BXTS7059 have been tested using a number of popular and readily available operating systems including: Microsoft Windows XP X64, Windows Server 2003, Windows Server 2008 R2, Windows 7 and a number of variations of Linux including Red Hat. This testing process confirms the SHB's PCI Express interface and device I/O functionality. Trenton does not recommend using the Microsoft Windows XP32 SP2 or SP3 operating system due to limited functionality concerns. Contact <u>Trenton Tech Support</u> for additional information.

Cache Memory

The Intel[®] Xeon[®] E5-2400 series processors offer different cache memory capacities. The table below summarizes the cache memory capacities for selected processors available for use with the BXT7059 and BXTS7059 boards.

Processor	Cache Memory Capacity
Intel [®] Xeon [®] E5-2448L v2	25MB
Intel [®] Xeon [®] E5-2450 v2,	
Intel [®] Xeon [®] E5-2428L v2 and	20MB
Intel [®] Xeon [®] E5-2448L	
Intel [®] Xeon [®] E5-2430 v2,	
Intel [®] Xeon [®] E5-2418L v2,	15MB
Intel [®] Xeon [®] E5-2430 and	IJIVID
Intel [®] Xeon [®] E5-2428L	
Intel [®] Xeon [®] E5-2418L and	10MB
Intel [®] Xeon [®] E5-2407	IUMB

DDR3 Memory & SHB Memory Population Rules

Trenton recommends ECC registered DDR3-1600 Mini-DIMM memory modules for use on the BXT7059 / BXTS7059 SHBs and these ECC registered (72-bit) DDR3 Mini-DIMMs must be PC3-12800 compliant. Unbuffered ECC DDR3 Mini-DIMMs are also supported on the BXT/BXTS boards, however you cannot mix the ECC registered and unbuffered ECC memory types on the same board.

Each processor on a BXT7059 / BXTS7059 SHB supports three direct-connect DDR3 memory interfaces. The maximum possible memory interface speed obtained depends on the specific Intel[®] Xeon[®] E5-2400 v2 or Intel[®] Xeon[®] E5-2400 series processor(s) used on the board and other board configuration options listed in the notes section below. The table on the following page illustrates the maximum DDR3 <u>memory speed</u> supported as a function of each specific Intel[®] Xeon[®] processor when using the recommended PC3-12800 compliant Mini-DIMM modules and an SHB with the latest BIOS support.

Max. DDR3 Speed	Processor	Cores / Threads	Cache	Long-Life Availability	Maximum Thermal Design Power (TDP)	Operating Temperature Range*
DDR3-1600	Intel® Xeon® E5-2450 v2	8 / 16	20MB	Yes	95W	0°C to 40°C
DDR3-1600	Intel® Xeon® E5-2430 v2	6 / 12	15MB	Yes	80W	0°C to 50°C
DDR3-1600	Intel® Xeon® E5-2448L v2	10 / 20	25MB	Yes	70W	0°C to 50°C
DDR3-1600	Intel® Xeon® E5-2428L v2	8 / 16	20MB	Yes	60W	0°C to 50°C
DDR3-1333	Intel® Xeon® E5-2418L v2	6 / 12	15MB	Yes	50W	0°C to 50°C
DDR3-1600	Intel® Xeon® E5-2448L	8 / 16	20MB	Yes	70W	0°C to 50°C
DDR3-1333	Intel [®] Xeon [®] E5-2430	6 / 12	15MB	Yes	95W	0°C to 50°C
DDR3-1333	Intel [®] Xeon [®] E5-2428L	6 / 12	15MB	Yes	60W	0°C to 50°C
DDR3-1333	Intel® Xeon® E5-2418L	4 / 8	10MB	Yes	50W	0°C to 50°C

DDR3 Memory (continued)

*Requires a continuous airflow across the board of 350LFM.

NOTES:

- To maximize system performance and reliability, Trenton recommends populating each memory channel with DDR3-1600 Mini-DIMMs.
 - Using an even number of memory modules; particularly with dual-processor BXT7059 board configurations, is not recommended.
 - Using a balanced memory population approach with the BXT7059 configuration; meaning an equal number of Mini-DIMMs per processor, ensures maximum memory interface performance.
- All memory modules must have gold contacts.
- Low-voltage (DDR3L) Mini-DIMMs are not supported.
- The SHB supports the following memory module memory latency timings:
 - o 9-9-9 for 1600MHz DDR3 Mini-DIMMs
- Populate the memory sockets starting with the Mini-DIMM socket closest to the CPU and work your way toward the edges of the SHB as illustrated in the chart below: Mini-DIMM Population Order CPU0* **Mini-DIMM Population Order** CPU1* **BK00 BK10** 1a 1 **BK01** 2a 2 **BK11** 3 **BK02** 3a **BK12**
- *CPU0 and CPU1 are both available on BXT7059 SHBs.

The memory DIMMs on the SHB connect directly to the CPU and at least one memory module must be installed on the board. The BXTS7059 SHB versions feature one processor; however, memory slots BK10, BK11 and BK12 are installed on the SHB but are not active in this single-processor board version.

Universal Serial Bus (USB)

The SHB supports eight high-speed USB 2.0 ports. Connectors for two of the USB ports (0 and 1) are on the I/O bracket and USB ports 2 and 3 are available via headers on the SHB. USB ports 4, 5, 6 and 7 are routed directly to edge connector C of the SHB for use on a PICMG 1.3 backplane.

Video Interface

The SHB features a Graphics Processing Unit (GPU) with 8MB of video memory, and the GPU is driven by a x1 PCIe link from the SHB's Intel[®] 604 PCH. This combination of features enables the SHB's video port; located on the board's I/O plate, to support pixel resolutions up to 1920 x 1200 (WUXGA) with a 64k color depth.

PCI Express Interfaces

The A0 through A3 PCI Express® links on the SHB connect directly to processor CPU0. These links can operate as either PCI Express 3.0, 2.0 or 1.1 links based on the end-point devices on the backplane that are connected to the SHB and the backplane's PCIe link design itself. In addition to automatically configuring themselves for either PCIe 3.0, 2.0 or 1.1 operations, the links also configure themselves for either graphics or server-class operations. In other words, the multiple x4 links from CPU0 (links A0, A1, A2 and A3) can be utilized on a backplane as a single x16 PCIe electrical link, two x8 links, or four x4 links. CPU0's x4 links can train down to x1 links, but cannot bifurcate into multiple x1 links. PCIe link B0 comes from the board's PCH and is a PCIe 2.0 interface. Link B0 has a x4 default configuration that can automatically bifurcate into four, x1 PCIe links. An optional PEX10 module connects to the second processor (CPU1) on the dual-processor BXT7059 board to extend the PICMG 1.3 base specification by providing four additional x4 PCIe links. These additional links may also operate as either PCI Express 3.0, 2.0 or 1.1 links and can be combined into one x16, or two x8 or four x4 PCIe interfaces on a PEX10-supported PICMG 1.3 backplane. This BXT7059 capability provides additional PCI Express Backplane Usage chapters of the BXT7059 / BXTS7059 Hardware Manual for more information.

A Word About PCI Express 3.0 Interfaces

PCIe 3.0 doubles the PCIe 2.0 per lane interface speed from 500MB/s (5GT/s) to 1GB/s (8 GT/s) via speed changes and protocol enhancements. As with all previous versions of the PCI Express specification, the PCIe 3.0 interface is backwards compatible and will run Gen 3, Gen 2 and Gen 1.1 I/O cards on the same interface link. Running a PCIe 3.0 target device such as a Gen 3 I/O card at the actual PCIe 3.0 interface speed of 1GB/s **requires** that the PCIe 3.0 link from the root complex (i.e. the processor on the BXT7059) to the target card be tuned and optimized to meet the speed requirements of PCI Express 3.0. If these tuning conditions are slightly off and not fully optimized, then the interface will operate at a slower interface speed. Contact Trenton for more details regarding the specific of your particular PCIe 3.0 implementation.

Ethernet Interfaces

The BXT7059/BXTS7059 SHB supports three Ethernet interfaces. The first two interfaces are on-board 10/100/1000Base-T Ethernet interfaces located on the board's I/O bracket and implemented using an Intel® i350-AM2 Ethernet Controller. These I/O bracket interfaces support Gigabit, 100Base-T and 10Base-TX Fast Ethernet modes and are compliant with the IEEE 802.3 Specification.

The main components of the I/O bracket Ethernet interfaces are:

- Intel® i350-AM2 for 10/100/1000-Mb/s media access control (MAC) with SYM, a serial ROM port and a PCIe interface
- Serial ROM for storing the Ethernet address and the interface configuration and control data
- Integrated RJ-45/Magnetics module connectors on the SHB's I/O bracket for direct connection to the network. The connectors require category 5 (CAT5) unshielded twisted-pair (UTP) 2-pair cables for a 100-Mb/s network connection or category3 (CAT3) or higher UTP 2-pair cables for a 10-Mb/s network connection. Category 5e (CAT5e) or higher UTP 2-pair cables are recommended for a 1000-Mb/s (Gigabit) network connection.
- Link status and activity LEDs on the I/O bracket for status indication (See *Ethernet LEDs and Connectors* later in this chapter.)

The third LAN is supported by the Intel® C604 and the Intel[®] 82579 Gigabit Ethernet PHY. This 10/100/1000Base-T Ethernet interface is routed to the PICMG 1.3 backplane via edge connector C of the SHB. An alternate backplane LAN cable option is supported via board connector P22. You may elect to create your own backplane LAN cable using the P22 pin-out and mating Molex connector information found in the connectors section of this chapter. However, Trenton Systems does offer a pre-made alternate backplane LAN cable with the mating Molex connector on one end and an RJ45 connector mounted into an I/O bracket on the other end. The Trenton part number for the alternate backplane LAN cable is: **193500001150-00**.

Software drivers are supplied for most popular operating systems.

SATA/600, Serial Attached SCSI (SAS) and SATA/300 Ports

There are seven Serial ATA (SATA) interfaces available on the BXT7059 board. Six SATA ports are on the SHB and four of these ports are capable of supporting either SAS or SATA devices. A seventh SATA/300 interface is routed to edge connector C of the SHB for use on a SATA-equipped PICMG 1.3 backplane. All of the SATA interfaces are driven with a built-in SAS/SATA controller from the Intel[®] C604 Platform Controller Hub (PCH). The board's SATA ports can support seven independent SATA storage devices such as hard disks and CD-RW devices at data transfer rates up to 300MB per second on each port. The board's PCH features the Intel[®] Rapid Storage Systems functionality, which allows a third BIOS-selectable SAS/SATA controller configuration that enables either two or four-drive RAID array configurations capable of supporting RAID 0, 1 and 10 implementations.

The board's P31, P32, P35 and P36 ports are the SAS/ SATA/300 interfaces that comply with the Serial Attached SCSI and the SATA 1.0 specifications. These ports can support four independent SAS\SATA storage devices such as hard disks and CD-RW devices at data transfer rates up to 300MB per second on each port.

Ports P27 and P28 are SATA/600 interfaces compatible with the SATA 2.0 specification and capable of supporting data transfer rates up to 600MB per second on each port.

The SAS/SATA controller has three BIOS selectable modes of operation located under the Advanced/SATA Configuration menu with a legacy (i.e. IDE) mode using I/O space, an AHCI mode using memory space and a RAID mode. Software drivers that uses legacy mode will not have AHCI capabilities. The board's Intel[®] C604 supports the Intel[®] Rapid Storage Systems feature that enables RAID configurations on the SATA or SAS ports.

Watchdog Timer (WDT)

The BXT7059 provides a programmable Watchdog Timer with 7 programmable timeout periods ranging from 32msec to 32 seconds. When enabled the WDT will generate a system reset. WDT control is supplied via the C604's (PCH) General Purpose IO pins. The C604's GPIO_LVL3 register control the states of GPIO signals that select the timeout period. The C604's GPIO_LVL2 register provides the WDT's enable/disable function. Both of these 32-bit registers are located within GPIO IO spaces. The GPIO_BASE IO address is determined by the values programmed into the C604's LPC Bridge PCI configuration at offset 48-4B(h).

GPIO Bit Definitions:

Watchdog Timer Enable (WDT_EN#)

Watchdog timer enable\disable functionality is controlled by GPIO46. Clearing bit 15 of the GP_LVL2 register enables the WDT. The GP_LVL2 register is located at IO address GPIO_BASE + offset 38(h). The power-on default for this bit is a "1" which disables WDT functionality. Setting this bit to a "0" enables the WDT at the pre-selected interval.

Watchdog Select 0 (WDT_S0)

The state of this bit in conjunction with WatchDog Select 1 will select the WDT time out period. This function is controlled by GPIO64 and the state of this bit is determined by bit 0 of the GP_LVL3 register at IO address GPIO_BASE + offset 48(h). After POST the inverted state of this bit is reflected on Port80, LED0. If this bit is set to a "1" the LED in off, if set to a "0" the LED is on. See Table 1 for WDT interval selection.

Watchdog Select 1 (WDT_S1)

The state of this bit in conjunction with WatchDog Select 0 will select the WDT time out period. This function is controlled by GPIO65 and the state of this bit is determined by bit 1 of the GP_LVL3 register at IO address GPIO_BASE + offset 48(h). After POST the inverted state of this bit is reflected on Port80, LED1. If this bit is set to a "1" the LED in off, if set to a "0" the LED is on. See Table 1 for WDT interval selection.

WatchDOG Select 2 (WDT_S2)

The state of this bit in conjunction with WatchDog Select 2 will select the WDT time out period. This function is controlled by GPIO66 and the state of this bit is determined by bit 2 of the GP_LVL3 register at IO address GPIO_BASE + offset 48(h). After POST the inverted state of this bit is reflected on Port80, LED1. If this bit is set to a "1" the LED in off, if set to a "0" the LED is on. See Table 1 for WDT interval selection.

Watchdog_ Input (WDT_IN)

When the WDT is enabled this bit must be toggled $(0 \rightarrow 1 \text{ or } 1 \rightarrow 0)$ within the selected watchdog timeout period, failure to do so will result in a system reset. This function is supported by the GPIO71 bit and its state is controller by bit 7 the GP_LVL3 register which is at IO address GPIO_BASE + offset 48(h). The inverted state of this bit is reflected on Port80, LED7. If this bit is set to a "1" the LED in off, if set to a "0" the LED is on.

Watchdog Timeout Period Selections:

WDT_EN# (GPIO46)	WD_S2 (GPIO66)	WD_S1 (GPIO65)	WD_S0 (GPIO64)	Watchdog Timeout Period
1	X	X	X	Disabled
0	0	0	0	32 msec
0	0	0	1	128 msec
0	0	1	0	512 msec
0	0	1	1	1 sec
0	1	0	0	4 sec
0	1	0	1	8 sec
0	1	1	0	32 sec
0	1	1	1	Disabled

Watchdog Timer (WDT - continued)

The Watchdog Timer may require initialization prior to usage. GPIOs 46, 64, 65, 66, 71 are required to be configured as outputs. While these GPIOs do default to outputs at power-on, care should be taken to insure they have not been altered prior to WDT usage. These GPIOs are configured to outputs by clearing bits 0, 1, 2 and 7 of the GP_IO_SEL3 register at GPIO_BASE + offset 44(h) to a "0", as well a clearing bit 15 of GP_IO_SEL2 register at GPIO_BASE + offset 34(h) to a "0".

After initialization is completed (if required) the Watchdog timer period is selected by the WDT_S2, WD_SELS1 and WDT_S0 bits. Once the timeout period has been programmed the WDT is then "enabled" by clearing the WDT_EN# bit. To avoid the WDT from generating a system reset the WDT_IN bit must be toggled within the timeout period.

Programming Example: Enable WDT with 1-second timeout period

Note: When writing to any of the WDT controlling GPIO bits the remaining bits of the selected GP_LVL2 and GP_LVL3 register should remain unchanged.

Write bit 15 of GP_LVL2 to 1	pre condition GPIO32 for WDT disable
Write bits 2,1,0 of GP_LVL3 to 0,1,1,	set Watchdog timeout period to 1 sec
Write bit 15 of GP_LVL2 to 0	enable Watchdog timer

At this point the bit 7 of GP_LVL7 (GPIO71) must be toggled within a 1 second time period or the WDT will expire resulting in a system reset.

Power Fail Detection

A hardware reset may be issued when monitored voltages on the SHB drop below a specified nominal low voltage limit. In addition, the BXT/BXTS board is capable of generating an SMI# on the de-assertion of the Power Good signal from the backplane. This allows a processor to sense an impending power failure with the system power supply being responsible for maintaining the +12V, +5V and 3.3V rails in tolerance for the period of time necessary to service the SMI# interrupt. The monitored voltages and their nominal low limits are listed below.

Monitored	Power Source	Usage	Nominal Lo	w Limit	Comment
Voltage					
12V	System Power Supply		10.2V	+/- 2%	Fixed
5V	System Power Supply		4.63V	+/-2.5%	Fixed
3.3V	System Power Supply		2.88V	+/- 2.5%	Fixed
1.5V	On-board Regulator	Chipset	1.5V	+/- 4.5%	Fixed
1.1V	On-board Regulator	Chipset	0.89V	+/- 3.5%	Fixed
1.05V	On-board Regulator	Processor	0.88V	+/- 3.5%	Fixed
CPUx_PLL	On-board Regulator	Processor	$(V_{PLL} * 0.88)$	+/- 3.5%	V _{PLL} : 1.8V Sandy Bridge / 1.7V Ivy Bridge
CPUx_VTT	On-board Regulator	Processor	$(V_{VTT} * 0.88)$	+/- 3.5%	V _{VTT} : 1.05V Sandy Bridge / 1.0V Ivy Bridge

Battery

A built-in lithium battery is provided, for ten years of data retention for CMOS memory.

CAUTION: There is a danger of explosion if the battery is incorrectly replaced. Replace it only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.

Typical values - 100% sucs	Typical values - 100% suces state with 240D of DDRS system memory instance.			
Processor Type	Processor Speed	+5V	+12V	+3.3V
Intel [®] Xeon [®] E5-2450 v2	2.5GHz	1.93A	19.57A	3.55A
Intel [®] Xeon [®] E5-2430 v2	2.5GHz	1.72A	12.32A	3.21A
Intel [®] Xeon [®] E5-2448L v2	1.8GHz	1.68A	12.60A	3.11A
Intel [®] Xeon [®] E5-2428L v2	1.8GHz	1.72A	10.07A	3.23A
Intel [®] Xeon [®] E5-2418L v2	2.0GHz	1.62A	8.31A	3.19A
Intel [®] Xeon [®] E5-2430	2.2GHz	1.34A	15.11A	4.55A
Intel [®] Xeon [®] E5-2407	2.2GHz	1.31A	8.86A	4.21A
Intel [®] Xeon [®] E5-2448L	1.8GHz	1.37A	11.60A	4.49A
Intel [®] Xeon [®] E5-2428L	1.8GHz	1.34A	10.27A	4.55A

Power Requirements – Dual-Processor BXT7059

Typical values* - 100% stress state with 24GB of DDR3 system memory installed:

Typical values* - Static desktop (system idle) state with 24GB of DDR3 system memory installed:

Processor Type	Processor Speed	+5V	+12V	+3.3V
Intel [®] Xeon [®] E5-2450 v2	2.5GHz	1.65A	6.66A	3.11A
Intel [®] Xeon [®] E5-2430 v2	2.5GHz	1.56A	5.22A	3.21A
Intel [®] Xeon [®] E5-2448L v2	1.8GHz	1.66A	5.58A	3.03A
Intel [®] Xeon [®] E5-2428L v2	1.8GHz	1.58A	4.96A	3.05A
Intel [®] Xeon [®] E5-2418L v2	2.0GHz	1.48A	4.13A	2.98A
Intel [®] Xeon [®] E5-2430	2.2GHz	1.30A	3.73A	4.15A
Intel [®] Xeon [®] E5-2407	2.2GHz	1.22A	3.08A	3.89A
Intel [®] Xeon [®] E5-2448L	1.8GHz	1.34A	4.06A	4.11A
Intel [®] Xeon [®] E5-2428L	1.8GHz	1.30A	3.89A	4.18A

Power Requirements – Single-Processor BXTS7059

Typical values* - 100% stress state with 12GB of DDR3 system memory installed:

•	/1		2	2	
	Processor Type	Processor Speed	+5V	+12V	+3.3V
In	tel [®] Xeon [®] E5-2450 v2	2.5GHz	1.53A	9.15A	3.07A
In	tel [®] Xeon [®] E5-2430 v2	2.5GHz	1.81A	6.96A	3.35A
In	tel [®] Xeon [®] E5-2448L v2	1.8GHz	1.75A	7.45A	3.45A
In	tel [®] Xeon [®] E5-2428L v2	1.8GHz	1.74A	5.96A	3.41A
In	tel [®] Xeon [®] E5-2418L v2	2.0GHz	1.71A	4.61A	3.27A
	Intel [®] Xeon [®] E5-2430	2.2GHz	1.26A	7.77A	3.57A
	Intel [®] Xeon [®] E5-2407	2.2GHz	1.24A	4.49A	3.44A
	Intel [®] Xeon [®] E5-2448L	1.8GHz	1.23A	5.79A	3.52A
	Intel [®] Xeon [®] E5-2428L	1.8GHz	1.25A	5.17A	3.60A

Typical values* - Static desktop (system idle) state with 12GB of DDR3 system memory installed:

• •	1		•	•
Processor Type	Processor Speed	+5V	+12V	+3.3V
Intel [®] Xeon [®] E5-2450 v2	2.5GHz	1.33A	4.07A	2.83A
Intel [®] Xeon [®] E5-2430 v2	2.5GHz	1.63A	2.79A	3.21A
Intel [®] Xeon [®] E5-2448L v2	1.8GHz	1.69A	3.13A	3.31A
Intel [®] Xeon [®] E5-2428L v2	1.8GHz	1.68A	2.87A	3.33A
Intel [®] Xeon [®] E5-2418L v2	2.0GHz	1.63A	2.74A	3.22A
Intel [®] Xeon [®] E5-2430	2.2GHz	1.19A	1.70A	3.60A
Intel [®] Xeon [®] E5-2407	2.2GHz	1.18A	1.52A	3.48A

Processor Type	Processor Speed	+5V	+12V	+3.3V
Intel [®] Xeon [®] E5-2448L	1.8GHz	1.17A	1.67A	3.57A
Intel [®] Xeon [®] E5-2428L	1.8GHz	1.21A	1.75A	3.63A

Ten-core CPU – E5-2448L v2 Eight-core CPU - E5-2450 v2, E5-2428L v2 and E5-2448L Six-core CPUs - E5-2430 v2, E5-2418L v2, E5-2430 and E5-2428L Four-core CPU - E5-2407

Note 1: All CPUs support Intel[®] Turbo Boost Technology except the Intel[®] Xeon[®] E5-2418L v2 and the Intel[®] Xeon[®] E5-2407 processors Note 2: All CPUs have Intel[®] Hyper-Threading except the Intel[®] Xeon[®] E5-2407 processor

* Typical power numbers; actual power numbers will vary as a function of the specific BXT7059 system configuration design. Tolerance for all voltages is +/- 5%

CAUTION: Trenton recommends an EPS type of power supply for systems using high-performance processors. The power needs of backplane option cards, high-performance processors and other system components may result in drawing 20A of current from the +12V power supply line. If this occurs, hazardous energy (240VA) could exist inside the system chassis. Final system/equipment suppliers must provide protection to service personnel from these potentially hazardous energy levels.

Stand-by voltages may be used in the final system design to enable certain system recovery operations. In this case, the power supply may not completely remove power to the system host board when the power switch is turned off. Caution must be taken to ensure that incoming system power is completely disconnected before removing the system host board.

Temperature/Environment

Operating Temperature:	$0-50^{\circ}$ C. with the standard cooling solution and 350LFM of continuous airflow $0-40^{\circ}$ C. when using two Intel [®] Xeon [®] E5-2450 v2 processors in a BXT7059 SHB configuration with the standard cooling solution and 350LFM of continuous airflow
Air Flow Requirement:	350LFM continuous airflow
Storage Temperature:	- 40° C. to 70° C.
Humidity:	5% to 90% non-condensing

Mechanical

The standard cooling solution used on the BXT7059 and BXTS7059 SHBs enables placement of option cards approximately 2.15" (54.61mm) away from the top component side of the SHB. Contact Trenton for a system engineering consultation if your application needs a lower profile cooling solution. The SHB's overall dimensions are 13.330" (33.858cm) L x 4.976" (12.639cm) H. The relative PICMG 1.3 SHB height off the backplane is the same as a PICMG 1.0 SBC due to the shorter PCI Express backplane connectors.

Board Stiffener Bars & Backer Plate

The two stiffener bars and backer plate on the bottom side of the SHB maximize system integrity by ensuring proper SHB alignment within the card guides of a computer chassis. The stiffeners and backer plate provide reliable SHB operation by protecting sensitive board components from mechanical damage and assist in the safe insertion and removal of the SHB from the system.

Configuration Jumpers

The setup of the configuration jumpers on the SHB is described below. * indicates the default value of each jumper.

NOTE: For the three-position JU12 jumper, "RIGHT" is toward the I/O bracket side of the board; "LEFT" is toward the CPU1 DDR3 Memory sockets.

Jumper	Description
JU1	SPI Update (two position jumper) Install for one power-up cycle to enable the board to unprotect the SHB's SPI storage device. Remove for normal operation. *
	CAUTION: Installing this jumper is only done for special board operations such as changing the PCI Express link bifurcation operation. Contact Trenton tech support <u>before</u> installing this jumper to prevent any unintended system operation.
JU2	BIOS Recovery (two position jumper) Install for one power-up cycle to recover factory default BIOS settings. Remove for normal operation. *
JU3	DCMI Enable (two position jumper) Install to enable Intel [®] Data Center Manageability Interface (Intel [®] DCMI) operation. Remove for Intel [®] Advanced Management Technology (Intel [®] AMT 7.0) operation. *
	NOTE: Intel [®] DCMI is an optional operating condition supported on the BXT7059. This mode of operation requires an updated SPI image since DCMI requires changes to the board's BIOS and management engine firmware. Contact Trenton for additional information.
JU8	Password Clear (two position jumper) Install for one power-up cycle to reset the password to the default (null password). Remove for normal operation. *
JU12	CMOS Clear (three position jumper) Install on the LEFT to clear. Install on the RIGHT to operate. *
	NOTE: To clear the CMOS, power down the system and install the JU12 jumper on the LEET. Wait for at least two seconds, move the jumper back to the RIGHT and turn

the LEFT. Wait for at least two seconds, move the jumper back to the RIGHT and turn the power on. Clearing CMOS on the BXT7059 will not result in a checksum error on the following boot. If you want to change a BIOS setting, you must press DEL or the F2 key during POST to enter BIOS setup after clearing CMOS.

P4A/P4B Ethernet LEDs and Connectors

The I/O bracket houses the two RJ-45 network connectors for Ethernet LAN1 and LAN2. Each LAN interface connector has two LEDs that indicate activity status and Ethernet connection speed. Listed below are the possible LED conditions and status indications for each LAN connector:

LED/Connector	Description
Activity LED	Yellow LED indicates network activity. This is the upper LED on the LAN connector (i.e., toward the upper memory sockets).
Off	No current network transmit or receive activity
On (solid)	Indicates a valid link established, but no network activity.
On (flashing)	Indicates network transmit or receive activity.
Speed LED	Green/Orange bi-color LED identifies the connection speed. This is the lower LED on the LAN connector (i.e., toward the edge connectors).
Off	Indicates a valid link at 10-Mb/s.
On (orange)	Indicates a valid link at 100-Mb/s.
On (green)	Indicates a valid link at 1000-Mb/s or 1-Gb/s.

Status LEDs

The following status LEDs are located on the topside on the SHB. Refer to the board layout drawings for each LED's location.

LED9 ERROR LED

The error LED indicates several different error conditions noted below. The LED is located just above the BK02 DIMM socket

LED Status	Description
Off	Indicates the normal board operation.
On (solid)	Indicates a CPU is throttling down to a lower operating speed due to rising CPU temperature. Indicates the CPU has reached the thermal shutdown threshold limit. The SHB may or may not be operating, but a board shutdown condition will soon occur
On (fast blink rate)	Indicates a catastrophic error condition has occurred. The SHB suspends system operation until the error condition is corrected. Contact Trenton tech support.
On (slow blink rate)	A potential error condition has been detected. The SHB continues to operate, but the system should be checked for errors.

NOTE: When a thermal shutdown occurs, the LED will stay on in systems using non- ATX/EPS power supplies. The CPU will cease functioning, but power will still be applied to the SHB. In systems with ATX/EPS power supplies, the LED will turn off when a thermal shutdown occurs because system power is removed via the ACPI soft control power signal S5. In this case, all SHB LEDs will turn off; however, stand-by power will still be present.

LED10 Backplane LAN LED

The backplane LAN LED is located below LED11 in the upper left corner of the board. This LED indicated the status of the Ethernet communications link between the SHB and the backplane as show below:

LED Status	Description
Off	Indicates LAN is inactive and link communications have not been established.
On (flashing)	Indicates data is being transferred between the SHB and the backplane.
On (solid)	Indicates the LAN has a valid link and is ready for data transfers.

Status LEDs (continued)

LED11 and LED12 VRM LEDs These LEDs monitor the status on the power circuits associated with the SHBs processors.

LED Status	Description
Off	All power circuits are operating within acceptable limits and driving the CPUs correctly.
On	The CPUs have shut down most likely due to a VRM fault. Contact Trenton for assistance.

Post Code LEDs - LED0 through LED7

As the POST, (Power On Self Test) routines are performed during boot-up; test codes are displayed on Port 80 POST code LEDs 0, 1, 2, 3, 4, 5, 6 and 7. These LED are located on the top of the SHB, just above the board's battery socket. The POST Code LEDs and are numbered from right (position 1 = LED0) to left (position 8 - LED7). Refer to the board layout diagram for the exact location of the POST code LEDs.

These POST codes may be helpful as a diagnostic tool. After a normal POST sequence the LEDs are off (00h) indicating that the SHB's BIOS has passed control over to the operating system loader typically at interrupt INT19h. Specific test codes and their meaning along with the following chart are listed in Appendix A and can be used to interpret the LEDs into hexadecimal format during POST.

Upper Nibble (UN)]	Lower Nibble (LN)						
Hex. Value	LED7	LED6	LED5	LED4		Hex. Value	LED3	LED2	LED1	LED0
0	Off	Off	Off	Off		0	Off	Off	Off	Off
1	Off	Off	Off	On		1	Off	Off	Off	On
2	Off	Off	On	Off		2	Off	Off	On	Off
3	Off	Off	On	On		3	Off	Off	On	On
4	Off	On	Off	Off		4	Off	On	Off	Off
5	Off	On	Off	On		5	Off	On	Off	On
6	Off	On	On	Off		6	Off	On	On	Off
7	Off	On	On	On		7	Off	On	On	On
8	On	Off	Off	Off		8	On	Off	Off	Off
9	On	Off	Off	On		9	On	Off	Off	On
А	On	Off	On	Off		А	On	Off	On	Off
В	On	Off	On	On		В	On	Off	On	On
С	On	On	Off	Off		С	On	On	Off	Off
D	On	On	Off	On		D	On	On	Off	On
E	On	On	On	Off		ш	On	On	On	Off
F	On	On	On	On		F	On	On	On	On
						,] [Lower Nil		Ţ	
	7	6	5	4		3	2	1	0	

BXT7059 & BXTS7059 POST Code LEDs

System BIOS Setup Utility

The BXT7059 and BXTS7059 feature the Aptio® 4.x BIOS from American Megatrends, Inc. (AMI) with a ROM-resident setup utility called the Aptio Text Setup Environment or TSE. The TSE setup utility allows you to select to the following categories of options:

- Main Menu
- Advanced Setup
- Boot Setup
- Security Setup
- Chipset Setup
- Exit

Each of these options allows you to review and/or change various setup features of your system. Details of the Aptio TSE are provided in the separate BXT7059 / BXTS7059 BIOS Technical Reference manual. The BIOS and hardware technical reference manuals are available under the **Downloads** tab on the <u>BXT7059</u> or <u>BXTS7059</u> web pages.

Connectors

NOTE	E : Pin 1	l on the	connectors is indicated	by the s	quare pa	d on the	PCB.		
P1	-		Interface Connector connector, Amp 1-173	4530-3					
		<u>Pin</u>	<u>Signal</u>	<u>Pin</u> 6	<u>Signal</u> Gnd		-	<u>Pin</u>	<u>Signal</u>
		1	Red	7	Gnd			11	NC
		2	Green	8	Gnd			12	EEDI
		3	Blue	9	+5			13	HSYNC
		4	NC	10	Gnd			14	VSYNC
		5 Note:	Gnd					15	EECS
		1 – Con	nector supports standar	d DB15	video ca	bles			
P19		Pin 1 2 3 Notes:	ingle row header, Mole <u>Signal</u> Gnd +12V FanTach s the fan connector of C			for CPU	J1		
P4A, P4B	-	Dual R	//1000Base-T Ethernet RJ-45 connector, Pulse # ndividual RJ-45 connec	#JG0-00	24NL				
			Signal L2_MDI0n L2_MDI0p L2_MDI1n L2_MDI1p L2_MDI2n L2_MDI2p L2_MDI3n L2_MDI3p VCC_1.8V GND_A V ports support standard is LAN2 and P4B is L		Ethernet	Pin 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B cables	<u>Signal</u> L1_MI L1_MI L1_MI L1_MI L1_MI L1_MI L1_MI L1_MI VCC_1 GND_1	DIOp DI1n DI1p DI2n DI2p DI3n DI3p L.8V	
P5	-		er Port Connector ingle row header, Amp	#64045	6-4				
		<u>Pin</u> 1 2 3	<u>Signal</u> Speaker Data Key Gnd						

4 +5V

TRENTON Systems, Inc.

Connectors (Continued)

P6 - Reset Connector 2 pin single row header, Amp #640456-2

Pin	Signal	Pin	<u>Signal</u>
1	Gnd	2	Reset In

P7 - PMBUS Connector

5 pin single row Mini MI2 header, Molex # 554470570 (For use in optional DCMI applications only)

- <u>Pin</u> <u>Signal</u>
- 1 SMCLK_Link1
- 2 SMDATA_Link1
- 3 PMBUS_Alert#
- 4 GND
- 5 +3.3V

P12 - Hard Drive LED Connector

4 pin single row header, Amp #640456-4

- <u>Pin</u> <u>Signal</u>
- 1 LED+
- 2 LED-
- 3 LED-
- 4 LED+

P17 - Dual Universal Serial Bus (USB) Connector

10 pin dual row header, Molex #702-46-1001 (+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	Pin	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3
9	NC	10	NC

P17A - Universal Serial Bus (USB) Connector

USB vertical connector, Molex #6739-8001 (+5V fused with self-resetting fuse)

- <u>Pin</u> <u>Signal</u>
- 1 +5V-USB0
- 2 USB0-
- 3 USB0+
- 4 Gnd-USB0

P17B -Universal Serial Bus (USB) Connector USB vertical connector, Molex #6739-8001

(+5V fused with self-resetting fuse)

- Pin <u>Signal</u>
- 1 +5V-USB1
- 2 USB1-
- 3 USB1+
- 4 Gnd-USB1

P21 **Power Good LED Connector** 2 pin single row header, Amp #640456-2 c:,

Pin	<u>Signal</u>	Pin	<u>Signal</u>
1	LED-	2	LED+

10/100/1000Base-T Ethernet Connector – Alternate Backplane LAN Over Cable P22 8 pin single row connector, Molex #0554500859

<u>Pin</u>	Signal	
1	A_MDI2N	BP LAN Cable Option
2	A_MDI2P	You may elect to create your own backplane LAN cable using the P22 pin-out
3	A_MDI3N	data and the mating Molex connector information below. However, Trenton Systems does offer a pre-made alternate backplane LAN cable with the mating
4	A_MDI3P	Molex connector on one end and an RJ45 connector mounted into an I/O bracket
5	A_MDI1N	on the other end. The Trenton part number for the alternate backplane LAN cable is: 193500001150-00 .
6	A_MDI1P	15: 193300001150-00.
7	A_MDI0N	Note: Using the alternate backplane LAN cable effectively disconnects the LAN
8	A_MDI0P	routing down to SHB edge connector C.

р:

G :

Note: The mating Molex connector to use when making this alternative backplane LAN cable has a Molex part number of 0513360810.

SATA/600 Ports P27, _

P28 7 pin vertical connector with latch, Molex #67800-8005

<u>Pin</u>	<u>Signal</u>
	a 1

- Gnd 1
- 2 TX+
- 3 TX-
- 4 Gnd
- 5 RX-
- 6 RX+
- 7 Gnd

Notes:

1 - P27 = SATA0 interface, P28 = SATA1 interface

2 - Connectors support standard SATA II interface cables

SAS/SATA/300 Ports P31, _

P35, P36

Pin 1 2 3 4 5 6	<u>Signal</u> Gnd TX+ TX- Gnd RX- RX+	Notes: 1 – P31 = SATA2 interface, P32 = SATA3 interface, P35 = SATA4 interface, P36 = SATA5 interface 2 – Connectors support standard SATA II interface cables
7	Gnd	
6 7		

Connectors (Continued)

P20 -

I/O Expansion Mezzanine Card Connector 76 pin controlled impedance connector, Samtec #MIS-038-01-FD-K

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
<u>1</u>	+12	$\frac{1}{2}$	+5V_STANDBY
3	HDA_SDIN2	4	+5V_STANDBY
5	HDA_SDIN1	4 6	$+5V_DUAL$
5 7	HDA_SDIN0	8	+5V_DUAL
9	HDA_SDING	10	HDA_BITCLK
11	HDA_SDOUT	12	HDA_ACRST
13	ICH_SMI#	12	ICH_RCIN#
15	ICH_SIOPME#	16	ICH A20GATE
17	Gnd	18	Gnd
19	L_FRAME#	20	L_AD3
21	L_DRQ1#	20 22	L_AD2
23	L_DRQ0#	22	L_AD1
23 25	SERIRQ	24 26	L AD0
23	Gnd	28	Gnd
29	PCLK14SIO	30	PCLK33LPC
31	Gnd	30 32	Gnd
33	SMBDATA_RESUME	32 34	IPMB_DAT
35	SBMCLK_RESUME	36	IPMB_CLK
33 37	SALRT# RESUME	38	IPMB_ALRT#
39	Gnd	40	Gnd
39 41	EXP_CLK100	40	EXP RESET#
41	EXP_CLK100	42 44	ICH_WAKE#
45 45	Gnd	44	Gnd
43 47	C_PE_TXP5	40 48	C_PE_RXP5
47	C_PE_TXN5	48 50	C_PE_RXN5
49 51	Gnd	50 52	Gnd
53	NC	52 54	NC
55	NC	56	NC
55 57	Gnd	58	Gnd
57 59	NC	58 60	NC
59 61	NC	60 62	NC
63	Gnd	62 64	Gnd
	NC	66	NC
65 67	NC		NC
		68 70	
69 71	Gnd	70 72	Gnd
71 73	+3.3V	72 74	+5V
	+3.3V		+5V
75	+3.3V	76	+5V

Connectors (Continued)

P3 PCI Express Gen 3.0 Expansion Connector (For PEX10 option module) 80 pin (40 differential pairs) high-speed socket strip, Samtec #QSH-040-01-F-D-DP (Note: Connector P3 is not active on the BTXS7059 board configuration.) Pin Signal Pin Signal NC 2 1 NC 3 NC 4 NC NC NC 5 6 7 NC 8 NC 9 P1_PE_RXN15 10 P1_PE_TXN15 11 P1_PE_RXP15 12 P1_PE_TXP15 13 P1 PE RXN14 14 P1 PE TXN14 15 P1_PE_RXP14 16 P1_PE_TXP14 P1_PE_TXN13 17 P1_PE_RXN13 18 19 P1 PE RXP13 20 P1_PE_TXP13 21 22 P1_PE_RXN12 P1_PE_TXN12 23 24 P1_PE_TXP12 P1_PE_RXP12 25 P1 PE RXN11 26 P1 PE TXN11 27 P1_PE_RXP11 28 P1_PE_TXP11 29 P1_PE_RXN10 30 P1_PE_TXN10 31 P1 PE RXP10 32 P1 PE TXP10 33 P1_PE_RXN9 34 P1_PE_TXN9 35 P1_PE_RXP9 36 P1_PE_TXP9 37 P1 PE RXN8 38 P1 PE TXN8 39 P1_PE_RXP8 40 P1_PE_TXP8 41 NC 42 NC NC 43 NC 44 45 P1 PE CFG3 46 P1 PE CGF1 48 47 P1 GEN2 DSBL# P1 PE CFG0 49 P1 PE RXN7 50 P1 PE TXN7 51 P1_PE_RXP7 52 P1_PE_TXP7 53 P1 PE RXN6 54 P1_PE_TXN6 55 P1 PE RXP6 56 P1_PE_TXP6 57 P1_PE_RXN5 58 P1_PE_TXN5 59 P1_PE_RXP5 60 P1 PE TXP5 61 P1_PE_RXN4 62 P1_PE_TXN4 P1_PE_TXP4 P1_PE_RXP4 64 63 P1_PE_RXN3 66 P1_PE_TXN3 65 68 P1 PE TXP3 67 P1 PE RXP3 70 69 P1 PE RXN2 P1 PE TXN2 71 P1 PE RXP2 72 P1 PE TXP2 73 P1 PE RXN1 74 P1 PE TXN1 75 P1 PE RXP1 76 P1_PE_TXP1 77 P1_PE_RXN0 78 P1_PE_TXN0 79 P1_PE_RXP0 80 P1_PE_TXP0

Note:

1 - Need CPU2 installed for PCIe GEN 2.0 link expansion via the Trenton PEX10 option module.

This page intentionally left blank

Chapter 2 PCI Express[®] Reference

Introduction

PCI Express[®] is a high-speed, high-bandwidth interface with multiple channels (lanes) bundled together with each lane using full-duplex, serial data transfers with high clock frequencies.

The PCI Express architecture is based on the conventional PCI addressing model, but improves upon it by providing a high-performance physical interface and enhanced capabilities. Whereas the PCI bus architecture provided parallel communication between a processor board and backplane, the PCI Express protocol provides high-speed serial data transfer, which allows for higher clock speeds. The same data rate is available in both directions simultaneously, effectively reducing bottlenecks between the system host board (SHB) and PCI Express option cards.

PCI Express option cards may require updated device drivers. Most operating systems that support legacy PCI cards will also support PCI Express cards without modification. Because of this design, PCI, PCI-X and PCI Express option cards can co-exist in the same system.

PCI Express connectors have lower pin counts than PCI bus connectors. The PCIe connectors are physically different, based on the number of lanes in the connector.

PCI Express Links

Several PCI Express channels (lanes) can be bundled for each expansion slot, leaving room for stages of expansion. A link is a collection of one or more PCIe lanes. A basic full-duplex link consists of two dedicated lanes for receiving data and two dedicated lanes for transmitting data. PCI Express supports scalable link widths in 1-, 4-, 8- and 16-lane configurations, generally referred to as x1, x4, x8 and x16 slots. A x1 slot indicates that the slot has one PCIe lane, which gives it a bandwidth of 250MB/s in each direction. Since devices do not compete for bandwidth, the effective bandwidth, counting bandwidth in both directions, is 500MB/s (full-duplex).

The number and configuration of an SHB's PCI Express links is determined by specific component PCI Express specifications. In PCI Express Gen 1 the bandwidths for the PCIe links are determined by the link width multiplied by 250MB/s and 500MB/s, as follows:

Slot		Full-Duplex
Size	Bandwidth	Bandwidth
x1	250MB/s	500MB/s
x4	1GB/s	2GB/s
x8	2GB/s	4GB/s
x16	4GB/s	8GB/s

In PCI Express Gen 2 the bandwidths for the PCIe links are doubled as compared to PCIe Gen 1.1 as shown below:

Slot	Full-Duplex
Size Bandw	vidth Bandwidth
x1 500MI	B/s 1GB/s
x4 2GB/s	4GB/s
x8 4GB/s	8GB/s
x16 8GB/s	16GB/s

PCI Express Links (continued)

PCI Express 3.0 doubles the PCIe 2.0 per lane interface speed from 500MB/s (5GT/s) to 1GB/s (8 GT/s) via speed changes and protocol enhancements. As with all previous versions of the PCI Express specification, the PCIe 3.0 interface is backwards compatible and will run Gen 3, Gen 2 and Gen 1.1 I/O cards on the same interface link. In PCI Express Gen 3 the bandwidths for the PCIe links are doubled as compared to PCIe Gen 2.0 as shown below:

	Full-Duplex
Bandwidth	Bandwidth
1GB/s	2GB/s
4GB/s	8GB/s
8GB/s	16GB/s
16GB/s	32GB/s
	1GB/s 4GB/s 8GB/s

Running a PCIe 3.0 target device such as a Gen 3 I/O card at the actual PCIe 3.0 interface speed of 1GB/s **requires** that the PCIe 3.0 link from the root complex (i.e. the processor on the BXT7059) to the target card be tuned and optimized to meet the speed requirements of PCI Express 3.0. If these tuning conditions are slightly off and not fully optimized, then the interface will operate at a slower interface speed. Contact Trenton for more details regarding the specific of your particular PCIe 3.0 implementation.

Scalability is a core feature of PCI Express. Some chipsets allow a PCI Express link to be subdivided into additional links, e.g., a x8 link may be able to be divided into two x4 links. In addition, although a board with a higher number of lanes will not function in a slot with a lower number of lanes (e.g., a x16 board in a x1 slot) because the connectors are mechanically and electrically incompatible, the reverse configuration will function. A board with a lower number of lanes can be placed into a slot with a higher number of lanes (e.g., a x4 board into a x16 slot). The link auto-negotiates between the PCI Express devices to establish communication. The mechanical option card slots on a PICMG 1.3 backplane must have PCI Express configuration straps that alert the SHB to the PCI Express electrical configuration expected. The SHB can then reconfigure the PCIe links for optimum system performance.

For more information, refer to the PCI Industrial Manufacturers Group's SHB Express[®] System Host Board PCI Express Specification, PICMG[®] 1.3.

SHB Configurations

The BXT7059 and BXTS7059 are combo class SHBs that support either PCI Express server-class or graphics-class backplane configurations. Server applications require multiple, high-bandwidth PCIe links, and therefore the server-class SHB/backplane configuration is identified by multiple x8 and x4 links to the SHB edge connectors.

SHBs, which require high-end video or graphics cards generally, use a x16 PCI Express link. The graphicsclass SHB/backplane configuration is identified by one x16 PCIe link and one x4 or four x1 links to the edge connectors. As PCI Express chipsets continue to evolve, it is possible that more x4 and/or x1 links could be supported in graphics-class SHBs. Currently, most video or graphics cards communicate to the SHB at an effective x1, x4 or x8 PCI Express data rate and do not actually make use of all of the signal lanes in a x16 connector.

NOTE: The BXT7059 / BXTS7059 eliminates the PICMG 1.3 requirement that server-class SHBs should always be used with server-class PICMG 1.3 backplanes and graphics-class SHBs should always be used with graphics-class PICMG 1.3 backplanes. This is because the PCIe links integrated BXT processors and SHB architecture itself can sense the backplane end-point devices and configure the SHB links for either server or graphics-class operations. For this reason the Trenton BXT7059 and BXTS7059 are called combo-class SHBs.

PCI Express Edge Connector Pin Assignments

Trenton's BXT7059/BXTS7059 SHB uses edge connectors A, B and C. Optional I/O signals are defined in the PICMG 1.3 specification and if implemented must be located on edge connector C of the SHB. The SHB makes the Intelligent Platform Management Bus (IPMB) signals available to the user. The SHB supports four USB ports (USB 4, 5, 6 and 7) and one 10/100/1000Base-T Ethernet interface on PICMG 1.3 compatible backplanes via the SHB's edge connector C. The following table shows pin assignments for the PCI Express edge connectors on the BXT7059 / BXTS7059 SHB.

* Pins 3 and 4 of Side B of Connector A (TDI and TDO) are jumpered together.

	Connecto	Connector A Connector B			Connector C			Connector D (Not Available)			
	Side B	Side A		Side B	Side A		Side B	Side A		Side B	Side A
1	SMCLK	SMBDAT	1	+5VSBY	+5VSBY	1	USBP0+	GND	1	INTB#	INTA#
2	GND	GND	2	GND	NC	2	USBP0-	GND	2	INTD#	INTC#
3	TDI TDO*	NC	3	A_PE_TXP8	GND	3	GND	USBP1+	3	GND	NC
4	TDI TDO*	NC	4	A_PE_TXN8	GND	4	GND	USBP1-	4	REQ3#	GNT3#
5	NC	ICH WAKE#	5	GND	A_PE_RXP8	5	USBP2+	GND	5	REQ2#	GNT2#
6	PWRBTN#	ICH PCIPME#	6	GND	A_PE_RXN8	6	USBP2-	GND	6	PCIRST#	GNT1#
7	PWROK	PSON#	7	A_PE_TXP9	GND	7	GND	USBP3+	7	REQ1#	GNT0#
8	SHBRST#	EXP RESET#	8	A_PE_TXN9	GND	8	GND	USBP3-	8	REQ0#	SERR#
9	CFG0	CFG1	9	GND	A_PE_RXP9	9	USBOCO	GND	9	NC	3.3V
10	CFG2	CFG3	10	GND	A_PE_RXN9	10	GND	USBOC1	10	GND	CLKFI
11		GND	11	RSVD	GND	11	USBOC2	GND	11	CLKFO	GND
	Mechanical C	onnector		Mechanical Co	nnector		Mechanical (Connector		Mechanical C	Connector
12	GND	RSVD	12	GND	RSVD	12	GND	USBOC3	12	CLKC	CLKD
13	B_PE_TXPO	GND	13	A_PE_TXP10	GND	13	S5_TXP	GND	13	GND	3.3V
14	B_PE_TXN0	GND	14	A_PE_TXN10	GND	14	S5_TXN	GND	14	CLKA	CLKB
15	GND	B_PE_RXP0	15	GND	A_PE_RXP10	15	GND	S5_RXP	15	3.3V	GND
16	GND	B_PE_RXN0	16	GND	A_PE_RXN10	16	GND	S5_RXN	16	AD31	PME#
17	B_PE_TXP1	GND	17	A_PE_TXP11	GND	17	S4_TXP	GND	17	AD29	3.3V
18	B_PE_TXN1	GND	18	A_PE_TXN11	GND	18	S4_TXN	GND	18	M6_6_EN	AD30
19	GND	B_PE_RXP1	19	GND	A_PE_RXP11	19	GND	S4_RXP	19	AD27	AD28
20	GND	B_PE_RXN1	20	GND	A_PE_RXN11	20	GND	S4_RXN	20	AD25	GND
21	B_PE_TXP2	GND	21	A_PE_TXP12	GND	21	A_MDIOP	GND	21	GND	AD26
22	B_PE_TXN2	GND	22	A_PE_TXN12	GND	22	A_MDION	GND	22	CBE3#	AD24
23	GND	B_PE_RXP2	23	GND	A_PE_RXP12	23	GND	A_MDI1P	23	AD23	3.3V
24	GND	B_PE_RXN2	24	GND	A_PE_RXN12	24	GND	A_MDI1N	24	GND	AD22
25	B_PE_TXP3	GND	25	A_PE_TXP13	GND	25	A_MDI2P	GND	25	AD21	AD20
26	B_PE_TXN3	GND	26	A_PE_TXN13	GND	26	A_MDI2N	GND	26	AD19	PCIXCAP
27	GND	B_PE_RXP3	27	GND	A_PE_RXP13	27	GND	A_MDI3P	27	+5V	AD18
28	GND	B_PE_RXN3	28	GND	A_PE_RXN13	28	NC	A_MDI3N	28	AD17	AD16
29	REFCLKO	GND	29	A_PE_TXP14	GND	29	IPMB_CLK	GND	29	CBE2#	GND
30	REFCLK0#	GND	30	A_PE_TXN14	GND	30	IPMB_DAT	GND	30	GND	FRAME#
31	GND	REFCLK1#	31	GND		31	NC	NC	31	IRDY#	TRDY#
32	RSVD-G	REFCLK1	32	GND	A_PE_RXN14	32	NC	NC	32	DEVSEL#	+5V
						<u> </u>					

Connector A		Connector B			Connector C			Connector D (Not Available)			
	Side B	Side A		Side B	Side A		Side B	Side A		Side B	Side A
33	REFCLK2#	GND	33	A PE TXP15	GND	33	NC	NC	33	PLOCK#	STOP#
34	REFCLK2	GND	34	A PE TXN15	GND	34	NC	GND	34	PERR#	GND
35	GND	REFCLK3#	35	GND	A PE RXP15	35	NC	GND	35	GND	CBE1#
36	RSVD-G	REFCLK3	36	GND	A_PE_RXN15	36	GND	NC	36	PAR	AD14
37	REFCLK4#	GND	37	NC	GND	37	GND	NC	37	NC	GND
38	REFCLK4	GND	38	NC	NC	38	NC	GND	38	GND	AD12
39	GND	REFCLK5# PU	39	GND	GND	39	NC	GND	39	AD15	AD10
40	RSVD-G	REFCLK PU	40	GND	GND	40	GND	NC	40	AD13	GND
41	REFCLK6# PU	GND	41	GND	GND	41	GND	NC	41	GND	AD9
42	REFCLK6 PU	GND	42	GND	GND	42	3.3V	3.3V	42	AD11	CBEO#
43	GND	REFCLK7# PU	43	GND	GND	43	3.3V	3.3V	43	AD8	GND
44	GND	REFCLK7 PU	44	+12V	+12V	44	3.3V	3.3V	44	GND	AD6
45	A PE TXPO	GND	45	+12V +12V	+12V +12V	45	3.3V 3.3V	3.3V	45	AD7	AD5
46	A PE TXNO	GND	46	+12V +12V	+12V +12V	46	3.3V 3.3V	3.3V 3.3V	46	AD7 AD4	GND
			40			40			40		AD2
47	GND	A_PE_RXPO		+12V	+12V		3.3V	3.3V		GND	
48	GND	A_PE_RXNO	48	+12V	+12V	48	3.3V	3.3V	48	AD3	AD1
49	A_PE_TXP1	GND	49	+12V	+12V	49	3.3V	3.3V	49	AD0	GND
50	A_PE_TXN1	GND				50	3.3V	3.3V			
51	GND	A_PE_RXP1				51	GND	GND			
52	GND	A_PE_RXN1				52	GND	GND			
53	A_PE_TXP2	GND				53	GND	GND			
54	A_PE_TXN2	GND				54	GND	GND			
55	GND	A_PE_RXP2				55	GND	GND			
56	GND	A_PE_RXN2				56	GND	GND			
57	A_PE_TXP3	GND				57	GND	GND			
58	A_PE_TXN3	GND				58	GND	GND			
59	GND	A_PE_RXP3				59	+5V	+5V			
60	GND	A_PE_RXN3				60	+5V	+5V			
61	A PE TXP4	GND				61	+5V	+5V			
62	A PE TXN4	GND				62	+5V	+5V			
63	GND	A PE RXP4				63	GND	GND			
64	GND	A_PE_RXN4				64	GND	GND			
65	A PE TXP5	GND				65	GND	GND			
66	A PE TXN5	GND				66	GND	GND			
67	GND	A PE RXP5				67	GND	GND			
68	GND	A PE RXN5				68	GND	GND			
69	A PE TXP6	GND				69	GND	GND			
70	A PE TXN6	GND				70	GND	GND			
71	GND	A PE RXP6				71	GND	GND			
72	GND	A PE RXN6				72	GND	GND			
73	A PE TXP7	GND				73	+12V VRM	+12V VRM			
74	A_PE_TXN7	GND				74	+12V_VRM	+12V_VRM			
75	GND	A PE RXP7				75	+12V_VRM	+12V_VRM			
76	GND	A_PE_RXN7				76	+12V_VRM +12V_VRM	+12V_VRM +12V_VRM			
70	SERIRQ	A_PE_NANZ GND				70	+12V_VRM +12V_VRM				
								+12V_VRM			
78 70	3.3V	3.3V				78	+12V_VRM	+12V_VRM			
79 00	3.3V	3.3V				79	+12V_VRM	+12V_VRM			
80	3.3V	3.3V				80	+12V_VRM	+12V_VRM			
81	3.3V	3.3V				81	+12V_VRM	+12V_VRM			
82	NC	NC				82	+12V_VRM	+12V_VRM	I		

PCI Express Signals Overview

The following table provides a description of the SHB slot signal groups on the PCI Express connectors.

Туре	Signals	Description	Connector	Source
Global	GND, +5V, +3.3V, +12V	Power		Backplane
	PSON#	Optional ATX support	Α	SHB
	PWRGD, PWRBT#, 5Vaux	Optional ATX support	A and B	Backplane
	TDI	Optional JTAG support	A	Backplane
	TDO	Optional JTAG support	A	SHB
	SMCLK, SMDAT	Optional SMBus support	Â	SHB & Backplane
	IPMB CL, IPMB DA	Optional IPMB support	Č	SHB & Backplane
	_ · _		A	
	CFG[0:3]	PCIe configuration straps		Backplane
	SHB_RST#	Optional reset line	A	SHB
	RSVD	Reserved	A and B	
	RSVD-G	Reserved ground	Α	Backplane
	WAKE#	Signal for link reactivation	Α	Backplane
PCle	a_PETp[0:15]	Point-to-point from SHB slot through the x16	A and B	SHB & Backplane
	a_PETn[0:15]	PCIe connector (A) to the target device(s)		
	a_PERp[0:15]			
	a_PERn[0:15]			
	_			
	b PETp[0:3]	Point-to-point from SHB slot through the x8	Α	SHB & Backplane
	b PETn[0:3]	PCIe connector (B) to the target device(s)		
	b PERp[0:3]	() 5 ()		
	b PERn[0:3]			
	p_1 run[0:0]			
	REFCLK[0:7]+, REFCLK[0:7]-	Clock synchronization of PCIe expansion slots	Α	SHB
		clock synchronization of a cic expansion stors	~	5110
	PERST#	PCIe fundamental reset	Α	SHB & Backplane
PCI(-X)	AD[0:31], FRAME#, IRDY#, TRDY#,	Bussed on SHB slot and expansion slots	D	SHB & Backplane
(Not Available)	STOP#, LOCK#, DEVSEL#, PERR#,		b	STID & Dackplane
	SERR#, C/BE[0:3], SDONE, SBO#, PAR			
	SERR#, C/DE[0:3], SDONE, SDO#, TAK			
	GNT[0:3], REQ[0:3], CLKA, CLKB, CLKC,	Point-to-point from SHB slot to each	D	SHB & Backplane
			D	SHD & BUCKPIULE
	CLKD, CLKFO, CLKFI	expansion slot		
	INTA#, INTB#, INTC#, INTD#	Bussed (rotating) on SHB slot and expansion	D	Backplane
		slots		
	M66EN, PCIXCAP	Bussed on SHB slot and expansion slots	D	Backplane
			_	
	PCI_PRST#	PCI(-X) present on backplane detect	D	Backplane
	PME#	Optional PCI wake-up event bussed on SHB	Α	Backplane
		and backplane expansion slots		
Misc. I/O	USB[0:3]P, USB[0:3]N, USBOC[0:3]#	Optional point-to-point from SHB Connector C	C	SHB & Backplane
		to a destination USB device		
SATA	ESATATX(4:5)P,	Optional point-to-point from SHB Connector C	C	SHB & Backplane
511A	ESATATX(4:5)N,	to a destination SATA device	L L	Shib & Backpiano
	ESATARX(4:5)P,			
Fals and a	ESATARX(4:5)N,		-	
Ethernet	a_MDI(0:1)p,	Optional point-to-point from SHB Connector C	C	SHB & Backplane
	a MDI(0:1)n	to a destination Ethernet device		

Optional PCI Express Link Expansion

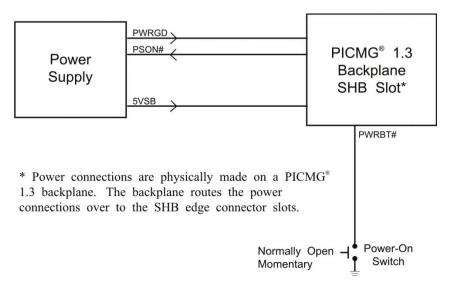
An optional Trenton PEX10 module may be used with the BXT7059 SHB to provide additional PCIe links to a backplane equipped with a PEX10 expansion slot. The Trenton BPC7041 backplane feature this PEX10 option slot. A PEX10 routes the additional PCIe links available from the BXT7059's second processor down to a backplane for use in PCI Express link and/or bandwidth expansion. These additional links may operate as either PCIe 1.1, 2.0 or 3.0 links depending on the backplane and end-point configuration.

This page intentionally left blank

Chapter 3 BXT7059 / BXTS7059 System Power Connections

Introduction

The combination of new power supply technologies and the system capabilities defined in the SHB Express[®] (PICMG[®] 1.3) specification requires a different approach to connecting system power to a PICMG 1.3 backplane and/or SHB hardware.


To improve system MTTR (Mean Time To Repair), the PICMG 1.3 specification defines enough power connections to the SHB's edge connectors to eliminate the need to connect auxiliary power to the SHB. All power connections in a PICMG 1.3 system can be made to the PICMG 1.3 backplane. This is true for SHBs that use high-performance processors. The connectors on a backplane must have an adequate number of contacts that are sufficiently rated to safely deliver the necessary power to drive these high-performance SHBs. Trenton's PICMG 1.3 backplanes define ATX/EPS and +12V connectors that are compatible with ATX/EPS power supply cable harnesses and provide multiple pins capable of delivering the current necessary to power high-performance processors.

The PICMG[®] 1.3 specification supports soft power control signals via the Advanced Configuration and Power Interface (ACPI). Trenton SHBs support these signals, which are controlled by the ACPI and are used to implement various sleep modes. Refer to the General ACPI Configuration section of the *Advanced Setup* chapter in this manual for information on ACPI BIOS settings.

When soft control signals are implemented, the type of ATX or EPS power supply used in the system and the operating system software will dictate how system power should be connected to the SHB. It is critical that the correct method be used.

Power Supply and SHB Interaction

The following diagram illustrates the interaction between the power supply and the processor. The signals shown are PWRGD (Power Good), PSON# (Power Supply On), 5VSB (5 Volt Standby) and PWRBT# (Power Button). The +/- 12V, +/-5V, +3.3V and Ground signals are not shown.

Power Supply and SHB Interaction

PWRGD, PSON# and 5VSB are usually connected directly from an ATX or EPS power supply to the backplane. The PWRBT# is a normally open momentary switch that can be wired directly to a power button on the chassis.

CAUTION: In some ATX/EPS systems, the power may appear to be off while the 5VSB signal is still present and supplying power to the SHB, option cards and other system components. The +5VAUX LED on a Trenton PICMG 1.3 backplane monitors the 5VSB power signal; "green" indicates that the 5VSB signal is present. Trenton backplane LEDs monitor all DC power signals, and all of the LEDs should be off before adding or removing components. Removing boards under power may result in system damage.

Electrical Connection Configurations

There are a number of different connector types, such as EPS, ATX or terminal blocks, which can be utilized in wiring power supply and control functions to a PICMG 1.3 backplane. However, there are only two basic electrical connection configurations: **ACPI Connection** and **Legacy Non-ACPI Connection**.

ACPI Connection

The diagram on the previous page shows how to connect an ACPI compliant power supply to an ACPI enabled PICMG 1.3 system. The following table shows the required connections that must be made for soft power control to work.

<u>Signal</u>	Description	<u>Source</u>
+12	DC voltage for those systems that require it	Power Supply
+5V	DC voltage for those systems that require it	Power Supply
+3.3V	DC voltage for those systems that require it	Power Supply
+5VSB	5 Volt Standby. This DC voltage is always on when an ATX or EPS type power supply has AC voltage connected. 5VSB is used to keep the necessary circuitry functioning for software power control and wake up.	Power Supply
PWRGD	Power Good. This signal indicates that the power supply's voltages are stable and within tolerance.	Power Supply
PSON#	Power Supply On. This signal is used to turn on an ATX or EPS type power supply.	SHB/Backplane
PWRBT#	Power Button. A momentary normally open switch is connected to this signal. When pressed and released, this signals the SHB to turn on a power supply that is in an off state.	Power Button
	If the system is on, holding this button for four seconds will cause the SHB's chipset to shut down the power supply. The operating system is not involved and therefore this is not considered a clean shutdown. Data can be lost if this situation occurs.	

Legacy Non-ACPI Connection

For system integrators that either do not have or do not require an ACPI compliant power supply as described in the section above, an alternative electrical configuration is described in the table on the following page.

<u>Signal</u>	Description	<u>Source</u>
+12	DC voltage for those systems that require it	Power Supply
+5V	DC voltage for those systems that require it	Power Supply
+3.3V	DC voltage for those systems that require it	Power Supply
+5VSB	Not Required	Power Supply
PWRGD	Not Required	Power Supply
PSON#	Power Supply On. This signal is used to turn on an ATX or EPS type power supply. If an ATX or EPS power supply is used in this legacy configuration, a shunt must be installed on the backplane from PSON# to signal Ground. This forces the power supply DC outputs on whenever AC to the power supply is active.	Backplane
PWRBT#	Not Used	

In addition to these connections, there is usually a switch controlling AC power input to the power supply.

When using the legacy electrical configuration, the SHB BIOS **Power Supply Shutoff** setting should be set to **Manual shutdown**. Refer to the *General ACPI Configuration* section of the *Advanced Setup* chapter in this manual for details.

This page intentionally left blank

Chapter 4 PCI Express Backplane Usage

Introduction

PCI Express[®] is a scalable, full-duplex serial interface which consists of multiple communication lanes grouped into links. PCI Express scalability is achieved by grouping these links into multiple configurations. A x1 ("by 1") PCI Express link is made up of one full-duplex link that consists of two dedicated lanes for receiving data and two dedicated lanes for transmitting data. A x4 configuration is made up of four PCI Express links. The most commonly used PCIe link sizes are x1, x4, x8 and x16.

PCI Express devices with different PCI Express link configurations establish communication with each other using a process called auto-negotiation or link training. For example, a PCI Express device or option card that has a x16 PCI Express interface and is placed into a x16 mechanical/x8 electrical slot on a backplane establishes communication with a PICMG[®] 1.3 SHB using auto-negotiation. The option card's PCI Express interface will "train down" to establish communication with the SHB via the x8 PCI Express link between the SHB and the backplane option card slot.

SHB Edge Connectors

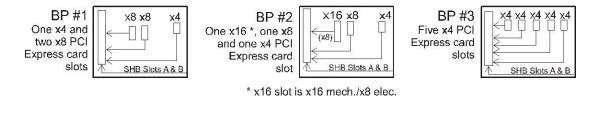
The PICMG 1.3 specification enables SHB vendors to provide multiple PCI Express configuration options for edge connectors A and B of a particular SHB. These edge connectors carry the PCI Express links and reference clocks down to the SHB slot on the PICMG 1.3 backplane. The potential PCI Express link configurations of an SHB fall into three main classifications: server-class, graphics-class and combo-class. The specific class and PCI Express link configuration of an SHB is determined by the chipset components used on the SHB.

In a server-class configuration, the main goal of the SHB is to route as many high-bandwidth PCI Express links as possible down to the backplane. Typically, these links are a combination of x4 and x8 PCI Express links.

A graphics-class configuration should provide a x16 PCI Express link down to the backplane in order to support high-end PCI Express graphics and video cards. Graphics-class SHB configurations also provide as many lower bandwidth (x1 or x4) links as possible.

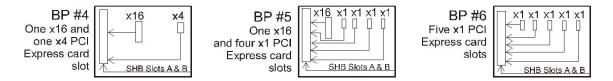
A combo-class configuration is provided by SHBs like the BXT7059 or BXTS7059. These system host board types have PCI Express hardware and software implementations that are capable of combining links to support either server or graphics-class PICMG 1.3 backplane configurations.

The A0 through A3 PCI Express[®] links on the BXT7059 connect directly to the processors. These links can operate as either PCI Express 3.0, 2.0 or 1.1 links based on the end-point devices on the backplane that are connected to the SHB and the backplane's PCIe link design. In addition to automatically configuring themselves for either PCIe 3.0, 2.0 or PCIe 1.1 operations, the links also configure themselves for either graphics or server-class operations. In other words, the multiple x4 links from the processors (links A0, A1, A2 and A3) can be combined into a single x16 PCIe electrical link or two x8 or four x4 links on a backplane. The CPU's x4 links can train down to x1 links, but cannot bifurcate into multiple x1 links. The PCIe link (B0) from the board's PCH is a PCIe 2.0 interface and has a x4 default configuration that can automatically bifurcate into four, x1 PCIe links. An optional PEX10 module connected to a dual-processor BXT7059 expends the PICMG 1.3 base specification by providing four x4 links. These links may also operate as either PCI Express 3.0, 2.0 or PCI Express 1.1 links and can be combined into one x16, or two x8 or four x4 PCIe interfaces on a PEX10-supported backplane. This BXT7059 capability provides additional PCI Express bandwidth and option card support in the system design. Refer to the *PCI Express*[®] *Reference* chapter and to *Appendix C - PCI Express Backplane Usage* of the BXT7059 / BXTS7059 Hardware Manual for more information.


In addition to the standard PICMG 1.3 edge connector PCIe interfaces and the PEX10 expansion links, the BXT boards also have an additional x4 PCIe 3.0 link available for use on a backplane. This extra x4 link is routed to the SHB's controlled impedance connector for use with the Trenton IOB33 plug-in option card.

The IOB33 routes this x4 PCI Express link down to a physical x4 PCIe edge connector on the board. The IOB33 edge connector mates with a backplane's PCIe Expansion slot. This extra link is useful in supporting an additional system card slot. Refer to the IOB Expansion Board - Appendix D for more information the IOB33 and the PCI Express Reference chapter for more information on the PCI Express signal routings to the SHB edge connectors.

The figures below show some typical SHB and backplane combinations that would result in all of the PCI Express slots successfully establishing communication with the SHB host device. The first figure shows a server-class SHB; the second shows a graphics-class SHB.


Server-Class SHB:

PCI Express[™] Edge Connectors A & B: One x4 and two x8 PCI Express[™] Links with five reference clocks

Graphics-Class SHB:

PCI Express™ Edge Connectors A & B: One x16 and one x4 PCI Express™ Link with five reference clocks

PCI Express link configuration straps for each PCI Express option card slot on a PICMG 1.3 backplane are required as part of the PICMG 1.3 SHB Express[®] specification. These configuration straps alert the SHB as to the specific link configuration expected on each PCI Express option card slot. PCI Express communication between the SHB and option card slots is successful only when there are enough available PCI Express links established between the PICMG 1.3 SHB and each PCI Express slot or device on the backplane.

For more information, refer to the PCI Industrial Manufacturers Group's SHB Express® System Host Board PCI Express Specification, PICMG[®] 1.3.

Off-Board Video Card Usage

If the system design requires an off-board video card, then the card must be placed in a backplane slot driven with PCI Express links from the BXT7059's first processor. This is an Aptio® 4.x BIOS limitation that may be corrected in future software revisions. Listed below are the acceptable BPC7041 backplane slots for use with an off-board video card:

BPC7041 - Card slot PCIe6, PCIe7, PCIe8, PCIe9 or PCIe10

BXT7059 & BXTS7059 and Compatible Trenton Backplanes

The BXT7059 and BXTS7059 will function with a wide variety of industry standard PICMG 1.3 backplanes. However, some non-Trenton backplanes may not utilize the full capabilities of the Trenton BXT7059 and BXTS7059 boards. The table below illustrates the BXT/BXTS electrical compatibility with the current listing of Trenton PICMG 1.3 backplanes. A "Yes" in the compatible column below means that all slots on the backplane will function with a BXT7059 board. The clarification column explains any specific backplane limitations; such as mechanical option card slot interferences. Trenton continuously adds backplanes to our product line. Contact us or visit our website for the latest backplane availability.

PICMG 1.3	Compatible with BXT7059 / BXTS7059	
Backplane	(i.e. all backplane slots are functional)	Why not or clarification
2U Butterfly Backplanes	(i.e. all backplane slots are functional)	
BPC8219	Yes	
BPG6741	Yes, option card slot restrictions	PCIe4 slot accommodates single width cards only
		PCIe2 slot obstructed*, PCIe4 slot accommodates
BPX6736	Yes, option card slot restrictions	single width cards only
Multi-Segment Backplanes		Shigie Widil Guido Shiy
BP6FS6605	No	SHB segment spacing
		The first and second PCIe slots in each segment are
BP4FS6890	Yes, option card slot restrictions	obstructed* and the third slot in any segment
		accommodates single-width cards only
BB286020	Vac. antion could alot matrications	SLTA1 and SLTC1 slots are obstructed*, SLTA2
BP2S6929	Yes, option card slot restrictions	and SLTC2 accommodate single-width cards only
Combo Backplanes		
BPC7041	Yes for the BXT7059 with a PEX10	CPU2 needed to provide the links for BP slots PCIe
BI C7041	Tes for the BA17039 with a TEATO	1 through PCIe4
BPC7009	No	Link compatibility issue
Server-Class Backplanes		
BPX8093 [#]	Yes	Requires BXT7059 with PEX10 for PCIe1 and
BINOUS	105	PCIe3 slot functionality
BPX6806 [#]	Yes, option card slot restrictions	PCIe1 slot obstructed*, PCIe2 slot accommodates
	, -F	single-width cards only
BPX6620 [#]	Yes, option card slot restrictions	PCIe1 slot obstructed*, PCIe2 slot accommodates
		single-width cards only
BPX6610	Yes, option card slot restrictions	PCIe1 slot obstructed*, PCIe2 slot accommodates
		single-width cards only PCIe1 slot obstructed*, PCIe2 slot accommodates
BPX6571	Yes, option card slot restrictions	single-width cards only
BPX3/14 [#]	Yes, need IOB33 for PCIe2 slot	BXT7059 provides x4 via IOB33
		SLTD1 card slot obstructed*, SLTD2 slot
BPX3/8	Yes, option card slot restrictions	accommodates single-width cards only
		PCIe1 slot obstructed*, PCIe2 slot accommodates
BPX6719 [#]	Yes, need IOB33 for PCIe1 slot	single width cards only
DDV2/2	V di 11, di di	PCIe1 & PCIe2 slots obstructed*, SLTA1 slot
BPX3/2	Yes, option card slot restrictions	accommodates single-width cards only
BPX5 [#]	Vac. ontion could alot matrications	PCIe1 slot obstructed*, PCIe2 slot accommodates
BFAJ	Yes, option card slot restrictions	single-width cards only
Graphics-Class Backplanes		
BPG8150	Yes	Requires BXT7059 with PEX10 for PCIe1 and
BF08150	Tes	PCIe2 slot functionality
BPG8032	Yes, option card slot restrictions	PCIe1 & PCIe2 slots obstructed*, PCIe3 slot
		accommodates single-width cards only
BPG7087 [#]	Yes, need IOB33 for PCIe1 slot	BXT7059 provides x4 via IOB33
BPG6615	Yes, option card slot restrictions	PCIe2 slot accommodates single-width cards only
BPG6600	No	32b/33MHz slots C1, C2, C3 & C4 are inoperative
		when using a BXT7059 SHB
BPG6544	No	32b/33MHz slots C1, C2, & ISA slots D1 & D2 are
BPG6714 [#]	Yes, option card slot restrictions	inoperative when using a BXT7059 SHB PCIe1 slot obstructed*
DF U0 / 14		PCIe1 slot obstructed* PCIe2 slot obstructed*, SLTA1 slot accommodates
BPG2/2	Yes, option card slot restrictions	single-width cards only
		PCIe1 slot obstructed*, PCIe2 slot accommodates
BPG4 [#]	Yes, option card slot restrictions	single-width cards only
		Single maar eards only

*The slot obstruction on this backplane generally only applies to I/O cards longer than 4.3" (109.2mm). Contact Trenton for additional information. *An optional IOB33 plug-in card is needed on the BXT/BXTS to provide a x4 PCIe link for the PCIe1 or PCIe2 option card slot on these select backplanes. This page intentionally left blank

Chapter 5 I/O Expansion Boards – IOB33 & PEX10

IOB33 Overview

The IOB33 is optional I/O expansion board designed for use with the BXT7059 and BXTS7059 SHBs. Additional board versions are available for use with other Trenton SHBs. The IOB33 provides legacy I/O support and features a x4 PCIe edge connector along the bottom edge of the card. This x4 card edge connector routes a x4 PCIe Gen 3.0 electrical link from the boards CPU0 down to the PCIe expansion slot on a PICMG 1.3 backplane. This extra link is useful in supporting an additional system card slot.

The optional IOB33 also expands the I/O capabilities of the system. The IOB33 has the following interfaces available for use by the system designer:

- Two RS232 communication ports
- One Floppy drive interface
- One Parallel printer interface
 - One PS/2 Mini-DIN connector for PS/2 keyboard and mouse connections
 - Also includes separate, on-board PS/2 keyboard and mouse headers for systems that require separate PS/2 connections

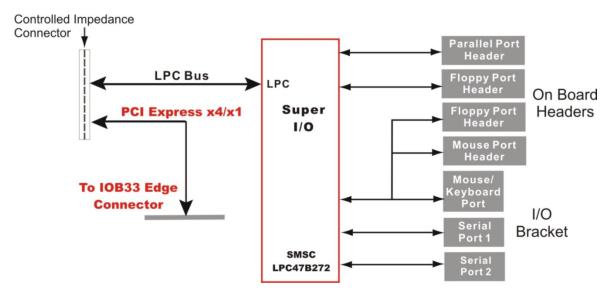
There are three versions of the Trenton IOB33 I/O expansion board. This optional board is designed for the BXT7059 and BXTS7059 SHBs, but the additional versions may be used on other Trenton SHBs. The chart below identifies the IOB33 version that is compatible with specific Trenton SHBs.

IOB Module	T4L (6483)	TML (6490)	TQ9 (6731)	MCG- Series (6680, 6690, 6675, 6695)	NLI / NLT (6313, 6396)	SLT / SLI (6515, 6521)	MCX- Series (6633, 6685, 6638, 6700)	BXT / BXTS JXT / JXTS (7059, 6966)
IOB33JX (7015-004)								Х
IOB33MC (7015-002)			X	Х			Х	
IOB33 (7015-000)	X	Х			X	Х		

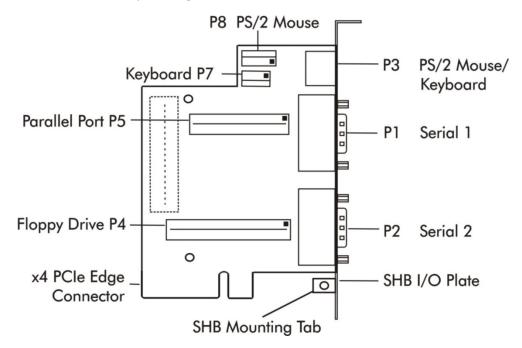
IOB33 Models

Model #	Model Name	Description
7015-004	IOB33JX	Includes the I/O Plate for use with the BXT7059 / BXTS7059 or JXT6966 / JXTS6966 system host boards
7015-002	IOB33MC	Includes the I/O Plate for use with MCX, MCG and TQ9 system host boards
7015-000	IOB330	Includes the I/O Plate for use with TML, SLT, SLI, NLT, NLI and T4L system host boards

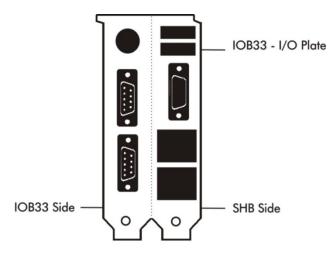
IOB33 Features


IOB33 (7015-004, 7015-002, 7015-001)

- I/O plate versions for a variety of Trenton system host boards
- Two serial ports and PS/2 mouse/keyboard mini DIN on the I/O bracket
- PS/2 mouse, keyboard, parallel port and floppy drive connectors
- PCI Express expansion capability for use with PCI Express backplanes
- Compatible with PCI Industrial Computer Manufacturers Group (PICMG®) PCI Express Specification


IOB33 Temperature/Environment

Operating Temperature:	0° C. to 60° C.
Storage Temperature:	-20° C. to 70° C.
Humidity:	5% to 90% non-condensing


IOB33 (7015-xxx) Block Diagram

IOB33 (7015-xxx) Layout Diagram

IOB33 (7015-xxx) I/O Plate Diagram

IOB33 Connectors

NOTE: the square pad on the PCB indicates Pin 1 on the connectors.

P1 Serial Port Connector _ 9 position "D" right angle, Spectrum #56-402-001 Pin Signal Pin Signal Carrier Detect Data Set Ready-I 6 1 7 Request to Send-O 2 Receive Data-I 3 8 Clear to Send-Transmit Data-O 4 Data Terminal Ready-O 9 **Ring Indicator-I** 5 Signal Gnd **P2 Serial Port Connector** 9 position "D" right angle, Spectrum #56-402-001 Pin Signal Pin Signal Carrier Detect Data Set Ready-I 1 6 Request to Send-O 2 Receive Data-I 7 3 8 Clear to Send-Transmit Data-O 4 Data Terminal Ready-O 9 **Ring Indicator-I** 5 Signal Gnd **P3** PS/2 Mouse and Keyboard Connector 6 pin mini DIN, Kycon #KMDG-6S-B4T Signal Pin Ms Data 1 2 Kbd Data 3 Gnd Power (+5V fused) with self-resetting fuse 4 5 Ms Clock Kbd Clock 6 **P4 Floppy Drive Connector** 34 pin dual row header, Amp #103308-7 Pin Signal Pin Signal 1 N-RPM Gnd 2 3 Gnd 4 NC 5 Gnd 6 D-Rate0 7 Gnd 8 P-Index 9 Gnd N-Motoron 1 10 11 Gnd N-Drive Sel2 12 N-Drive Sel1 Gnd 14 13 15 Gnd 16 N-Motoron 2 17 Gnd 18 N-Dir 19 Gnd 20 N-Stop Step 21 Gnd 22 N-Write Data N-Write Gate 23 Gnd 24 25 Gnd 26 P-Track 0 27 Gnd 28 **P-Write Protect** 29 Gnd 30 N-Read Data 31 Gnd 32 N-Side Select

34

Disk Change

33

Gnd

IOB33 Connectors (continued)

P5 - Parallel Port Connector

26 pin dual row header, Amp #103308-6

<u>Pin</u>	Signal	<u>Pin</u>	<u>Signal</u>
1	Strobe	2	Auto Feed XT
3	Data Bit 0	4	Error
5	Data Bit 1	6	Init
7	Data Bit 2	8	Slct In
9	Data Bit 3	10	Gnd
11	Data Bit 4	12	Gnd
13	Data Bit 5	14	Gnd
15	Data Bit 6	16	Gnd
17	Data Bit 7	18	Gnd
19	ACK	20	Gnd
21	Busy	22	Gnd
23	Paper End	24	Gnd
25	Slct	26	NC

P7 - Keyboard Header

5 pin single row header, Amp #640456-5

- Pin Signal
- 1 Kbd Clock
- 2 Kbd Data
- 3 Key
- 4 Kbd Gnd
- 5 Kbd Power (+5V fused) with self resetting fuse

P8 - PS/2 Mouse Header

6 pin single row header, Amp #640456-6

- Pin Signal
- 1 Ms Data
- 2 Reserved
- 3 Gnd
- 4 Power (+5V fused) with self-resetting fuse
- 5 Ms Clock
- 6 Reserved

IOB33 Connectors (continued)

P6 - Impedance Connector

76 pin controlled impedance connector, Samtec #MIS-038-01-FD-K

Pin	<u>Signal</u>
1	+12
3	NC
5	NC
7	NC
9	NC
11	NC
13	ICH_SMI#
15	ICH_SIOPME#
17	Gnd
19	L_FRAME#
21	L_DRQ1#
23	L_DRQ0#
25	SERIRQ
27	Gnd
29	PCLK14SIO
31	Gnd
33	SMBDATA_RESUME
35	SBMCLK_RESUME
37	SALRT#_RESUME
39	Gnd
41	EXP_CLK100
43	EXP_CLK100#
45	Gnd
47	C_PE_TXP4
49	C_PE_TXN4
51	Gnd
53	C_PE_TXP3
55	C_PE_TXN3
57	Gnd
59	C_PE_TXP2
61	C_PE_TXN2
63	Gnd
65	C_PE_TXP1
67	C_PE_TXN1
69	Gnd
71	+3.3V
73	+3.3V
75	+3.3V

Pin	<u>Signal</u>
2	+5V_STANDBY +5V_STANDBY
4	+5V_STANDBY
6	+5V_DUAL
8	+5V_DUAL
10	NC
12	NC
14	ICH_RCIN#
16	ICH_A20GATE
18	Gnd
20	L_AD3
22	L_AD2
24	L_AD1
26	L_AD0
28	Gnd
30	PCLK33LPC
32	Gnd
34	IPMB_DAT
36	IPMB_CLK
38	IPMB_ALRT#
40	Gnd
42	EXP_RESET#
44	ICH_WAKE#
46	Gnd
48	C_PE_RXP4
50	C_PE_RXN4
52	Gnd
54	C_PE_RXP3
56	C_PE_RXN3
58	Gnd
60	C_PE_RXP2
62	C_PE_RXN2
64	Gnd
66	C_PE_RXP1
68	C_PE_RXN1
70	Gnd
72	+5V
74	+5V
76	+5v

PEX10 Overview

The PEX10 is an optional PCI Express link expansion board that takes advantage of the additional PCI Express 3.0 interfaces available in the Intel[®] Xeon[®] E5-2400-series (i.e. Sandy Bridge-EN) processors.

Direct PCI Express 3.0 interfaces from the Sandy Bridge-EN processors are a compelling feature of Trenton's BXT7059 and BXTS7059 system host boards. The BXT7059 is a dual-processor SHB with more available PCIe links than the 20 PCIe links currently defined in the PICMG[®] 1.3 SHB Express[®] industry specification. Many system designs can utilize the additional x16 PCIe link offered by the second processor on a Trenton BXT7059 SHB to increase a system's data bandwidth and information throughput. The PEX10 is an optional PCI Express expansion board that makes these additional links available to the system designer. These addition links may operate as a single x16 or 4 - x4 links on a backplane equipped to handle this additional interface.

The PEX10 is a passive board that mounts to the back of a Trenton BXT7059. This PEX10 passive interface card routes the four additional PCIe 3.0 x4 electrical links from second processor on a BXT7059 down to a mechanical x16 PCIe link expansion slot on the backplane.

The Trenton BPC7009 and BPC7041 backplanes support the PEX10 plug-in card via an additional x16 PCI Express link expansion slot. The design architecture of these two backplanes will likely result in PCIe 2.0 data rate operation for any I/O cards connected to this PCIe 3.0 expansion link.

NOTE: Currently, the PEX10 is compatible with the Trenton BXT7059 when the SHB is used with the BPC7041 backplane. Trenton's JXT6966 SHB is compatible with either the BPC7009 or BPC7041 backplanes. Trenton is constantly expanding its PCI Express backplane product offerings. See the Trenton website or contact us for latest backplane availability information.

This page intentionally left blank

Appendix A BIOS Messages

Introduction

A status code is a data value used to indicate progress during the boot phase. These codes are outputted to I/O port 80h on the SHB. Aptio 4.x core outputs checkpoints throughout the boot process to indicate the task the system is currently executing. Status codes are very useful in aiding software developers or technicians in debugging problems that occur during the pre-boot process.

Aptio Boot Flow

While performing the functions of the traditional BIOS, Aptio 4.x core follows the firmware model described by the Intel Platform Innovation Framework for EFI ("the Framework"). The Framework refers the following "boot phases", which may apply to various status code descriptions:

- Security (SEC) initial low-level initialization
- Pre-EFI Initialization (PEI) memory initialization¹
- Driver Execution Environment (DXE) main hardware initialization²
- Boot Device Selection (BDS) system setup, pre-OS user interface & selecting a bootable device (CD/DVD, HDD, USB, Network, Shell, ...)

¹ Analogous to "bootblock" functionality of legacy BIOS

² Analogous to "POST" functionality in legacy BIOS

BIOS Beep Codes

The Pre-EFI Initialization (PEI) and Driver Execution Environment (DXE) phases of the Aptio BIOS use audible beeps to indicate error codes. The number of beeps indicates specific error conditions.

# of Beeps	Description
1	Memory not Installed
1	Memory was installed twice (InstallPeiMemory routine in PEI Core called twice)
2	Recovery started
3	DXEIPL was not found
3	DXE Core Firmware Volume was not found
7	Reset PPI is not available
4	Recovery failed
4	S3 Resume failed

PEI Beep Codes

DXE Beep Codes

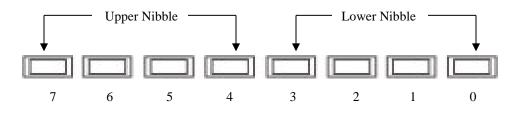
# of Beeps	Description
4	Some of the Architectural Protocols are not available
5	No Console Output Devices are found
5	No Console Input Devices are found
1	Invalid password
6	Flash update is failed
7	Reset protocol is not available
8	Platform PCI resource requirements cannot be met

BIOS Status Codes

As the POST (Power On Self Test) routines are performed during boot-up, test codes are displayed on Port 80 POST code LEDs 0, 1, 2, 3, 4, 5, 6 and 7. These LED are located on the top of the SHB, just above the board's battery socket. The POST Code LEDs and are numbered from right (position 1 = LED0) to left (position 8 - LED7).

The POST code checkpoints are the largest set of checkpoints during the BIOS pre-boot process. The following chart is a key to interpreting the POST codes displayed on LEDs 0 through 7 on the BXT7059 and BXTS7059 SHBs. Refer to the board layout in the *Specifications* chapter for the exact location of the POST code LEDs.

The HEX to LED chart in the POST Code LEDs section will serve as a guide to interpreting specific BIOS status codes.


BIOS Status POST Code LEDs

As the POST (Power On Self Test) routines are performed during boot-up, test codes are displayed on Port 80 POST code LEDs 0, 1, 2, 3, 4, 5, 6 and 7. These LED are located on the top of the SHB, just above the board's battery socket. The POST Code LEDs and are numbered from right (position 1 = LED0) to left (position 8 - LED7).

The POST code checkpoints are the largest set of checkpoints during the BIOS pre-boot process. The following chart is a key to interpreting the POST codes displayed on LEDs 0 through 7 on the BXT7059 and BXTS7059 SHBs. Refer to the board layout in the *Specifications* chapter for the exact location of the POST code LEDs.

Upper Nibble (UN)				
Hex. Value	LED7	LED6	LED5	LED4
0	Off	Off	Off	Off
1	Off	Off	Off	On
2	Off	Off	On	Off
3	Off	Off	On	On
4	Off	On	Off	Off
5	Off	On	Off	On
6	Off	On	On	Off
7	Off	On	On	On
8	On	Off	Off	Off
9	On	Off	Off	On
А	On	Off	On	Off
В	On	Off	On	On
С	On	On	Off	Off
D	On	On	Off	On
E	On	On	On	Off
F	On	On	On	On

Lower Nibble (LN)				
Hex. Value	LED3	LED2	LED1	LED0
0	Off	Off	Off	Off
1	Off	Off	Off	On
2	Off	Off	On	Off
3	Off	Off	On	On
4	Off	On	Off	Off
5	Off	On	Off	On
6	Off	On	On	Off
7	Off	On	On	On
8	On	Off	Off	Off
9	On	Off	Off	On
А	On	Off	On	Off
В	On	Off	On	On
С	On	On	Off	Off
D	On	On	Off	On
E	On	On	On	Off
F	On	On	On	On

BXT7059 & BXTS7059 POST Code LEDs

Status Code Ranges

Status Code Range Description	
0x01 - 0x0F	SEC Status Codes & Errors
0x10 - 0x2F	PEI execution up to and including memory detection
0x30 - 0x4F	PEI execution after memory detection
0x50 - 0x5F	PEI errors
0x60 - 0xCF	DXE execution up to BDS
0xD0 - 0xDF	DXE errors
0xE0 - 0xE8	S3 Resume (PEI)
0xE9 - 0xEF	S3 Resume errors (PEI)
0xF0 - 0xF8	Recovery (PEI)
0xF9 – 0xFF	Recovery errors (PEI)

SEC Status Codes

Status Code	Description	
0x0	Not used	
Progress Codes	•	
0x1	Power on. Reset type detection (soft/hard).	
0x2	AP initialization before microcode loading	
0x3	North Bridge initialization before microcode loading	
0x4	South Bridge initialization before microcode loading	
0x5	OEM initialization before microcode loading	
0x6	Microcode loading	
0x7	AP initialization after microcode loading	
0x8	North Bridge initialization after microcode loading	
0x9	South Bridge initialization after microcode loading	
0xA	OEM initialization after microcode loading	
0xB	Cache initialization	
SEC Error Code	es	
0xC - 0xD	Reserved for future AMI SEC error codes	
0xE	Microcode not found	
0xF	Microcode not loaded	

SEC Beep Codes

There are no SEC Beep codes associated with this phase of the Aptio BIOS boot process.

PEI Status Codes

Status Code	Description	
Progress Codes		
0x10	PEI Core is started	
0x11	Pre-memory CPU initialization is started	
0x12	Pre-memory CPU initialization (CPU module specific)	
0x13	Pre-memory CPU initialization (CPU module specific)	
0x14	Pre-memory CPU initialization (CPU module specific)	
0x15	Pre-memory North Bridge initialization is started	
0x16	Pre-Memory North Bridge initialization (North Bridge module specific)	
0x17	Pre-Memory North Bridge initialization (North Bridge module specific)	
0x18	Pre-Memory North Bridge initialization (North Bridge module specific)	
0x19	Pre-memory South Bridge initialization is started	
0x1A	Pre-memory South Bridge initialization (South Bridge module specific)	
0x1B	Pre-memory South Bridge initialization (South Bridge module specific)	
0x1C	Pre-memory South Bridge initialization (South Bridge module specific)	
0x1D-0x2A	OEM pre-memory initialization codes	
0x2B	Memory initialization. Serial Presence Detect (SPD) data reading	
0x2C	Memory initialization. Memory presence detection	
0x2D	Memory initialization. Programming memory timing information	
0x2E	Memory initialization. Configuring memory	
0x2F	Memory initialization (other).	
0x30	Reserved for ASL (see ASL Status Codes section below)	
0x31	Memory Installed	
0x32	CPU post-memory initialization is started	
0x33	CPU post-memory initialization. Cache initialization	
0x34	CPU post-memory initialization. Application Processor(s) (AP) initialization	
0x35	CPU post-memory initialization. Boot Strap Processor (BSP) selection	
0x36	CPU post-memory initialization. System Management Mode (SMM) initialization	
0x37	Post-Memory North Bridge initialization is started	
0x38	Post-Memory North Bridge initialization (North Bridge module specific)	
0x39	Post-Memory North Bridge initialization (North Bridge module specific)	
0x3A	Post-Memory North Bridge initialization (North Bridge module specific)	
0x3B	Post-Memory South Bridge initialization is started	
0x3C	Post-Memory South Bridge initialization (South Bridge module specific)	
0x3D	Post-Memory South Bridge initialization (South Bridge module specific)	
0x3E	Post-Memory South Bridge initialization (South Bridge module specific)	
0x3F-0x4E	OEM post memory initialization codes	
0x4F	DXE IPL is started	

050	Mamory initialization arrow Invalid mamory type or incompatible more and
0x50 0x51	Memory initialization error. Invalid memory type or incompatible memory speed
0x51 0x52	Memory initialization error. SPD reading has failed
	Memory initialization error. Invalid memory size or memory modules do not match.
0x53	Memory initialization error. No usable memory detected
0x54	Unspecified memory initialization error.
0x55	Memory not installed
0x56	Invalid CPU type or Speed
0x57	CPU mismatch
0x58	CPU self test failed or possible CPU cache error
0x59	CPU micro-code is not found or micro-code update is failed
0x5A	Internal CPU error
0x5B	reset PPI is not available
0x5C-0x5F	Reserved for future AMI error codes
53 Resume Prog	ress Codes
0xE0	S3 Resume is stared (S3 Resume PPI is called by the DXE IPL)
0xE1	S3 Boot Script execution
0xE2	Video repost
0xE3	OS S3 wake vector call
0xE4-0xE7	Reserved for future AMI progress codes
0xE0	S3 Resume is stared (S3 Resume PPI is called by the DXE IPL)
53 Resume Erro	r Codes
0xE8	S3 Resume Failed in PEI
0xE9	S3 Resume PPI not Found
0xEA	S3 Resume Boot Script Error
0xEB	S3 OS Wake Error
0xEC-0xEF	Reserved for future AMI error codes
Recovery Progre	ess Codes
0xF0	Recovery condition triggered by firmware (Auto recovery)
0xF1	Recovery condition triggered by user (Forced recovery)
0xF2	Recovery process started
0xF3	Recovery firmware image is found
0xF4	Recovery firmware image is loaded
0xF5-0xF7	Reserved for future AMI progress codes
Recovery Error	Codes
0xF8	Recovery PPI is not available
0xF9	Recovery capsule is not found
0xFA	Invalid recovery capsule
0xFB – 0xFF	Reserved for future AMI error codes

PEI Beep Codes

# of Beeps	Description
1	Memory not Installed
1	Memory was installed twice (InstallPeiMemory routine in PEI Core called twice)
2	Recovery started
3	DXEIPL was not found
3	DXE Core Firmware Volume was not found
7	Reset PPI is not available
4	Recovery failed
4	S3 Resume failed

DXE Status Codes

Status Code	Description
0x60	DXE Core is started
0x61	NVRAM initialization
0x62	Installation of the South Bridge Runtime Services
0x63	CPU DXE initialization is started
0x64	CPU DXE initialization (CPU module specific)
0x65	CPU DXE initialization (CPU module specific)
0x66	CPU DXE initialization (CPU module specific)
0x67	CPU DXE initialization (CPU module specific)
0x68	PCI host bridge initialization
0x69	North Bridge DXE initialization is started
0x6A	North Bridge DXE SMM initialization is started
0x6B	North Bridge DXE initialization (North Bridge module specific)
0x6C	North Bridge DXE initialization (North Bridge module specific)
0x6D	North Bridge DXE initialization (North Bridge module specific)
0x6E	North Bridge DXE initialization (North Bridge module specific)
0x6F	North Bridge DXE initialization (North Bridge module specific)
0x70	South Bridge DXE initialization is started
0x71	South Bridge DXE SMM initialization is started
0x72	South Bridge devices initialization
0x73	South Bridge DXE Initialization (South Bridge module specific)
0x74	South Bridge DXE Initialization (South Bridge module specific)
0x75	South Bridge DXE Initialization (South Bridge module specific)
0x76	South Bridge DXE Initialization (South Bridge module specific)
0x77	South Bridge DXE Initialization (South Bridge module specific)
0x78	ACPI module initialization
0x79	CSM initialization

0xR0 - 0x8F OEM DXE initialization codes 0x90 Boot Device Selection (BDS) phase is started 0x91 Driver connecting is started 0x92 PCI Bus initialization is started 0x93 PCI Bus Enumeration 0x94 PCI Bus Request Resources 0x95 PCI Bus Request Resources 0x97 Console Output devices connect 0x98 Console input devices connect 0x98 Console input devices connect 0x94 USB initialization 0x95 Betet 0x96 USB Reset 0x97 Console input devices connect 0x98 Super IO Initialization 0x94 USB Initialization is started 0x95 USB Betect 0x96 USB Eable 0x97 Distribulatization is started 0x41 IDE Enable 0x42 IDE Detect 0xA3 IDE Enable 0xA4 SCSI Initialization is started 0xA5 SCSI Reset 0xA6 SCSI Reset 0xA6 SCSI Betect 0xA7 SCSI Eable	0x7A - 0x7F	Reserved for future AMI DXE codes
0x90Boot Device Selection (BDS) phase is started0x91Driver connecting is started0x92PCI Bus Initialization is started0x93PCI Bus Benumeration0x94PCI Bus Request Resources0x95PCI Bus Request Resources0x96PCI Bus Assign Resources0x97Console Output devices connect0x98Console Initialization0x99Super IO Initialization0x90USB initialization is started0x91USB Binitialization is started0x92USB Detect0x94USB Beset0x97USB Enable0x97USB Enable0x97USB Enable0x97USB Enable0x97USB Enable0x42IDE Entitalization is started0xA1IDE Reset0xA2IDE Detect0xA3IDE Enable0xA4SCSI Initialization is started0xA5SCSI Reset0xA6SCSI Detect0xA7SCSI Enable0xA8Setup Verifying Password0xA8Setup Input Wait0xACReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xABSetup Input Wait0xACReserved for ASL (see ASL Status Codes section below)0xACReserved for ASL (see ASL Status Codes section below)0xACReserved for ASL (see ASL Status Codes section below)0xABSetup Input Wait0xACReserved for ASL (see ASL Status Codes sec		
0x91 Driver connecting is started 0x92 PCI Bus initialization is started 0x93 PCI Bus Initialization is started 0x94 PCI Bus Reumeration 0x95 PCI Bus Assign Resources 0x97 Console Output devices connect 0x98 Console Output devices connect 0x99 Super IO Initialization 0x90 USB initialization 0x97 USB binitialization 0x98 USB binitialization 0x99 Super IO Initialization 0x90 USB binitialization is started 0x97 USB betect 0x90 USB Detect 0x91 IDE binitialization is started 0xA0 IDE binitialization is started 0xA1 IDE Reset 0xA3 IDE Enable 0xA4 SCSI Initialization is started 0xA5 SCSI Reset 0xA6 SCSI I Reset 0xA7 SCSI Enable 0xA8 Setup Verifying Password 0xA7 SCSI Enable 0xA8		
0x92PCI Bus initialization is started0x93PCI Bus Hot Plug Controller Initialization0x94PCI Bus Enumeration0x95PCI Bus Request Resources0x96PCI Bus Resign Resources0x97Console Output devices connect0x98Console input devices connect0x99Super IO Initialization0x94USB initialization is started0x97USB betect0x98USB betect0x99USB betect0x90USB betect0x91USB Enable0x92USB betect0x94IDE initialization is started0x41IDE enable0x41IDE enable0x42SCSI initialization is started0x43SCSI initialization is started0x44SCSI Initialization is started0x45SCSI Reset0x46SCSI Detect0x47SCSI Enable0x48Setup Verifying Password0x48Setup Verifying Password0x40Reserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xAABSetup Verifying Password0xACReserved for ASL (see ASL Status Codes section below)0xAABReady To Boot event0xAFExit Boot Services event0xABRuntime Set Virtual Address MAP Begin0xBBRuntime Set Virtual Address		
0x93PCI Bus Hot Plug Controller Initialization0x94PCI Bus Enumeration0x95PCI Bus Request Resources0x96PCI Bus Assign Resources0x97Console Output devices connect0x98Console input devices connect0x99Super IO Initialization0x94USB Initialization is started0x95USB Reset0x97USB Detect0x98USB Reset0x99USB Enable0x97Reserved for future AMI codes0x40IDE initialization is started0x41IDE Reset0x43IDE Enable0x44SCSI Initialization is started0x45SCSI Reset0x46SCSI Detect0x47SCSI Enable0x48Setup Verifying Password0x48Setup Verifying Password0x40Reserved for ASL (see ASL Status Codes section below)0xA4Reserved for ASL (see ASL Status Codes section below)0xA5Scy Boot event0xA6Reserved for ASL (see ASL Status Codes section below)0xA7Ready To Boot event0xA8Reuger Boot event0xA9Ratir Services event0xA8Runtime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP Begin0xB2Legacy Option ROM Initialization0xB3System Reset0xB4USB hot plug0xB5PCI bus hot plug		-
0x94PCI Bus Enumeration0x95PCI Bus Request Resources0x96PCI Bus Assign Resources0x97Console Output devices connect0x98Console input devices connect0x99Super 10 Initialization0x94USB initialization is started0x95USB To Initialization0x97USB Brable0x98USB Reset0x99USB Enable0x90USB Enable0x91USB Enable0x92USB Enable0x94IDE initialization is started0x70IDE Enable0x70IDE Enable0x71IDE Enest0x72IDE Detect0x73IDE Enable0x74SCSI Initialization is started0x75SCSI Enable0x74SCSI Enable0x74Reserved for ASL (see ASL Status Codes section below)0x74Reserved for ASL (see ASL Status Codes section below)0x74Ezgery Dot event0x74Exit Boot Services event0x74Exit Boot Services event0x74Exit Boot Services event0x74Exit Boot Services event0x81Runtime Set Virtua		
0x95PCI Bus Request Resources0x96PCI Bus Assign Resources0x97Console Output devices connect0x98Console input devices connect0x99Super IO Initialization0x94USB initialization is started0x95USB Detect0x90USB Detect0x91USB Enable0x92Ox920x92Reserved for future AMI codes0x4A0IDE initialization is started0xA1IDE Reset0xA2IDE Detect0xA3IDE Enable0xA4SCSI initialization is started0xA5SCSI Reset0xA6SCSI Initialization is started0xA7SCSI Enable0xA8Setup Verifying Password0xA9Start of Setup0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xAAReady To Boot event0xACReserved for ASL (see ASL Status Codes section below)0xAAReady To Boot event0xAFExit Boot Services event0xABRuntime Set Virtual Address MAP Begin <td< td=""><td></td><td>-</td></td<>		-
0x96PCI Bus Assign Resources0x97Console Output devices connect0x98Console input devices connect0x99Super IO Initialization0x94USB initialization is started0x95USB Detect0x90USB Detect0x90USB Enable0x92USB Enable0x94IDE initialization is started0x95Reserved for future AMI codes0x40IDE initialization is started0xA1IDE Reset0xA2IDE Detect0xA3IDE Enable0xA4SCSI initialization is started0xA5SCSI Reset0xA6SCSI Initialization is started0xA7SCSI Enable0xA8Setup Verifying Password0xA8Setup Verifying Password0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xAAReady To Boot event0xAAReady To Boot event0xAAExit Boot Services event0xAFExit Boot Services event0xABRuntime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP Begin0xB2Legacy Optio		
0x97Console Output devices connect0x98Console input devices connect0x99Super IO Initialization0x94USB Initialization is started0x95USB Reset0x96USB Detect0x97Reserved for future AMI codes0x98IDE initialization is started0x99Bereved for future AMI codes0x40IDE initialization is started0xA1IDE Reser0xA2IDE Detect0xA3IDE Enable0xA4SCSI initialization is started0xA5SCSI Reset0xA6SCSI Detect0xA7SCSI Enable0xA8Setup Verifying Password0xA9Start of Setup0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xABRetyr Input Wait0xAC <td< td=""><td></td><td></td></td<>		
0x98Console input devices connect0x99Super IO Initialization0x9AUSB initialization is started0x9BUSB Reset0x9CUSB Detect0x9DUSB Enable0x9E - 0x9FReserved for future AMI codes0xA0IDE initialization is started0xA1IDE Reset0xA2IDE Detect0xA3IDE Enable0xA4SCSI initialization is started0xA4SCSI initialization is started0xA5SCSI Reset0xA6SCSI Detect0xA7SCSI Reset0xA8Setup Verifying Password0xA8Setup Verifying Password0xA8Setup Verifying Password0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xAAReady To Boot event0xAFExit Boot Services event0xAFExit Boot Services event0xABRuntime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP End0xB2Legacy Option ROM Initialization0xB4USB hot plug0xB5PCI bus hot plug		
0x99Super IO Initialization0x9AUSB initialization is started0x9BUSB Reset0x9CUSB Detect0x9DUSB Enable0x9DUSB Enable0x40IDE initialization is started0xA1IDE Reset0xA2IDE Detect0xA3IDE Enable0xA4SCSI initialization is started0xA5SCSI Reset0xA6SCSI Detect0xA7SCSI Reset0xA8Setup Verifying Password0xA8Setup Verifying Password0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xA7Ready To Boot event0xA7Exit Boot Services event0xA8Legacy Boot event0xA9Runtime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP End0xB2Legacy Option ROM Initialization0xB4USB hot plug0xB5PCI bus hot plug		
0x9AUSB initialization is started0x9BUSB Reset0x9CUSB Detect0x9DUSB Enable0x9E - 0x9FReserved for future AMI codes0xA0IDE initialization is started0xA1IDE Reset0xA2IDE Detect0xA3IDE Enable0xA4SCSI initialization is started0xA5SCSI Reset0xA6SCSI Detect0xA7SCSI Enable0xA7SCSI Enable0xA8Setup Verifying Password0xA8Setup Verifying Password0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xABReady To Boot event0xABLegacy Boot event		
0x9BUSB Reset0x9CUSB Detect0x9DUSB Enable0x9E - 0x9FReserved for future AMI codes0xA0IDE initialization is started0xA1IDE Reset0xA2IDE Detect0xA3IDE Enable0xA4SCSI initialization is started0xA5SCSI Reset0xA6SCSI Detect0xA7SCSI Enable0xA8Setup Verifying Password0xA8Setup Verifying Password0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xAAFExit Boot services event0xAFExit Boot services event0xABRuntime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP End0xB3System Reset0xB4USB hot plug0xB5PCI bus hot plug		-
0x9CUSB Detect0x9DUSB Enable0x9E - 0x9FReserved for future AMI codes0xA0IDE initialization is started0xA1IDE Reset0xA2IDE Detect0xA3IDE Enable0xA4SCSI initialization is started0xA5SCSI Reset0xA6SCSI Detect0xA7SCSI Enable0xA8Setup Verifying Password0xA9Start of Setup0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xABReuntime Set Virtual Address MAP Begin0xB0Runtime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP End0xB2Legacy Option ROM Initialization0xB3System Reset0xB4USB hot plug0xB5PCI bus hot plug		
0x9DUSB Enable0x9E - 0x9FReserved for future AMI codes0xA0IDE initialization is started0xA1IDE Reset0xA2IDE Detect0xA3IDE Enable0xA4SCSI initialization is started0xA5SCSI Reset0xA6SCSI Detect0xA7SCSI Enable0xA8Setup Verifying Password0xA9Start of Setup0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xABSetup Input Wait0xACReserved for ASL (see ASL Status Codes section below)0xAAReady To Boot event0xAFExit Boot Services event0xB0Runtime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP End0xB2Legacy Option ROM Initialization0xB3System Reset0xB4USB hot plug0xB5PCI bus hot plug	0x9B	
0x9E - 0x9FReserved for future AMI codes0xA0IDE initialization is started0xA1IDE Reset0xA2IDE Detect0xA3IDE Enable0xA4SCSI initialization is started0xA5SCSI Reset0xA6SCSI Detect0xA7SCSI Enable0xA8Setup Verifying Password0xA9Start of Setup0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xABReugy Boot event0xAFExit Boot Services event0xB0Runtime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP End0xB2Legacy Option ROM Initialization0xB3System Reset0xB4USB hot plug0xB5PCI bus hot plug	0x9C	USB Detect
0xA0IDE initialization is started0xA1IDE Reset0xA2IDE Detect0xA3IDE Enable0xA4SCSI initialization is started0xA5SCSI Reset0xA6SCSI Detect0xA7SCSI Enable0xA8Setup Verifying Password0xA9Start of Setup0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xAAReady To Boot event0xAFExit Boot Services event0xAFExit Boot Services event0xB0Runtime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP End0xB2Legacy Option ROM Initialization0xB3System Reset0xB4USB hot plug0xB5PCI bus hot plug	0x9D	USB Enable
0xA1IDE Reset0xA2IDE Detect0xA3IDE Enable0xA4SCSI initialization is started0xA5SCSI Reset0xA6SCSI Detect0xA7SCSI Enable0xA8Setup Verifying Password0xA9Start of Setup0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xAAReady To Boot event0xAFExit Boot Services event0xAFExit Boot Services event0xB0Runtime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP End0xB2Legacy Option ROM Initialization0xB3System Reset0xB4USB hot plug0xB5PCI bus hot plug	0x9E - 0x9F	Reserved for future AMI codes
0xA2IDE Detect0xA3IDE Enable0xA4SCSI initialization is started0xA5SCSI Reset0xA6SCSI Detect0xA7SCSI Enable0xA8Setup Verifying Password0xA9Start of Setup0xAAReserved for ASL (see ASL Status Codes section below)0xABSetup Input Wait0xACReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xAAReady To Boot event0xAFExit Boot Services event0xAFExit Boot Services event0xB1Runtime Set Virtual Address MAP Begin0xB2Legacy Option ROM Initialization0xB3System Reset0xB4USB hot plug0xB5PCI bus hot plug	0xA0	IDE initialization is started
0xA3IDE Enable0xA4SCSI initialization is started0xA5SCSI Reset0xA6SCSI Detect0xA7SCSI Enable0xA8Setup Verifying Password0xA9Start of Setup0xAAReserved for ASL (see ASL Status Codes section below)0xABSetup Input Wait0xACReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xAAReserved for ASL (see ASL Status Codes section below)0xACReserved for ASL (see ASL Status Codes section below)0xAAReady To Boot event0xAFLegacy Boot event0xAFExit Boot Services event0xB0Runtime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP End0xB2Legacy Option ROM Initialization0xB3System Reset0xB4USB hot plug0xB5PCI bus hot plug	0xA1	IDE Reset
0xA4SCSI initialization is started0xA5SCSI Reset0xA6SCSI Detect0xA7SCSI Enable0xA8Setup Verifying Password0xA9Start of Setup0xAAReserved for ASL (see ASL Status Codes section below)0xABSetup Input Wait0xACReserved for ASL (see ASL Status Codes section below)0xADReady To Boot event0xAFLegacy Boot event0xAFExit Boot Services event0xB0Runtime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP End0xB2Legacy Option ROM Initialization0xB4USB hot plug0xB5PCI bus hot plug	0xA2	IDE Detect
0xA5SCSI Reset0xA6SCSI Detect0xA7SCSI Enable0xA8Setup Verifying Password0xA9Start of Setup0xAAReserved for ASL (see ASL Status Codes section below)0xABSetup Input Wait0xACReserved for ASL (see ASL Status Codes section below)0xADReady To Boot event0xAFLegacy Boot event0xAFExit Boot Services event0xB0Runtime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP End0xB3System Reset0xB4USB hot plug0xB5PCI bus hot plug	0xA3	IDE Enable
0xA6SCSI Detect0xA7SCSI Enable0xA8Setup Verifying Password0xA8Setup Verifying Password0xA9Start of Setup0xAAReserved for ASL (see ASL Status Codes section below)0xABSetup Input Wait0xACReserved for ASL (see ASL Status Codes section below)0xADReady To Boot event0xAELegacy Boot event0xAFExit Boot Services event0xB0Runtime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP End0xB3System Reset0xB4USB hot plug0xB5PCI bus hot plug	0xA4	SCSI initialization is started
0xA7SCSI Enable0xA8Setup Verifying Password0xA9Start of Setup0xAAReserved for ASL (see ASL Status Codes section below)0xABSetup Input Wait0xACReserved for ASL (see ASL Status Codes section below)0xADReady To Boot event0xAELegacy Boot event0xAFExit Boot Services event0xB0Runtime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP End0xB2Legacy Option ROM Initialization0xB4USB hot plug0xB5PCI bus hot plug	0xA5	SCSI Reset
0xA8Setup Verifying Password0xA9Start of Setup0xAAReserved for ASL (see ASL Status Codes section below)0xABSetup Input Wait0xACReserved for ASL (see ASL Status Codes section below)0xADReady To Boot event0xAELegacy Boot event0xAFExit Boot Services event0xB0Runtime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP End0xB2Legacy Option ROM Initialization0xB3System Reset0xB4USB hot plug0xB5PCI bus hot plug	0xA6	SCSI Detect
OxA9Start of SetupOxAAReserved for ASL (see ASL Status Codes section below)OxABSetup Input WaitOxACReserved for ASL (see ASL Status Codes section below)OxADReady To Boot eventOxAELegacy Boot eventOxAFExit Boot Services eventOxB0Runtime Set Virtual Address MAP BeginOxB1Runtime Set Virtual Address MAP EndOxB2Legacy Option ROM InitializationOxB3System ResetOxB4USB hot plugOxB5PCI bus hot plug	0xA7	SCSI Enable
OxAAReserved for ASL (see ASL Status Codes section below)OxABSetup Input WaitOxACReserved for ASL (see ASL Status Codes section below)OxADReady To Boot eventOxAELegacy Boot eventOxAFExit Boot Services eventOxB0Runtime Set Virtual Address MAP BeginOxB1Runtime Set Virtual Address MAP EndOxB2Legacy Option ROM InitializationOxB3System ResetOxB4USB hot plugOxB5PCI bus hot plug	0xA8	Setup Verifying Password
OxABSetup Input WaitOxACReserved for ASL (see ASL Status Codes section below)OxADReady To Boot eventOxAELegacy Boot eventOxAFExit Boot Services eventOxB0Runtime Set Virtual Address MAP BeginOxB1Runtime Set Virtual Address MAP EndOxB2Legacy Option ROM InitializationOxB3System ResetOxB4USB hot plugOxB5PCI bus hot plug	0xA9	Start of Setup
OxACReserved for ASL (see ASL Status Codes section below)OxADReady To Boot eventOxAELegacy Boot eventOxAFExit Boot Services eventOxB0Runtime Set Virtual Address MAP BeginOxB1Runtime Set Virtual Address MAP EndOxB2Legacy Option ROM InitializationOxB3System ResetOxB4USB hot plugOxB5PCI bus hot plug	0xAA	Reserved for ASL (see ASL Status Codes section below)
OxADReady To Boot eventOxAELegacy Boot eventOxAFExit Boot Services eventOxB0Runtime Set Virtual Address MAP BeginOxB1Runtime Set Virtual Address MAP EndOxB2Legacy Option ROM InitializationOxB3System ResetOxB4USB hot plugOxB5PCI bus hot plug	0xAB	Setup Input Wait
OxAELegacy Boot eventOxAFExit Boot Services eventOxB0Runtime Set Virtual Address MAP BeginOxB1Runtime Set Virtual Address MAP EndOxB2Legacy Option ROM InitializationOxB3System ResetOxB4USB hot plugOxB5PCI bus hot plug	0xAC	Reserved for ASL (see ASL Status Codes section below)
OxAFExit Boot Services eventOxB0Runtime Set Virtual Address MAP BeginOxB1Runtime Set Virtual Address MAP EndOxB2Legacy Option ROM InitializationOxB3System ResetOxB4USB hot plugOxB5PCI bus hot plug	0xAD	Ready To Boot event
0xB0Runtime Set Virtual Address MAP Begin0xB1Runtime Set Virtual Address MAP End0xB2Legacy Option ROM Initialization0xB3System Reset0xB4USB hot plug0xB5PCI bus hot plug	0xAE	Legacy Boot event
0xB1Runtime Set Virtual Address MAP End0xB2Legacy Option ROM Initialization0xB3System Reset0xB4USB hot plug0xB5PCI bus hot plug	0xAF	Exit Boot Services event
0xB2Legacy Option ROM Initialization0xB3System Reset0xB4USB hot plug0xB5PCI bus hot plug	0xB0	Runtime Set Virtual Address MAP Begin
0xB3System Reset0xB4USB hot plug0xB5PCI bus hot plug	0xB1	Runtime Set Virtual Address MAP End
0xB4 USB hot plug 0xB5 PCI bus hot plug	0xB2	Legacy Option ROM Initialization
0xB5 PCI bus hot plug	0xB3	System Reset
	0xB4	USB hot plug
	0xB5	PCI bus hot plug
	0xB6	
0xB7 Configuration Reset (reset of NVRAM settings)	0xB7	Configuration Reset (reset of NVRAM settings)

0 D0 0 DE			
0xB8 - 0xBF	Reserved for future AMI codes		
0xC0 – 0xCF	OEM BDS initialization codes		
DXE Error Code	DXE Error Codes		
0xD0	CPU initialization error		
0xD1	North Bridge initialization error		
0xD2	South Bridge initialization error		
0xD3	Some of the Architectural Protocols are not available		
0xD4	PCI resource allocation error. Out of Resources		
0xD5	No Space for Legacy Option ROM		
0xD6	No Console Output Devices are found		
0xD7	No Console Input Devices are found		
0xD8	Invalid password		
0xD9	Error loading Boot Option (LoadImage returned error)		
0xDA	Boot Option is failed (StartImage returned error)		
0xDB	Flash update is failed		
0xDC	Reset protocol is not available		

DXE Beep Codes

# of Beeps	Description
4	Some of the Architectural Protocols are not available
5	No Console Output Devices are found
5	No Console Input Devices are found
1	Invalid password
6	Flash update is failed
7	Reset protocol is not available
8	Platform PCI resource requirements cannot be met

ACPI/ASL Status Codes

Status Code	Description
0x01	System is entering S1 sleep state
0x02	System is entering S2 sleep state
0x03	System is entering S3 sleep state
0x04	System is entering S4 sleep state
0x05	System is entering S5 sleep state
0x10	System is waking up from the S1 sleep state
0x20	System is waking up from the S2 sleep state
0x30	System is waking up from the S3 sleep state
0x40	System is waking up from the S4 sleep state
0xAC	System has transitioned into ACPI mode. Interrupt controller is in PIC mode.
0xAA	System has transitioned into ACPI mode. Interrupt controller is in APIC mode.

OEM-Reserved Status Code Ranges

Status Code	Description
0x5	OEM SEC initialization before microcode loading
0xA	OEM SEC initialization after microcode loading
0x1D - 0x2A	OEM pre-memory initialization codes
0x3F - 0x4E	OEM PEI post memory initialization codes
0x80 - 0x8F	OEM DXE initialization codes
0xC0 - 0xCF	OEM BDS initialization codes