

JXT6966 / JXTS6966

6966-xxx

No. 87-006969-000 Revision K

HARDWARE

TECHNICAL REFERENCE

Intel® Xeon® C5500-series

Quad Core

PROCESSOR-BASED

SHB

WARRANTY

The following is an abbreviated version of Trenton Systems' warranty policy for PICMG[®] 1.3 products. For a complete warranty statement, contact Trenton or visit our website at www.TrentonSystems.com.

Trenton PICMG[®] 1.3 products are warranted against material and manufacturing defects for five years from date of delivery to the original purchaser. Buyer agrees that if this product proves defective Trenton Systems Inc. is only obligated to repair, replace or refund the purchase price of this product at Trenton Systems' discretion. The warranty is void if the product has been subjected to alteration, neglect, misuse or abuse; if any repairs have been attempted by anyone other than Trenton Systems Inc.; or if failure is caused by accident, acts of God, or other causes beyond the control of Trenton Systems Inc. Trenton Systems Inc. reserves the right to make changes or improvements in any product without incurring any obligation to similarly alter products previously purchased.

In no event shall Trenton Systems Inc. be liable for any defect in hardware or software or loss or inadequacy of data of any kind, or for any direct, indirect, incidental or consequential damages arising out of or in connection with the performance or use of the product or information provided. Trenton Systems Inc.'s liability shall in no event exceed the purchase price of the product purchased hereunder. The foregoing limitation of liability shall be equally applicable to any service provided by Trenton Systems Inc.

RETURN POLICY

A Return Material Authorization (RMA) number, obtained from Trenton Systems prior to return, must accompany products returned for repair. The customer must prepay freight on all returned items, and the customer is responsible for any loss or damage caused by common carrier in transit. Items will be returned from Trenton Systems via Ground, unless prior arrangements are made by the customer for an alternative shipping method

To obtain an RMA number, call us at (800) 875-6031 or (770) 287-3100. We will need the following information:

Return company address and contact Model name and model # from the label on the back of the product Serial number from the label on the back of the product Description of the failure

An RMA number will be issued. Mark the RMA number clearly on the outside of each box, include a failure report for each board and return the product(s) to our Utica, NY facility:

TRENTON Technology Inc. 1001 Broad Street Utica, NY 13501 Attn: Repair Department

Contact Trenton for our complete service and repair policy.

TRADEMARKS

IBM, PC/AT, VGA, EGA, OS/2 and PS/2 are trademarks or registered trademarks of International Business Machines Corp.

AMI and AMIBIOS are trademarks of American Megatrends Inc.

Intel, Xeon, Intel Quick Path Interconnect, Intel Hyper-Threading Technology and Intel Virtualization Technology are trademarks or registered trademarks of Intel Corporation.

MS-DOS and Microsoft are registered trademarks of Microsoft Corp.

PICMG, SHB Express and the PICMG logo are trademarks or registered trademarks

of the PCI Industrial Computer Manufacturers Group.

PCI Express is a trademark of the PCI-SIG

All other brand and product names may be trademarks or registered trademarks of their respective companies.

LIABILITY DISCLAIMER

This manual is as complete and factual as possible at the time of printing; however, the information in this manual may have been updated since that time. Trenton Systems, Inc. reserves the right to change the functions, features or specifications of their products at any time, without notice.

Copyright © 2014 by Trenton Systems, Inc. All rights reserved.

E-mail: <u>Support@TrentonSystems.com</u> Web: www.TrentonSystems.com

TRENTON Systems Inc. 2350 Centennial Drive • Gainesville, Georgia 30504 Sales: (800) 875-6031 • Phone: (770) 287-3100 • Fax: (770) 287-3150 This page intentionally left blank

Table of Contents

CHAPTER 1 S	PECIFICATIONS	1-1
	on	
	essor Models	
	cessor Models	
	6966-xxx) – Dual-Processor SHB Block Diagram	
	6966-xxx) – Dual-Processor SHB Layout Diagram	
	(6966-xxx) – Single-Processor SHB Block Diagram	
	(6966-xxx) – Single-Processor SHB Layout Diagram	
Sorial Into	rconnect Interface	1-/ 1_7
	rconnect Speeds	
	ck Path Interconnect Between CPUs	
Intel® Dire	ect Media Interface (DMI)Speed Between Processor and Intel® 3420 PCH	
	terface	
	inels	
Interrupts		1-7
Bios (Flas	h)	1-7
	mory	
DDR3-133	3 Memory	1-8
	Serial Bus (USB)	
	rface	
	ss Interfaces	
	nterfaces	
	/300 Ports Timer (WDT)	
	I Detection	
	Delection	
	quirements	
	ire/Environment	
	fener Bars	
	nition	
Configura	tion Jumpers	1-14
P4A/P4B E	thernet LEDs and Connectors	1-15
	Ds	
	OS Setup Utility	
Connector	`S	1-17
CHAPTER 2 P	CI EXPRESS® REFERENCE	2-1
	on	
	ss Links	
	gurations	
	ss Edge Connector Pin Assignments	
	ss Signals Overview	
Optional P	CI Express Link Expansion	2-5
•••••••	XT6966 / JXTS6966 SYSTEM POWER CONNECTIONS	
	on	
	oply and SHB Interaction	
Electrical	Connection Configurations	3-2
		. .
	CI EXPRESS BACKPLANE USAGE	
	on	
	Connectors	
	Video Card Usage	
JY 10900 9	a JXTS6966 and Compatible Trenton Backplanes	4-1
		F 4
	O EXPANSION BOARDS – IOB33 & PEX10	-
	erview	
IOB33 Moo Model #	dels Model Name Description	
wouer #	אוטעבו אמוויב עבפטוואנוטוו	

IOB33 Features	5-2
IOB33 Temperature/Environment	
IOB33 (7015-xxx) Block Diagram	
IOB33 (7015-xxx) Layout Diagram	5-3
IOB33 (7015-xxx) I/O Plate Diagram	
IOB33 Connectors.	
IOB33 Connectors (continued)	
PEX10 Overview	
APPENDIX A BIOS MESSAGES	A-1
Introduction	
Aptio Boot Flow	A-1
BIOS Beep Codes	
PEI Beep Codes	A-1
DXE Beep Codes	
BIOS Status Codes	A-3
BIOS Status POST Code LEDs	
Status Code Ranges	
SEC Status Codes	
SEC Beep Codes	A-4
PEI Beep Codes	
DXE Status Codes	
DXE Beep Codes	
ACPI/ASL Status Codes	-
OEM-Reserved Status Code Ranges	
APPENDIX B CERTIFICATES OF COMPLIANCE	B-1
Certificate of Compliance – CE	
Certificate of Compliance – FCC Part 15	

HANDLING PRECAUTIONS

WARNING: This product has components that may be damaged by electrostatic discharge.

To protect your system host board (SHB) from electrostatic damage, be sure to observe the following precautions when handling or storing the board:

- Keep the SHB in its static-shielded bag until you are ready to perform your installation.
- Handle the SHB by its edges.
- Do not touch the I/O connector pins.
- Do not apply pressure or attach labels to the SHB.
- Use a grounded wrist strap at your workstation or ground yourself frequently by touching the metal chassis of the system before handling any components. The system must be plugged into an outlet that is connected to an earth ground.
- Use antistatic padding on all work surfaces.
- Avoid static-inducing carpeted areas.

RECOMMENDED BOARD HANDLING PRECAUTIONS

This SHB has components on both sides of the PCB. Some of these components are extremely small and subject to damage if the board is not handled properly. It is important for you to observe the following precautions when handling or storing the board to prevent components from being damaged or broken off:

- Handle the board only by its edges.
- Store the board in padded shipping material or in an anti-static board rack.
- Do not place an unprotected board on a flat surface.

Before You Begin

INTRODUCTION

It is important to be aware of the system considerations listed below before installing your JXT6966 or JXTS6966 (6966-xxx) SHB. Overall system performance may be affected by incorrect usage of these features.

MOUSE/KEYBOARD "Y" CABLE

If you have an IOB33 I/O board in your system and you are using a "Y" cable attached to the bracket mounted mouse/keyboard mini Din connector, be sure to use Trenton's "Y" cable, part number 5886-000. Using a non-Trenton cable may result in improper SHB operation.

DDR3-1333 MEMORY

Trenton recommends ECC registered DDR3 memory modules for use on the JXT6966/JXTS6966 SHBs and these ECC registered (72-bit) DDR3 Mini-DIMMs must be PC3-10600 or PC3-8500 compliant. Unbuffered ECC DDR3 Mini-DIMMs are also supported on the JXT boards, but you cannot mix the two different memory types on the same SHB.

NOTES:

- To maximize system performance and reliability, Trenton recommends populating each memory channel with DDR3 Mini-DIMMs with the same interface speed.
- All memory modules must have gold contacts.
- Low voltage (DDR3L) Mini-DIMMs are not supported.
- The SHB supports the following memory module memory latency timings:
 - o 6-6-6 for 800MHz DDR3 Mini-DIMMs
 - o 7-7-7 and 8-8-8 for 1066MHz DDR3 Mini-DIMMs
 - o 9-9-9 for 1333MHz DDR3 Mini-DIMMs
- Populating the memory sockets with Mini-DIMMs having different speeds is supported on the SHB; however, the overall memory interface speed will run at the speed of the slowest Mini-DIMM.
- Populate the memory sockets starting with the Mini-DIMM socket closest to the CPU and work your way toward the edges of the SHB as illustrated in the chart below:

Population order	CPU1	CPU2*
1	BK00	BK10
2	BK01	BK11
3	BK02	BK12

*CPU2 is available on the JXT6966 dual-processor board version only

*Using a balanced memory population approach ensures maximum memory interface performance. A "balance approach" means using an equal number of Mini-DMMs for each processor on a dual-processor JXT6966 SHB whenever possible.

The memory DIMMs on the SHB connect directly to the CPU and at least one memory module must be installed on the board. The JXTS6966 SHB versions feature one processor; however, memory sockets BK10, BK11 and BK12 are installed on the SHB but are not active in this single-processor board version.

SATA RAID OPERATION

The Intel® 3420 Platform Controller Hub (PCH) used on the SHB features Intel® Rapid Storage Technology (Intel® RST), which allows the PCH's SATA controller to be configured as a RAID controller supporting RAID 0, 1, 5 and 10 implementations. To configure the SATA ports as RAID drives or to use advanced features of the PCH, you must install the <u>Intel® RST driver software</u>. A link to the software is also located on Trenton's website by accessing the Downloads tab of the <u>JXT6966 product detail page</u> or the RAID <u>Drivers section of the Technical Support page</u>.

POWER CONNECTION

The PICMG® 1.3 specification supports soft power control signals via the Advanced Configuration and Power Interface (ACPI). The JXT6966/JXTS6966 supports these signals, controlled by the ACPI and are used to implement various sleep modes. When control signals are implemented, the type of ATX or EPS power supply used and the operating system software will dictate how system power should connect to the SHB. It is critical that the correct method be used. Refer to - *Power Connection* section in the JXT manual to determine the method that will work with your specific system design. The *Advanced Setup* chapter in the manual contains the ACPI BIOS settings.

PCI EXPRESS 2.0 LINKS AND PICMG® 1.3 BACKPLANES

The PCI Express® links A0 through A4 on the JXT6966 connect directly to the processors. These links can operate as either PCI Express 2.0 or PCI Express 1.1 links based on the end-point devices on the backplane that are connected to the SHB. In addition to automatically configuring themselves for either PCIe 2.0 or PCIe 1.1 operations, the links also configure themselves for either graphics or server-class operations. In other words, the multiple x4 links from the processors (links A0, A1, A2 and A3) can be combined into a single x16 PCIe electrical link or multiple x8 links on a backplane. The CPU's x4 links can train down to x1 links, but cannot bifurcate into multiple x1 links. The PCIe link (B0) is a PCIe 1.1 interface only from the board's PCH has a x4 default configuration and can be made to bifurcate into four, x1 PCIe links with a factory modification to the JXT board. Contact Trenton if you require this B0 link configuration change. An optional PEX10 module connected to a dual-processor JXT6966 provides more backplane links than are currently supported in the PICMG 1.3 specification. This JXT6966 capability provides additional PCI Express bandwidth and option card support in the system design. Refer to the *PCI Express*® *Reference* and to *PCI Express Backplane Usage* chapters of this manual for more information.

PICMG 1.3 BACKPLANE I/O

The JXT6966 and JXTS6966 enable the following PICMG 1.3 backplane I/O connectivity via the SBC's edge connector C:

- Four USB 2.0 interfaces
- One 10/100Base-T Ethernet interface

PICMG 1.3 BACKPLANE CLASSIFICATION

The JXT6966 and JXTS6966 are system host boards that can operate as either a Server or Graphics-Class PICMG 1.3 SHB. The JXT SHBs are essentially combo-class boards because of the capabilities of the PCI Express links built into the SHB's processors. Trenton recommends using a combo-class PICMG 1.3 backplane such as the Trenton BPC7009 or BPC7041 with the SHBs in order to ensure the use of all available backplane option card slots. See *Appendix C, PCI Express Backplane Usage* for more details.

OFF-BOARD VIDEO CARD USAGE

If the system design requires an off-board video card, then the card must be placed in a backplane slot driven with PCI Express links from the JXT6966's first processor. This is an Aptio® 4.x BIOS limitation that may be corrected in future software revisions. Listed below are the acceptable BPC7009 and BPC7041 backplane slots for use with an off-board video card:

BPC7009 - Card slot PCIe1, PCIe2 or PCIe3 BPC7041 - Card slot PCIe6, PCIe7, PCIe8, PCIe9 or PCIe10

BIOS

The JXT6966 and JXTS6966 feature the Aptio® 4.x BIOS from American Megatrends, Inc. (AMI) with a ROM-resident setup utility called the Aptio Text Setup Environment or TSE. Details of the Aptio TSE are provided in the separate *JXT6966 / JXTS6966 BIOS Technical Reference* manual.

FOR MORE INFORMATION

For more information on any of these features, refer to the appropriate sections *JXT6966 / JXTS6966 Hardware Technical Reference Manual*. The BIOS and hardware technical reference manuals are available under the **Downloads** tab on the <u>JXT6966</u> or <u>JXTS6966</u> web pages. This page intentionally left blank

Chapter 1 Specifications

Introduction

The JXT6966 and JXTS6966 are combo-class, PICMG® 1.3 system host boards that support the Intel® Xeon® C5500 processors. These CPUs feature the Nehalem micro-architecture and were developed under the codename Jasper Forest. The processors have a DDR3 integrated memory controller that supports three DDR3-1333 memory interface channels per processor resulting in six direct access memory interfaces on the JXT6966 board version. The six interfaces connect to six DDR3 Mini-DIMM sockets. With 4GB DDR3 Mini-DIMMs the total system memory capacity for a JXT6966 is 24GB and will double to 48GB once 8GB DDR3 Mini-DIMMs come on the market. The maximum theoretical system memory capacity for the JXT6966 is 192GB. The system memory capacities are cut in half for the single processor JXTS6966 board version.

PCI Express 2.0/1.1 links are built into the processors and the Intel® Quick Path Interface (Intel® QPI) between processors on the JXT6966 enables CPU resource sharing for an additional system throughput speed boost. All of the PCI Express interface links needed for a PICMG 1.3 compliant backplane are provided by the PCIe links out of CPU1 and the additional link out of the Intel® 3420 Platform Controller Hub (PCH). CPU2 on the JXT6966 provides four additional x4 PCI Express 2.0 or 1.1 links to a backplane via an optional plug-in card called the Trenton PEX10. These extra links provide added bandwidth to systems equipped with a backplane such as the Trenton BPC7009 or BPC7041. An optional IOB33 module provides an extra x1 PCIe 1.1 link to a backplane equipped with a PCIe expansion slot.

Video and I/O features on the JXT boards include:

- A Graphics Processing Unit (GPU) driven with an internal x1 PCIe link and capable of supporting pixel resolutions up to 1920 x 1200 (WUXGA) with a 64k color depth
- Three Gigabit Ethernet interfaces with two on the I/O plate and one available for use on a PICMG 1.3 compliant backplane
- Six SATA/300 ports that can support independent drives or RAID drive arrays
- Eight USB 2.0 interfaces

The listing below summarizes the available versions of the JXT6966 and JXTS6966 system host boards.

Dual-Processor Models <u>Model #</u>	Model Name	<u>Speed</u>	Intel CPU Number
Dual Intel Xeon Processo	ors (Jasper Forest) - Quad (Core, 8MB cache, No H-T*	•
6966-053	JXT/2.0QMR	2.0GHz	EC5509 * H-T = Intel Hyper-Threading
Dual Intel Xeon Processo	ors (Jasper Forest) - Quad (Core, 8MB cache, With H-	T:
6966-125	JXT/2.53QN	2.53GHz	EC5549
Dual Intel Xeon Processo	ors (Jasper Forest) - Quad (Core, 8MB cache, With H-	T:
6966-224	JXT/2.13QM	2.13GHz	LC5528
6966-222	JXT/1.73QM	1.73GHz	LC5518
Dual Intel Xeon Processo 6966-425	ors (Jasper Forest) - Dual C JXT/2.27DNR	Core, 4MB cache, No H-T: 2.27GHz	EC5539

Single-Processor Models <u>Model #</u>	Model Name	Speed	Intel CPU Number
Single Intel Xeon Process	sor (Jasper Forest) - Quad	Core, 8MB cache, No H-T*	•
6966-093	JXTS/2.0QMR	2.0GHz	EC5509 * H-T = Intel Hyper-Threading
Single Intel Xeon Process	sor (Jasper Forest) - Quad	Core, 8MB cache, With H-	T:
6966-165	JXTS/2.53QN	2.53GHz	EC5549
Single Intel Xeon Process	sor (Jasper Forest) - Quad	Core, 8MB cache, With H-	T:
6966-264	JXTS/2.13QM	2.13GHz	LC5528
6966-262	JXTS/1.73QM	1.73GHz	LC5518
Single Intel Xeon Process	sor (Jasper Forest) - Dual C	Core, 4MB cache, No H-T:	
6966-465	JXTS/2.27DNR	2.27GHz	EC5539

Features

- Intel® Xeon® C5500 Processors (Jasper Forest)
- Intel® 3420 Platform Controller Hub
- Direct PCI Express® 2.0 links into the Intel® Xeon® C5500 Processors
- A Combo-class SHB that is compatible with PCI Industrial Computer Manufacturers Group (PICMG) 1.3 Specifiction
- Direct PCI Express® 2.0 links into the Intel® Xeon® C5500 Processors
- JXT6966 provides a total of 37 lanes of PCI Express for off-board system integration
- Direct DDR3-1333 Memory Interfaces into the Intel® Xeon® C5500 Processors
- Six DDR3 Mini-DIMM sockets capable of supporting up to 192GB of system memory on a dualprocessor JXT6966, 24GB maximum capacity with readily available 4GB DDR3 Mini-DIMMs
- Video interface utilizing XGI® VolariTM Z11M Graphics Processing Unit
- Two 10/100/1000Base-T Ethernet interfaces available on the SHB's I/O plate
- Six Serial on-board ATA/300 ports support four independent SATA storage devices
 - SATA/300 ports may be configured to support RAID 0, 1, 5 or 10 implementations
- Eight Universal Serial Bus (USB 2.0) interfaces
- Off-board I/O support provided for one 10/100Base-T Ethernet interface and four USB 2.0 port connections on a PICMG 1.3 backplane
- Legacy I/O, dual serial port and x1 PCIe link expansion available via Trenton IOB33 expansion board
- An additional 16 PCI Express 2.0 lanes are available when using an optional PEX10 board on a JXT6966 connected to a Trenton BPC7009 or BPC7041 PICMG 1.3 backplane
- Full-length stiffner bars on the rear of the SHB enhances the rugged nature on the board by
 maximizing component protection and simplifying mechanical system integration
- Full PC compatibility

JXT6966 (6966-xxx) – Dual-Processor SHB Layout Diagram

JXTS6966 (6966-xxx) – Single-Processor SHB Block Diagram

JXTS6966 (6966-xxx) – Single-Processor SHB Layout Diagram

Specifications

1-6

Processor

- Intel® Xeon® C5500 Series Processor Nehalem-EP micro-architecture (Jasper Forest)r
- Processor plugs into an LGA1366 socket

Serial Interconnect Interface

PCI Express® 2.0 and 1.1 compatible

Data Path

DDR3-1333 Memory - 72-bit (per channel)

Serial Interconnect Speeds

PCI Express 2.0 – 5.0GHz per lane PCI Express 1.1 - 2.5GHz per lane

Intel® Quick Path Interconnect Between CPUs

The Quick Path Interconnect enables both processor-to-processor resource sharing and fast data transfers between CPUs and the Intel® 3420 PCH.

Intel® Direct Media Interface (DMI)Speed Between Processor and Intel® 3420 PCH

This full duplex interface operates at 10Gb/s in each direction and provides data communications between the PCH and processor. On a dual-processor, JXT6966 the first CPU connects to the PCH and the second CPU feeds its information to the PCH via the first CPU's DMI link.

Memory Interface

Three DDR3-1333MHz memory channels per processor; peak memory interface bandwidth is 32GB/s when using PC3-10600 Mini-DIMMs.

DMA Channels

The SHB is fully PC compatible with seven DMA channels, each supporting type F transfers.

Interrupts

The SHB is fully PC compatible with interrupt steering for PCI plug and play compatibility.

Bios (Flash)

The JXT boards use an Aptio® 4.x BIOS from American Megatrends Inc. (AMI). The BIOS features builtin advanced CMOS setup for system parameters, peripheral management for configuring on-board peripherals and other system parameters. The BIOS resides in a 32Mb Atmel® AT25DF321SU SPI Serial EEPROM (SPI Flash). The BIOS may be upgraded from a USB thumb drive storage device by pressing **<Ctrl>** + **<Home>** immediately after reset or power-up with the USB device installed in drive A:. Custom BIOSs are available.

Cache Memory

The processors include either a 4MB or 8MB last-level cache (LLC) memory capacity that is equally shared between all of the processor cores on the die.

DDR3-1333 Memory

Each processor on the SHB supports three separate DDR3-1333 memory interfaces. There are six active Mini-DIMM sockets on the JXT6966 models and each one can support up to 32GB DIMMs for a total possible DDR3 system memory capacity of 192GB. The single processor models support three active Mini-DIMM sockets and each socket can support up to 32GB DIMMs for a total possible DDR3 system memory capacity of 96GB on a JXTS6966. However, currently available DDR3 Mini-DIMM memory capacities of 2GB, 4GB and 8GB are more common in today's market; thereby, making the maximum practical limit of system memory supported 48GB on dual-processor SHBs and 24GB on single processor models. The peak memory interface bandwidth per channel is 32/GB/s when using PC3-10600 (i.e. DDR3-1333) Mini-DIMMs. Each of the direct CPU memory channel (BK##) terminates with a single in-line Mini-DIMM memory module socket. The System BIOS automatically detects memory type, size and speed.

Trenton recommends ECC registered DDR3 memory modules for use on the JXT6966/JXTS6966 SHBs and these ECC registered (72-bit) DDR3 Mini-DIMMs must be PC3-10600 or PC3-8500 compliant. Unbuffered ECC DDR3 Mini-DIMMs are also supported on the JXT boards, but you cannot mix the two different memory types on the same SHB.

NOTES:

- To maximize system performance and reliability, Trenton recommends populating each memory channel with DDR3 Mini-DIMMs with the same interface speed.
- All memory modules must have gold contacts.
- Low voltage (DDR3L) Mini-DIMMs are not supported.
- The SHB supports the following memory module memory latency timings:
 - o 6-6-6 for 800MHz DDR3 Mini-DIMMs
 - o 7-7-7 and 8-8-8 for 1066MHz DDR3 Mini-DIMMs
 - o 9-9-9 for 1333MHz DDR3 Mini-DIMMs
- Populating the memory sockets with Mini-DIMMs having different speeds is supported on the SHB; however, the overall memory interface speed will run at the speed of the slowest Mini-DIMM.
- Populate the memory sockets starting with the Mini-DIMM socket closest to the CPU and work your way toward the edges of the SHB as illustrated in the chart below:

Population order	CPU1	CPU2*
1	BK00	BK10
2	BK01	BK11
3	BK02	BK12

*CPU2 is available on the JXT6966 dual-processor board version only

The memory DIMMs on the SHB connect directly to the CPU and at least one memory module must be installed on the board. The JXTS6966 SHB versions feature one processor; however, memory slots BK10, BK11 and BK12 are installed on the SHB but are not active in this single-processor board version.

Universal Serial Bus (USB)

The SHB support eight high-speed USB 2.0 ports. Connectors for two of the USB ports (0 and 1) are on the I/O bracket and USB ports 2 and 3 are available via headers on the SHB. USB ports 4, 5, 6 and 7 are routed directly to edge connector C of the SHB for use on a PICMG 1.3 backplane.

Video Interface

The SHB features a Graphics Processing Unit (GPU) with 8MB of video memory, and the GPU is driven by a x1 PCIe link from the SHB's Intel® 3420 PCH. This combination of features enables the SHB's video port; located on the board's I/O plate, to support pixel resolutions up to 1920 x 1200 (WUXGA) with a 64k color depth.

PCI Express Interfaces

The PCI Express® links A0 through A3 on the JXT6966 connect directly to the processors. These links can operate as either PCI Express 2.0 or PCI Express 1.1 links based on the end-point devices on the backplane that are connected to the SHB. In addition to automatically configuring themselves for either PCIe 2.0 or PCIe 1.1 operations, the links also configure themselves for either graphics or server-class operations. In other words, the multiple x4 links from the processors (links A0, A1, A2 and A3) can be combined into a single x16 PCIe electrical link or multiple x8 links on a backplane. The CPU's x4 links can train down to x1 links, but cannot bifurcate into multiple x1 links. The PCIe link (B0) is a PCIe 1.1 interface only from the board's PCH has a x4 default configuration and can be made to bifurcate into four, x1 PCIe links with a factory modification to the JXT board. Contact Trenton if you require this B0 link configuration change. An optional PEX10 module connected to a dual-processor JXT6966 provides more backplane links than are currently supported in the PICMG 1.3 specification. This JXT6966 capability provides additional PCI Express bandwidth and option card support in the system design. The single processor JXTS6966 supports the PICMG 1.3 PCI Express specification. The single processor on the JXTS6966 configures the PCIe links for either server or graphics-class link operations based on the backplane type and the end-point devices on the backplane. The JXTS6966 does not support the optional PEX10 link expansion module, but both SHB models support the optional IOB33 and the IOB's x1 PCI Express expansion link down to a backplane with a PCIe Expansion slot. Refer to the PCI Express® *Reference* and to *PCI Express Backplane Usage* chapters of this manual for more information.

Ethernet Interfaces

The JXT6966/JXTS6966 SHBs support three Ethernet interfaces. The first two interfaces are on-board 10/100/1000Base-T Ethernet interfaces located on the board's I/O bracket and implemented using an Intel® 82575EB Gigabit Ethernet Controller. These I/O bracket interfaces support Gigabit, 10Base-T and 100Base-TX Fast Ethernet modes and are compliant with the IEEE 802.3 Specification.

The main components of the I/O bracket Ethernet interfaces are:

- Intel® 82575EB for 10/100/1000-Mb/s media access control (MAC) with SYM, a serial ROM port and a PCIe interface
- Serial ROM for storing the Ethernet address and the interface configuration and control data
- Integrated RJ-45/Magnetics module connectors on the SHB's I/O bracket for direct connection to the network. The connectors require category 5 (CAT5) unshielded twisted-pair (UTP) 2-pair cables for a 100-Mb/s network connection or category3 (CAT3) or higher UTP 2-pair cables for a 10-Mb/s network connection. Category 5e (CAT5e) or higher UTP 2-pair cables are recommended for a 1000-Mb/s (Gigabit) network connection.
- Link status and activity LEDs on the I/O bracket for status indication (See *Ethernet LEDs and Connectors* later in this chapter.)

The third LAN is supported by the Intel® 3420 and the Intel® 82578 Gigabit Ethernet PHY. This 10/100/1000Base-T Ethernet interface is routed to the PICMG 1.3 backplane via edge connector C of the SHB.

Software drivers are supplied for most popular operating systems.

Serial ATA/300 Ports

The six Serial ATA (SATA) ports on the SHB are driven with a built-in SATA controller from the Intel® 3420 Platform Controller Hub (PCH). The board's SATA/300 interfaces comply with the SATA 1.0 specification and can support six independent SATA storage devices such as hard disks and CD-RW devices at data transfer rates up to 300MB per second on each port. The SATA controller has two BIOS selectable modes of operation with a legacy (i.e. IDE) mode using I/O space, and an AHCI mode using memory space. Software that uses legacy mode will not have AHCI capabilities. The board's PCH features Intel® Rapid Storage Technology, which allows a third BIOS-selectable SATA controller configuration that enables a RAID configuration capable of supporting RAID 0, 1, 5 and 10 storage array implementations.

Watchdog Timer (WDT)

The JXT6966 provides a programmable watchdog timer with programmable timeout periods of 100 msec, 1 second, 10 seconds or 1 minute via board component U13. When enabled the WDT (i.e. U13) will generate a system reset. WDT control is supplied via the General Purpose IO pins from the Intel® 3420 Platform Controller Hub (PCH). The PCH's GPIO_LVL2 register controls the state of each GPIO signal. This 32-bit register is located within GPIO IO spaces. The GPIO_BASE IO address is determined by the values programmed into the PCH's LPC Bridge PCI configuration at offset 48-4B(h).

GPIO Bit Definitions:

Watchdog Timer Enable (WDT_EN#)

Watchdog timer enable\disable functionality is controlled by GPIO32. Clearing bit 0 of the GP_LVL register enables the WDT. The GP_LVL2 register is located at IO address GPIO_BASE + offset 38(h). The power-on default for this bit is a "1" which disables WDT functionality. Setting this bit to a "0" enables the WDT at the pre-selected interval.

Watchdog Select 0 (WDT_S0)

The state of this bit in conjunction with Watchdog Select 0 will select the WDT time out period. This function is controlled by GPIO33 and the state of this bit is determined by bit 1 of the GP_LVL2 register at IO address GPIO_BASE + offset 38(h). After POST, the inverted state of this bit is reflected on Port80, LED0. If this bit is set to a "1" the LED is off, if set to a "0" the LED is on. The state of the GPIO pin is inverted at the Select 0 input of U13. See the Watchdog Timeout Period Selection table below for WDT interval selection information.

Watchdog Select 1 (WDT_S1)

The state of this bit in conjunction with Watchdog Select 1 will select the WDT time out period. This function is controlled by GPIO35 and the state of this bit is determined by bit three of the GP_LVL2 register at IO address GPIO_BASE + offset 38(h). After POST, the inverted state of this bit is reflected on Port80, LED1. If this bit is set to a "1" the LED in off, if set to a "0" the LED is on. The state of the GPIO pin is inverted at the Select 0 input of U13. See the Watchdog Timeout Period Selection table below for WDT interval selection information.

Watchdog_ Input (WDT_IN)

When the WDT is enabled this bit must be toggled $(0 \rightarrow 1 \text{ or } 1 \rightarrow 0)$ within the selected watchdog timeout period, failure to do so will result in a system reset. This function is supported by the GPIO55 bit and its state is controlled by bit 23 of the GP_LVL2 register which is at IO address GPIO_BASE + offset 38(h). The inverted state of this bit is reflected on Port80, LED7. If this bit is set to a "1" the LED in off, if set to a "0" the LED is on.

Watchdog Timeout Period Selections:

WDT_EN#	WD_S1	WD_S0	Watchdog Timeout
(GPIO32)	(GPIO35)	(GPIO33)	Period
1	Х	Х	Disabled
0	1	1	100msec
0	1	0	1 sec
0	0	1	10 sec
0	0	0	1 min

The Watchdog Timer may require initialization prior to usage. GPIO 32, 33, 35 and 55 must be configured as outputs. While these GPIOs do default to outputs at power-on, care should be taken to insure they have not been altered prior to WDT usage. These GPIO are configured to outputs by clearing bits 0, 1, 3 and 23 of the GP_IO_SEL2 register at GPIO_BASE + offset 34(h) to a "0".

After initialization is completed (if required) the Watchdog timer period is selected by via the WDT_S1 and WDT_S0 bits. Once the timeout period has been programmed the WDT is "enabled" by clearing the WDT_EN# bit. To avoid the WDT from generating a system reset the WDT_IN bit must be toggled within the timeout period.

Programming Example: Enable WDT with 10-second timeout period

Note: When writing to a WDT controlling GPIO bit, the remaining bits of the selected GP_LVL2 register should remain unchanged.

Write bit 0 of GP_LVL2 to 1 Write bits 3,1 of GP_LVL2 to 0,1 Write bit 0 of GP_LVL2 to 0 pre condition GPIO32 for WDT disable set Watchdog timeout period to 10 sec enable Watchdog timer

At this point, the bit 23 of GP_LVL2 (GPIO55) must be toggled within a 10 sec period or the WDT will expire resulting in a system reset.

Power Fail Detection

A hardware reset is issued when any of the monitored voltages drops below its specified nominal low voltage limit. The monitored voltages and their nominal low limits are listed below. All of the monitored voltages listed in the table below are connected to the board's ADT7462 and can be read by an application.

Monitored Voltage	Nominal Low Limit	Voltage Source
+5V	4.75 volts	System Power Supply
+3.3V	2.97 volts	System Power Supply
Vcc_DDR(+1.5V)	1.15 volts	On-Board Regulator
Vtt_CPU(1.2V)	0.85 volt	On-Board Regulator
+1.05V(Chipset)	0.945 volt	On-Board Regulator
+1.80V(Chipset)	1.62 volts	On-Board Regulator

Battery

A built-in lithium battery is provided, for ten years of data retention for CMOS memory.

CAUTION: There is a danger of explosion if the battery is incorrectly replaced. Replace it only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.

Power Requirements

The following are nominal values with 12GB and 6GB of system memory installed*.

Processor Type	SHB Type	Processor	+5V	+12V	+3.3V
		Speed			
CPU Idle State:					
Intel Xeon C5500	JXT6966	2.53GHz	1.07A	6.48A	4.44A
Quad-Core (EC5549)	(Dual CPU)				
Intel Xeon C5500	JXTS6966	2.53GHz	0.71A	3.28A	2.10A
Quad-Core (EC5549)	(Single CPU)				
Intel Xeon C5500	JXT6966	2.27GHz	0.90A	6.29A	4.48A
Dual-Core (EC5539)	(Dual CPU)				
Intel Xeon C5500	JXTS6966	2.27GHz	0.71A	3.02A	2.08A
Dual-Core (EC5539)	(Single CPU)				
Intel Xeon C5500	JXT6966	2.00GHz	0.90A	5.96A	4.91A
Quad-Core (EC5509)	(Dual CPU)				
Intel Xeon LV C5500	JXT6966	2.13GHz	1.06A	4.87A	4.91A
Quad-Core (LC5528)	(Dual CPU)				
Intel Xeon LV C5500	JXTS6966	2.13GHz	0.71A	2.90A	2.06A

Quad-Core (LC5528)	(Single CPU)				
100% CPU Stress Stat	e:				
Intel Xeon C5500	JXT6966	2.53GHz	1.09A	12.20A	4.48A
Quad-Core (EC5549)	(Dual CPU)				
Intel Xeon C5500	JXTS6966	2.53GHz	0.72A	7.99A	2.12A
Quad-Core (EC5549)	(Single CPU)				
Intel Xeon C5500	JXT6966	2.27GHz	0.92A	9.78A	4.48A
Dual-Core (EC5539)	(Dual CPU)				
Intel Xeon C5500	JXTS6966	2.27GHz	0.72A	5.15A	2.09A
Dual-Core (EC5539)	(Single CPU)				
Intel Xeon C5500	JXT6966	2.00GHz	0.90A	10.39A	4.93A
Quad-Core (EC5509)	(Dual CPU)				
Intel Xeon LV C5500	JXT6966	2.13GHz	1.06A	10.57A	4.94A
Quad-Core (LC5528)	(Dual CPU)				
Intel Xeon LV C5500	JXTS6966	2.13GHz	0.72A	6.33A	2.07A
Quad-Core (LC5528)	(Single CPU)				

Tolerance for all voltages is +/- 5%

*12GB (6, 2GB DDR3 Mini-DIMMs) for a dual-processor JXT6966 and 6GB (3, 2GB DDR3 Mini-DIMMs) for a single-processor JXTS6966

CAUTION: Trenton recommends an EPS type of power supply for systems using high-performance processors. The power needs of backplane option cards, high-performance processors and other system components may result in drawing 20A of current from the +12V power supply line. If this occurs, hazardous energy (240VA) could exist inside the system chassis. Final system/equipment suppliers must provide protection to service personnel from these potentially hazardous energy levels.

Stand-by voltages may be used in the final system design to enable certain system recovery operations. In this case, the power supply may not completely remove power to the system host board when the power switch is turned off. Caution must be taken to ensure that incoming system power is completely disconnected before removing the system host board.

Temperature/Environment Operating Temperature:	0° C. to 50° C.
Air Flow Requirement:	350LFM continuous airflow
Storage Temperature:	- 20° C. to 70° C.
Humidity:	5% to 90% non-condensing

Mechanical

The standard cooling solution used on the JXT6966 and JXTS6966 SHBs enables placement of option cards approximately 2.75" (69.85mm) away from the top component side of the SHB. Contact Trenton for a system engineering consultation if your application needs a lower profile cooling solution. The SHB's overall dimensions are 13.330" (33.858cm) L x 4.976" (12.639cm) H. The relative PICMG 1.3 SHB height off the backplane is the same as a PICMG 1.0 SBC due to the shorter PCI Express backplane connectors.

Board Stiffener Bars

The two stiffener bars located on the back of the SHB maximize system integrity by ensuring proper SHB alignment within the card guides of a computer chassis. The stiffeners provide reliable SHB operation by

protecting sensitive board components from mechanical damage and assist in the safe insertion and removal of the SHB from the system.

UL Recognition

This SHB is a UL recognized product listed in file #E208896 when integrated into an industrial computer such as the Trenton TRC6001. This board was investigated and determined to be in compliance under the Bi-National Standard for Information Technology Equipment. This included the Electrical Business Equipment, UL 1950, Third Edition, and CAN/CSA C22.22 No. 950-95.

Configuration Jumpers

The setup of the configuration jumpers on the SHB is described below. * indicates the default value of each jumper.

NOTE: For the three-position JU12 jumper, "RIGHT" is toward the I/O bracket side of the board; "LEFT" is toward the CPU1 DDR3 Memory sockets.

Jumper	Description
JU1	SPI Update (two position jumper) Install for one power-up cycle to enable the board to unprotect the SHB's SPI storage device. Remove for normal operation. *
	CAUTION: Installing this jumper is only done for special board operations such as changing the PCI Express link bifurcation operation. Contact Trenton tech support <i>before</i> installing this jumper to prevent any unintended system operation.
JU8	Password Clear (two position jumper) Install for one power-up cycle to reset the password to the default (null password). Remove for normal operation. *
JU12	CMOS Clear (three position jumper) Install on the LEFT to clear. Install on the RIGHT to operate. *
	NOTE: To clear the CMOS, power down the system and install the JU12 jumper on the LEFT. Wait for at least two seconds, move the jumper back to the RIGHT and turn the power on. Clearing CMOS on the SHB will not result in a checksum error on the following boot. If you want to change a BIOS setting, you must press DEL or the F2 key during POST to enter BIOS setup after clearing CMOS.

P4A/P4B Ethernet LEDs and Connectors

The I/O bracket houses the two RJ-45 network connectors for Ethernet LAN1 and LAN2. Each LAN interface connector has two LEDs that indicate activity status and Ethernet connection speed. Listed below are the possible LED conditions and status indications for each LAN connector:

LED/Connector	Description
Activity LED	Green LED that indicates network activity. This is the upper LED on the LAN connector (i.e., toward the upper memory sockets).
Off	Indicates there is no current network transmit or receive activity.
On (flashing)	Indicates network transmit or receive activity.
Speed LED	Green LED which identifies the connection speed. This is the lower LED on the LAN connector (i.e., toward the edge connectors).
Off	Indicates a valid link at 1000-Mb/s.
Green	Indicates a valid link at 100-Mb/s.
RJ-45 Network Connector	The RJ-45 network connector requires a category 5 (CAT5) unshielded twisted-pair (UTP) 2-pair cable for a 100-Mb/s network connection or a category 3 (CAT3) or higher UTP 2-pair cable for a 10-Mb/s network connection. A category 5e (CAT5e) or higher UTP 2-pair cable is recommended for a 1000-Mb/s (Gigabit) network connection

Status LEDs

Backplane LAN LED – LED8

When LED8 is flashing this indicates that network transmit and receive activity is occuring on the Ehternet LAN routed to the board's edge connector C. This LAN provides a network interface for use on a compatible PICMG 1.3 backplane.

Thermal Trip LED – LED9

The thermal trip LED indicates when a processor reaches a shut down state. The LED is located just above the BK02 DIMM socket. LED9 indicates the processor shutdown status and thermal conditions as illustrated below:

LED Status	Description
Off	Indicates the processor or processors are operating within acceptable thermal levels
On (flashing)	Indicates the CPU is throttling down to a lower operating speed due to rising CPU temperature
On (solid)	Indicates the CPU has reached the thermal shutdown threshold limit. The SHB may or may not be operating, but a thermal shutdown may soon occur.

NOTE: When a thermal shutdown occurs, the LED will stay on in systems using non- ATX/EPS power supplies. The CPU will cease functioning, but power will still be applied to the SHB. In systems with ATX/EPS power supplies, the LED will turn off when a thermal shutdown occurs because system power is removed via the ACPI soft control power signal S5. In this case, all SHB LEDs will turn off; however, stand-by power will still be present.

Post Code LEDs 0 - 7

As the POST, (Power On Self Test) routines are performed during boot-up; test codes are displayed on Port 80 POST code LEDs 0, 1, 2, 3, 4, 5, 6 and 7. These LED are located on the top of the SHB, just above the board's battery socket. The POST Code LEDs and are numbered from right (position 1 = LED0) to left (position 8 - LED7). Refer to the board layout diagram for the exact location of the POST code LEDs.

These POST codes may be helpful as a diagnostic tool. After a normal POST sequence the LEDs are off (00h) indicating that the SHB's BIOS has passed control over to the operating system loader typically at interrupt INT19h. Specific test codes and their meaning along with the following chart are listed in Appendix A and can be used to interpret the LEDs into hexadecimal format during POST.

Upper Nibble (UN)					
Hex. Value	LED7	LED6	LED5	LED4	
0	Off	Off	Off	Off	
1	Off	Off	Off	On	
2	Off	Off	On	Off	
3	Off	Off	On	On	
4	Off	On	Off	Off	
5	Off	On	Off	On	
6	Off	On	On	Off	
7	Off	On	On	On	
8	On	Off	Off	Off	
9	On	Off	Off	On	
А	On	Off	On	Off	
В	On	Off	On	On	
С	On	On	Off	Off	
D	On	On	Off	On	
Е	On	On	On	Off	
F	On	On	On	On	

Lower Nibble (LN)					
Hex. Value	LED3	LED2	LED1	LED0	
0	Off	Off	Off	Off	
1	Off	Off	Off	On	
2	Off	Off	On	Off	
3	Off	Off	On	On	
4	Off	On	Off	Off	
5	Off	On	Off	On	
6	Off	On	On	Off	
7	Off	On	On	On	
8	On	Off	Off	Off	
9	On	Off	Off	On	
А	On	Off	On	Off	
В	On	Off	On	On	
С	On	On	Off	Off	
D	On	On	Off	On	
Е	On	On	On	Off	
F	On	On	On	On	

JXT6966 & JXTS6966 POST Code LEDs

System BIOS Setup Utility

The JXT6966 and JXTS6966 feature the Aptio® 4.x BIOS from American Megatrends, Inc. (AMI) with a ROM-resident setup utility called the Aptio Text Setup Environment or TSE. The TSE setup utility allows you to select to the following categories of options:

- Main Menu
- Advanced Setup
- Boot Setup
- Security Setup
- Chipset Setup
- Exit

Each of these options allows you to review and/or change various setup features of your system. Details of the Aptio TSE are provided in the separate *JXT6966 / JXTS6966 BIOS Technical Reference* manual. The BIOS and hardware technical reference manuals are available under the **Downloads** tab on the <u>JXT6966</u> or <u>JXTS6966</u> web pages.

Connectors

NOTE: F	Pin 1 on the	e connectors is ind	licated by the	square pac	l on the	e PCB.	
P1 -		o Interface Conr n connector, Kyc		S-N			
	<u>Pin</u>	<u>Signal</u>	<u>Pin</u> 6	<u>Signal</u> Gnd		<u>Pin</u>	<u>Signal</u>
	1	Red	7	Gnd		11	NC
	2	Green	8	Gnd		12	EEDI
	3	Blue	9	+5		13	HSYNC
	4	NC	10	Gnd		14	VSYNC
	5 Note:	Gnd				15	EECS
	1 – Co	onnector supports	standard DB1	5 video cal	bles		
P19	Pin 1 2 3 Notes:	single row heade <u>Signal</u> Gnd +12V FanTach is the fan connec			for CPU	J1	
P4A, - P4B	Dual	00/1000Base-T E RJ-45 connector, individual RJ-45	Pulse #JG0-0	024NL			
		Signal L2_MDI0n L2_MDI0p L2_MDI1n L2_MDI1p L2_MDI2n L2_MDI2n L2_MDI3n L2_MDI3p VCC_1.8V GND_A N ports support s A is LAN2 and P		Ethernet o	Pin 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B cables	<u>Signal</u> L1_MDI0n L1_MDI0p L1_MDI1n L1_MDI1p L1_MDI2n L1_MDI2p L1_MDI3n L1_MDI3p VCC_1.8V GND_b	
P5 -		ker Port Connect single row heade		56-4			
	<u>Pin</u> 1 2 3	<u>Signal</u> Speaker Data Key Gnd					

P6 - Reset Connector 2 pin single row header, Amp #640456-2

<u>Pin</u>	Signal	<u>Pin</u>	<u>Signal</u>
1	Gnd	2	Reset In

P12 - Hard Drive LED Connector

4 pin single row header, Amp #640456-4

Pin	Signal
1	LED+
2	LED-
3	LED-
4	LED+

P17 - Dual Universal Serial Bus (USB) Connector

10 pin dual row header, Molex #702-46-1001 (+5V fused with self-resetting fuses)

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3
9	NC	10	NC

P17A - Universal Serial Bus (USB) Connector

USB vertical connector, Molex #6739-8001 (+5V fused with self-resetting fuse)

- 1 +5V-USB0
- 2 USB0-
- 3 USB0+
- 4 Gnd-USB0

P17B - Universal Serial Bus (USB) Connector

USB vertical connector, Molex #6739-8001 (+5V fused with self-resetting fuse)

Pin	<u>Signal</u>
-----	---------------

1

- +5V-USB1
- 2 USB1-
- 3 USB1+
- 4 Gnd-USB1

(Continued)			
SATA II 300 Ports			
7 pin vertical connector, Molex #67491-0031			
<u>Pin Signal</u>			
1 Gnd			
2 TX+			
3 TX-			
4 Gnd			
5 RX-			
6 RX+			
7 Gnd			
Notes:			
1 - P27 = SATA0 interface, $P28 = SATA1$ interface,			
P31 = SATA2 interface, $P32 = SATA3$ interface,			
P35 = SATA4 interface, $P36 = SATA5$ interface			
2 – SATA connectors support standard SATA II interface cables			

P21 - Power Good LED Connector

2 pin single row header, Amp #640456-2

<u>Pin</u>	<u>Signal</u>	Pin	Signal
1	LED-	2	LED+

P20 -

I/O Expansion Mezzanine Card Connector 76 pin controlled impedance connector, Samtec #MIS-038-01-FD-K

Pin	<u>Signal</u>	Pin	<u>Signal</u>
1	+12	2	+5V_STANDBY
3	HDA_SDIN2	4	+5V_STANDBY
5	HDA_SDIN1	6	+5V_DUAL
7	HDA_SDIN0	8	+5V_DUAL
9	HDA_SYNC	10	HDA_BITCLK
11	HDA_SDOUT	12	HDA_ACRST
13	ICH_SMI#	14	ICH_RCIN#
15	ICH_SIOPME#	16	ICH A20GATE
17	Gnd	18	Gnd
19	L_FRAME#	20	L_AD3
21	L_DRQ1#	22	L AD2
23	L_DRQ0#	24	L_AD1
25	SERIRQ	26	L_AD0
27	Gnd	28	Gnd
29	PCLK14SIO	30	PCLK33LPC
31	Gnd	32	Gnd
33	SMBDATA_RESUME	34	IPMB_DAT
35	SBMCLK_RESUME	36	IPMB_CLK
37	SALRT#_RESUME	38	IPMB_ALRT#
39	Gnd	40	Gnd
41	EXP_CLK100	42	EXP_RESET#
43	EXP_CLK100#	44	ICH_WAKE#
45	Gnd	46	Gnd
47	C_PE_TXP5	48	C_PE_RXP5
49	C_PE_TXN5	50	C_PE_RXN5
51	Gnd	52	Gnd
53	NC	54	NC
55	NC	56	NC
57	Gnd	58	Gnd
59	NC	60	NC
61	NC	62	NC
63	Gnd	64	Gnd
65	NC	66	NC
67	NC	68	NC
69	Gnd	70	Gnd
71	+3.3V	72	+5V
73	+3.3V	74	+5V
75	+3.3V	76	+5V

P3 -

PCI Express Gen 2.0 Expansion Connector (For PEX10 option module) 80 pin (40 differential pairs) high-speed socket strip, Samtec #QSH-040-01-F-D-DP

Pin	<u>Signal</u>	Pin	<u>Signal</u>
1	NC	2	NC
3	NC	4	NC
5	NC	6	NC
7	NC	8	NC
9	P1_PE_RXN15	10	P1_PE_TXN15
11	P1_PE_RXP15	12	P1_PE_TXP15
13	P1_PE_RXN14	14	P1_PE_TXN14
15	P1_PE_RXP14	16	P1_PE_TXP14
17	P1_PE_RXN13	18	P1_PE_TXN13
19	P1_PE_RXP13	20	P1_PE_TXP13
21	P1_PE_RXN12	22	P1_PE_TXN12
23	P1_PE_RXP12	24	P1_PE_TXP12
25	P1_PE_RXN11	26	P1_PE_TXN11
27	P1_PE_RXP11	28	P1_PE_TXP11
29	P1_PE_RXN10	30	P1_PE_TXN10
31	P1_PE_RXP10	32	P1_PE_TXP10
33	P1_PE_RXN9	34	P1_PE_TXN9
35	P1_PE_RXP9	36	P1_PE_TXP9
37	P1_PE_RXN8	38	P1_PE_TXN8
39	P1_PE_RXP8	40	P1_PE_TXP8
41	NC	42	NC
43	NC	44	NC
45	P1_PE_CFG3	46	P1_PE_CGF1
47	P1_GEN2_DSBL#	48	P1_PE_CFG0
49	P1_PE_RXN7	50	P1_PE_TXN7
51	P1_PE_RXP7	52	P1_PE_TXP7
53	P1_PE_RXN6	54	P1_PE_TXN6
55	P1_PE_RXP6	56	P1_PE_TXP6
57	P1_PE_RXN5	58	P1_PE_TXN5
59	P1_PE_RXP5	60	P1_PE_TXP5
61	P1_PE_RXN4	62	P1_PE_TXN4
63	P1_PE_RXP4	64	P1_PE_TXP4
65	P1_PE_RXN3	66	P1_PE_TXN3
67	P1_PE_RXP3	68	P1_PE_TXP3
69	P1_PE_RXN2	70	P1_PE_TXN2
71	P1_PE_RXP2	72	P1_PE_TXP2
73	P1_PE_RXN1	74	P1_PE_TXN1
75	P1_PE_RXP1	76	P1_PE_TXP1
77	P1_PE_RXN0	78	P1_PE_TXN0
79	P1_PE_RXP0	80	P1_PE_TXP0

Note:

1 - Need CPU2 installed for PCIe GEN 2.0 link expansion via the Trenton PEX10 option module.

This page intentionally left blank

Chapter 2 PCI Express® Reference

Introduction

PCI Express® is a high-speed, high-bandwidth interface with multiple channels (lanes) bundled together with each lane using full-duplex, serial data transfers with high clock frequencies.

The PCI Express architecture is based on the conventional PCI addressing model, but improves upon it by providing a high-performance physical interface and enhanced capabilities. Whereas the PCI bus architecture provided parallel communication between a processor board and backplane, the PCI Express protocol provides high-speed serial data transfer, which allows for higher clock speeds. The same data rate is available in both directions simultaneously, effectively reducing bottlenecks between the system host board (SHB) and PCI Express option cards.

PCI Express option cards may require updated device drivers. Most operating systems that support legacy PCI cards will also support PCI Express cards without modification. Because of this design, PCI, PCI-X and PCI Express option cards can co-exist in the same system.

PCI Express connectors have lower pin counts than PCI bus connectors. The PCIe connectors are physically different, based on the number of lanes in the connector.

PCI Express Links

Several PCI Express channels (lanes) can be bundled for each expansion slot, leaving room for stages of expansion. A link is a collection of one or more PCIe lanes. A basic full-duplex link consists of two dedicated lanes for receiving data and two dedicated lanes for transmitting data. PCI Express supports scalable link widths in 1-, 4-, 8- and 16-lane configurations, generally referred to as x1, x4, x8 and x16 slots. A x1 slot indicates that the slot has one PCIe lane, which gives it a bandwidth of 250MB/s in each direction. Since devices do not compete for bandwidth, the effective bandwidth, counting bandwidth in both directions, is 500MB/s (full-duplex).

The number and configuration of an SHB's PCI Express links is determined by specific component PCI Express specifications. In PCI Express Gen 1 the bandwidths for the PCIe links are determined by the link width multiplied by 250MB/s and 500MB/s, as follows:

Slot <u>Size</u>	Bandwidth	Full-Duplex <u>Bandwidth</u>
x1	250MB/s	500MB/s
x4	1GB/s	2GB/s
x8	2GB/s	4GB/s
x16	4GB/s	8GB/s

In PCI Express Gen 2 the bandwidths for the PCIe links are doubled as compared to PCIe Gen 1.1 as shown below:

Slot		Full-Duplex			
Size	Bandwidth	Bandwidth			
x1	500MB/s	1GB/s			
x4	2GB/s	4GB/s			
x8	4GB/s	8GB/s			
x16	8GB/s	16GB/s			

Scalability is a core feature of PCI Express. Some chipsets allow a PCI Express link to be subdivided into additional links, e.g., a x8 link may be able to be divided into two x4 links. In addition, although a board with a higher number of lanes will not function in a slot with a lower number of lanes (e.g., a x16 board in a x1 slot) because the connectors are mechanically and electrically incompatible, the reverse configuration will function. A board with a lower number of lanes can be placed into a slot with a higher number of lanes (e.g., a x4 board into a x16 slot). The link auto-negotiates between the PCI Express devices to establish communication. The mechanical option card slots on a PICMG 1.3 backplane must have PCI Express configuration straps that alert the SHB to the PCI Express electrical configuration expected. The SHB can then reconfigure the PCIe links for optimum system performance.

For more information, refer to the PCI Industrial Manufacturers Group's SHB Express® System Host Board PCI Express Specification, PICMG® 1.3.

SHB Configurations

The JXT6966 and JXTS6966 are combo class SHBs that support either PCI Express server-class or graphics-class backplane configurations. Server applications require multiple, high-bandwidth PCIe links, and therefore the server-class SHB/backplane configuration is identified by multiple x8 and x4 links to the SHB edge connectors.

SHBs, which require high-end video or graphics cards generally, use a x16 PCI Express link. The graphicsclass SHB/backplane configuration is identified by one x16 PCIe link and one x4 or four x1 links to the edge connectors. As PCI Express chipsets continue to evolve, it is possible that more x4 and/or x1 links could be supported in graphics-class SHBs. Currently, most video or graphics cards communicate to the SHB at an effective x1, x4 or x8 PCI Express data rate and do not actually make use of all of the signal lanes in a x16 connector.

NOTE: The JXT6966 / JXTS6966 eliminates the PICMG 1.3 requirement that server-class SHBs should always be used with server-class PICMG 1.3 backplanes and graphics-class SHBs should always be used with graphics-class PICMG 1.3 backplanes. This is because the PCIe links integrated JXT processors and SHB architecture itself can sense the backplane end-point devices and configure the SHB links for either server or graphics-class operations. For this reason the Trenton JXT6966 and JXTS6966 are called comboclass SHBs.

PCI Express Edge Connector Pin Assignments

Trenton's JXT6966/JXTS6966 SHB uses edge connectors A, B and C. Optional I/O signals are defined in the PICMG 1.3 specification and if implemented must be located on edge connector C of the SHB. The SHB makes the Intelligent Platform Management Bus (IPMB) signals available to the user. The SHB supports four USB ports (USB 4, 5, 6 and 7) and one 10/100/1000Base-T Ethernet interface on PICMG 1.3 compatible backplanes via the SHB's edge connector C. The following table shows pin assignments for the PCI Express edge connectors on the JXT6966 / JXTS6966 SHB.

* Pins 3 and 4 of Side B of Connector A (TDI and TDO) are jumpered together.

Connector A		Connector B			Connector C				Connector D (Not Available)			
Side B Side A			Side B	Side A		Side B	Side A		Side B	Side A		
1	SMCLK	SMBDAT	1	+5VSBY	+5VSBY	1	USBP0+	GND	1	INTB#	INTA#	
2	GND	GND	2	GND	NC	2	USBP0-	GND	2	INTD#	INTC#	
3	TDI TDO*	NC	3	A_PE_TXP8	GND	3	GND	USBP1 +	3	GND	NC	
4	TDI TDO*	NC	4	A PE TXN8	GND	4	GND	USBP1-	4	REQ3#	GNT3#	
5	NC	ICH WAKE#	5	GND	A_PE_RXP8	5	USBP2+	GND	5	REQ2#	GNT2#	
6	PWRBTN#	ICH PCIPME#	6	GND	A PE RXN8	6	USBP2-	GND	6	PCIRST#	GNT1#	
7	PWROK	PSON#	7	A PE TXP9	GND	7	GND	USBP3+	7	REQ1#	GNTO#	
8	SHBRST#	EXP RESET#	8	A_PE_TXN9	GND	8	GND	USBP3-	8	REQ0#	SERR#	
9	CFG0	CFG1	9	GND	A PE RXP9	9	USBOCO	GND	9	NC	3.3V	
10	CFG2	CFG3	10	GND	A_PE_RXN9	10	GND	USBOC1	10	GND	CLKFI	
11		GND	11	RSVD	GND	11	USBOC2	GND	11	CLKFO	GND	
	Mechanical C	onnector		Mechanical Connector			Mechanical Connector			Mechanical Connector		
12	GND	RSVD	12	GND	RSVD	12	GND	USBOC3	12	CLKC	CLKD	
13	B PE TXPO	GND	13	A PE TXP10	GND	13	S5 TXP	GND	13	GND	3.3V	
14	B_PE_TXN0	GND	14	A PE TXN10	GND	14	S5 ^T XN	GND	14	CLKA	CLKB	
15	GND	B PE RXPO	15	GND	A PE RXP10	15	GND	S5 RXP	15	3.3V	GND	
16	GND	B_PE_RXNO	16	GND	A_PE_RXN10	16	GND	S5_RXN	16	AD31	PME#	
17	B_PE_TXP1	GND	17	A_PE_TXP11	GND	17	S4_TXP	GND	17	AD29	3.3V	
18	B_PE_TXN1	GND	18	A_PE_TXN11	GND	18	S4_TXN	GND	18	M6_6_EN	AD30	
19	GND	B PE RXP1	19	GND	A_PE_RXP11	19	GND	S4_RXP	19	AD27	AD28	
20	GND	B PE RXN1	20	GND	A_PE_RXN11	20	GND	S4 RXN	20	AD25	GND	
21	B_PE_TXP2	GND	21	A_PE_TXP12	GND	21	A_MDIOP	GND	21	GND	AD26	
22	B_PE_TXN2	GND	22	A PE TXN12	GND	22	AMDION	GND	22	CBE3#	AD24	
23	GND	B PE RXP2	23	GND	A_PE_RXP12	23	GND	A_MDI1P	23	AD23	3.3V	
24	GND	B PE RXN2	24	GND	A PE RXN12	24	GND	A MDI1N	24	GND	AD22	
25	B_PE_TXP3	GND	25	A_PE_TXP13	GND	25	A_MDI2P	GND	25	AD21	AD20	
26	B PE TXN3	GND	26	A PE TXN13	GND	26	A MDI2N	GND	26	AD19	PCIXCAP	
27	GND	B PE RXP3	27	GND	A_PE_RXP13	27	GND	A MDI3P	27	+5V	AD18	
28	GND	B_PE_RXN3	28	GND	A_PE_RXN13	28	NC	A_MDI3N	28	AD17	AD16	
29	REFCLKO	GND	29	A_PE_TXP14	GND	29	IPMB_CLK	GND	29	CBE2#	GND	
30	REFCLK0#	GND	30	A_PE_TXN14	GND	30	IPMB_DAT	GND	30	GND	FRAME#	
31	GND	REFCLK1#	31	GND	A_PE_RXP14	31	NC	NC	31	IRDY#	TRDY#	
32	RSVD-G	REFCLK1	32	GND	A_PE_RXN14	32	NC	NC	32	DEVSEL#	+5V	

Connector A		Connector B			Connector C			Connector D (Not Available)			
Side B Side A		Side B Side A		Side B Side A			Side B Side A				
33	REFCLK2#	GND	33	A_PE_TXP15	GND	33	NC	NC	33	PLOCK#	STOP#
34	REFCLK2	GND	34	A_PE_TXN15	GND	34	NC	GND	34	PERR#	GND
35	GND	REFCLK3#	35	GND	A_PE_RXP15	35	NC	GND	35	GND	CBE1#
36	RSVD-G	REFCLK3	36	GND	A_PE_RXN15	36	GND	NC	36	PAR	AD14
37	REFCLK4#	GND	37	NC	GND	37	GND	NC	37	NC	GND
38	REFCLK4	GND	38	NC	NC	38	NC	GND	38	GND	AD12
39	GND	REFCLK5# PU	39	GND	GND	39	NC	GND	39	AD15	AD10
40	RSVD-G	REFCLK PU	40	GND	GND	40	GND	NC	40	AD13	GND
41	REFCLK6# PU	GND	41	GND	GND	41	GND	NC	41	GND	AD9
42	REFCLK6 PU	GND	42	GND	GND	42	3.3V	3.3V	42	AD11	CBE0#
43	GND	REFCLK7# PU	43	GND	GND	43	3.3V	3.3V	43	AD8	GND
44	GND	REFCLK7 PU	44	+12V	+12V	44	3.3V	3.3V	44	GND	AD6
45	A PE TXPO	GND	45	+12V	+12V	45	3.3V	3.3V	45	AD7	AD5
46	A PE TXNO	GND	46	+12V	+12V	46	3.3V	3.3V	46	AD4	GND
47	GND _	A PE RXPO	47	+12V	+12V	47	3.3V	3.3V	47	GND	AD2
48	GND	A PE RXNO	48	+12V	+12V	48	3.3V	3.3V	48	AD3	AD1
49	A PE TXP1	GND	49	+12V	+12V	49	3.3V	3.3V	49	ADO	GND
50	A_PE_TXN1	GND				50	3.3V	3.3V			0.12
51	GND	A PE RXP1				51	GND	GND			
52	GND	A PE RXN1				52	GND	GND			
53	A PE TXP2	GND				53	GND	GND			
53 54	A PE TXN2	GND				54	GND	GND			
55	GND	A PE RXP2				55	GND	GND			
56	GND	A PE RXN2				56	GND	GND			
57	A PE TXP3	GND				57	GND	GND			
58	A PE TXN3	GND				58	GND	GND			
50 59	A_FE_TANS GND	A PE RXP3				59	+5V	+5V			
60	GND	A PE RXN3				60	+5V	+5V			
61		GND				61	+5V	+5V +5V			
62	A_PE_TXP4	GND				62					
62 63	A_PE_TXN4	A PE RXP4				63	+5V GND	+5V GND			
	GND										
64 45	GND	A_PE_RXN4				64	GND	GND			
65	A_PE_TXP5	GND				65	GND	GND			
66 7	A_PE_TXN5	GND				66	GND	GND			
67 49	GND	A_PE_RXP5				67	GND	GND			
68 40	GND	A_PE_RXN5				68 40	GND	GND			
69 70	A_PE_TXP6	GND				69 70	GND	GND			
70	A_PE_TXN6	GND				70	GND	GND			
71 70	GND	A_PE_RXP6				71	GND	GND			
72	GND	A_PE_RXN6				72	GND	GND			
73	A_PE_TXP7	GND				73	+12V_VRM	+12V_VRM			
74	A_PE_TXN7	GND				74	+12V_VRM	+12V_VRM			
75 7/	GND	A_PE_RXP7				75	+12V_VRM	+12V_VRM			
76	GND	A_PE_RXN7				76	+12V_VRM	+12V_VRM			
77	SERIRQ	GND				77	+12V_VRM	+12V_VRM			
78	3.3V	3.3V				78	+12V_VRM	+12V_VRM			
79	3.3V	3.3V				79	+12V_VRM	+12V_VRM			
80	3.3V	3.3V				80	+12V_VRM	+12V_VRM			
81	3.3V NC	3.3V				81	+12V_VRM	+12V_VRM			
82		NC	1			82	+12V VRM	+12V VRM	1		
PCI Express Signals Overview

The following table provides a description of the SHB slot signal groups on the PCI Express connectors.

Туре	Signals	Description	Connector	Source
Global	GND, +5V, +3.3V, +12V	Power		Backplane
	PSON#	Optional ATX support	Α	SHB
	PWRGD, PWRBT#, 5Vaux	Optional ATX support	A and B	Backplane
	TDI	Optional JTAG support	Α	Backplane
	TDO	Optional JTAG support	A	SHB
	SMCLK, SMDAT	Optional SMBus support	Â	SHB & Backplane
	IPMB CL, IPMB DA	Optional IPMB support	Č	SHB & Backplane
		PCIe configuration straps	A	Backplane
	CFG[0:3]			-
	SHB_RST#	Optional reset line	A	SHB
	RSVD	Reserved	A and B	
	RSVD-G	Reserved ground	A	Backplane
	WAKE#	Signal for link reactivation	Α	Backplane
PCIe	a_PETp[0:15]	Point-to-point from SHB slot through the x16	A and B	SHB & Backplane
	a_PETn[0:15]	PCIe connector (A) to the target device(s)		
	a_PERp[0:15]			
	a_PERn[0:15]			
	_			
	b PETp[0:3]	Point-to-point from SHB slot through the x8	Α	SHB & Backplane
	b PETn[0:3]	PCIe connector (B) to the target device(s)		
	b PERp[0:3]	() 5 ()		
	b_PERn[0:3]			
	REFCLK[0:7]+, REFCLK[0:7]-	Clock synchronization of PCIe expansion slots	Α	SHB
		clock synchronization of a cic expansion sions	~	שווכ
	PERST#	PCIe fundamental reset	Α	SHB & Backplane
PCI(-X)	AD[0:31], FRAME#, IRDY#, TRDY#,	Bussed on SHB slot and expansion slots	D	SHB & Backplane
(Not Available)	STOP#, LOCK#, DEVSEL#, PERR#,		_	
()	SERR#, C/BE[0:3], SDONE, SBO#, PAR			
	SERR, , e, BE[0.0], SBORE, SBOR, , I AR			
	GNT[0:3], REQ[0:3], CLKA, CLKB, CLKC,	Point-to-point from SHB slot to each	D	SHB & Backplane
	CLKD, CLKFO, CLKFI	expansion slot	D D	STID & Duckplulle
	CLKD, CLKFU, CLKFI	expunsion sion		
		Durand (materia) and CUD alaternal annuarian	D	Destadase
	INTA#, INTB#, INTC#, INTD#	Bussed (rotating) on SHB slot and expansion	D	Backplane
		slots		
	M66EN, PCIXCAP	Bussed on SHB slot and expansion slots	D	Backplane
	PCI_PRST#	PCI(-X) present on backplane detect	D	Backplane
	PME#	Optional PCI wake-up event bussed on SHB	Α	Backplane
		and backplane expansion slots		
Misc. I/O	USB[0:3]P, USB[0:3]N, USBOC[0:3]#	Optional point-to-point from SHB Connector C	C	SHB & Backplane
		to a destination USB device		
SATA	ESATATX(4:5)P,	Optional point-to-point from SHB Connector C	C	SHB & Backplane
	ESATATX(4:5)N,	to a destination SATA device	C C	SILD & DUCKPIUNO
	ESATARX(4:5)P,			
Falsonat	ESATARX(4:5)N,	Ontional point to point from CUD Comments C	~	CUD 9 Dealer
Ethernet	a_MDI(0:1)p,	Optional point-to-point from SHB Connector C	C	SHB & Backplane
	a_MDI(0:1)n	to a destination Ethernet device		1

Optional PCI Express Link Expansion

An optional Trenton PEX10 module may be used with the JXT6966 SHB to provide additional PCIe links to a backplane equipped with a PEX10 expansion slot. The Trenton BPC7009 and BPC7041 backplane feature this PEX10 option slot. A PEX10 routes the additional PCIe links available from the JXT6966's second processor down to a backplane for use in PCI Express link and/or bandwidth expansion. These additional links may operate as either PCIe 1.1 or 2.0 links depending on the backplane and end-point configuration.

This page intentionally left blank

Chapter 3 JXT6966 / JXTS6966 System Power Connections

Introduction

The combination of new power supply technologies and the system capabilities defined in the SHB Express® (PICMG® 1.3) specification requires a different approach to connecting system power to a PICMG 1.3 backplane and/or SHB hardware.

To improve system MTTR (Mean Time To Repair), the PICMG 1.3 specification defines enough power connections to the SHB's edge connectors to eliminate the need to connect auxiliary power to the SHB. All power connections in a PICMG 1.3 system can be made to the PICMG 1.3 backplane. This is true for SHBs that use high-performance processors. The connectors on a backplane must have an adequate number of contacts that are sufficiently rated to safely deliver the necessary power to drive these high-performance SHBs. Trenton's PICMG 1.3 backplanes define ATX/EPS and +12V connectors that are compatible with ATX/EPS power supply cable harnesses and provide multiple pins capable of delivering the current necessary to power high-performance processors.

The PICMG® 1.3 specification supports soft power control signals via the Advanced Configuration and Power Interface (ACPI). Trenton SHBs support these signals, which are controlled by the ACPI and are used to implement various sleep modes. Refer to the General ACPI Configuration section of the *Advanced Setup* chapter in this manual for information on ACPI BIOS settings.

When soft control signals are implemented, the type of ATX or EPS power supply used in the system and the operating system software will dictate how system power should be connected to the SHB. It is critical that the correct method be used.

Power Supply and SHB Interaction

The following diagram illustrates the interaction between the power supply and the processor. The signals shown are PWRGD (Power Good), PSON# (Power Supply On), 5VSB (5 Volt Standby) and PWRBT# (Power Button). The +/-12V, +/-5V, +3.3V and Ground signals are not shown.

Power Supply and SHB Interaction

PWRGD, PSON# and 5VSB are usually connected directly from an ATX or EPS power supply to the backplane. The PWRBT# is a normally open momentary switch that can be wired directly to a power button on the chassis.

CAUTION: In some ATX/EPS systems, the power may appear to be off while the 5VSB signal is still present and supplying power to the SHB, option cards and other system components. The +5VAUX LED on a Trenton PICMG 1.3 backplane monitors the 5VSB power signal; "green" indicates that the 5VSB signal is present. Trenton backplane LEDs monitor all DC power signals, and all of the LEDs should be off before adding or removing components. Removing boards under power may result in system damage.

Electrical Connection Configurations

There are a number of different connector types, such as EPS, ATX or terminal blocks, which can be utilized in wiring power supply and control functions to a PICMG 1.3 backplane. However, there are only two basic electrical connection configurations: **ACPI Connection** and **Legacy Non-ACPI Connection**.

ACPI Connection

The diagram on the previous page shows how to connect an ACPI compliant power supply to an ACPI enabled PICMG 1.3 system. The following table shows the required connections that must be made for soft power control to work.

<u>Signal</u>	Description	<u>Source</u>
+12	DC voltage for those systems that require it	Power Supply
+5V	DC voltage for those systems that require it	Power Supply
+3.3V	DC voltage for those systems that require it	Power Supply
+5VSB	5 Volt Standby. This DC voltage is always on when an ATX or EPS type power supply has AC voltage connected. 5VSB is used to keep the necessary circuitry functioning for software power control and wake up.	Power Supply
PWRGD	Power Good. This signal indicates that the power supply's voltages are stable and within tolerance.	Power Supply
PSON#	Power Supply On. This signal is used to turn on an ATX or EPS type power supply.	SHB/Backplane
PWRBT#	Power Button. A momentary normally open switch is connected to this signal. When pressed and released, this signals the SHB to turn on a power supply that is in an off state.	Power Button
	If the system is on, holding this button for four seconds will cause the SHB's chipset to shut down the power supply. The operating system is not involved and therefore this is not considered a clean shutdown. Data can be lost if this situation occurs.	

Legacy Non-ACPI Connection

For system integrators that either do not have or do not require an ACPI compliant power supply as described in the section above, an alternative electrical configuration is described in the table on the following page.

<u>Signal</u>	Description	<u>Source</u>
+12	DC voltage for those systems that require it	Power Supply
+5V	DC voltage for those systems that require it	Power Supply
+3.3V	DC voltage for those systems that require it	Power Supply
+5VSB	Not Required	Power Supply
PWRGD	Not Required	Power Supply
PSON#	Power Supply On. This signal is used to turn on an ATX or EPS type power supply. If an ATX or EPS power supply is used in this legacy configuration, a shunt must be installed on the backplane from PSON# to signal Ground. This forces the power supply DC outputs on whenever AC to the power supply is active.	Backplane
PWRBT#	Not Used	

In addition to these connections, there is usually a switch controlling AC power input to the power supply.

When using the legacy electrical configuration, the SHB BIOS **Power Supply Shutoff** setting should be set to **Manual shutdown**. Refer to the *General ACPI Configuration* section of the *Advanced Setup* chapter in this manual for details.

This page intentionally left blank

Chapter 4 PCI Express Backplane Usage

Introduction

PCI Express® is a scalable, full-duplex serial interface which consists of multiple communication lanes grouped into links. PCI Express scalability is achieved by grouping these links into multiple configurations. A x1 ("by 1") PCI Express link is made up of one full-duplex link that consists of two dedicated lanes for receiving data and two dedicated lanes for transmitting data. A x4 configuration is made up of four PCI Express links. The most commonly used PCIe link sizes are x1, x4, x8 and x16.

PCI Express devices with different PCI Express link configurations establish communication with each other using a process called auto-negotiation or link training. For example, a PCI Express device or option card that has a x16 PCI Express interface and is placed into a x16 mechanical/x8 electrical slot on a backplane establishes communication with a PICMG® 1.3 SHB using auto-negotiation. The option card's PCI Express interface will "train down" to establish communication with the SHB via the x8 PCI Express link between the SHB and the backplane option card slot.

SHB Edge Connectors

The PICMG 1.3 specification enables SHB vendors to provide multiple PCI Express configuration options for edge connectors A and B of a particular SHB. These edge connectors carry the PCI Express links and reference clocks down to the SHB slot on the PICMG 1.3 backplane. The potential PCI Express link configurations of an SHB fall into three main classifications: server-class, graphics-class and conbo-class. The specific class and PCI Express link configuration of an SHB is determined by the chipset components used on the SHB.

In a server-class configuration, the main goal of the SHB is to route as many high-bandwidth PCI Express links as possible down to the backplane. Typically, these links are a combination of x4 and x8 PCI Express links.

A graphics-class configuration should provide a x16 PCI Express link down to the backplane in order to support high-end PCI Express graphics and video cards. Graphics-class SHB configurations also provide as many lower bandwidth (x1 or x4) links as possible.

A combo-class configuration is provided by SHBs like the JXT6966 or JXTS6966. These system host board types have PCI Express hardware and software implementations that are capable of combining links to support either server or graphics-class PICMG 1.3 backplane configurations.

The A0 through A3 PCI Express links on the JXT6966 / JXTS6966 connect directly to the processors. These links can operate as either PCI Express 2.0 or PCI Express 1.1 links based on the end-point devices on the backplane that connect to the SHB. In addition to automatically configuring themselves for either PCIe 2.0 or PCIe 1.1 operations, the links also configure themselves for either graphics or server-class operations. In other words, the multiple x4 links from the processors; links A0, A1, A2 and A3, can be combined into a single x16 PCIe electrical link or multiple x8 links on a backplane. The CPU's x4 links can train down to x1 links, but cannot bifurcate into multiple x1 links. The PCIe link (B0) is a PCIe 1.1 interface only from the board's PCH has a x4 default configuration and can be made to bifurcate into four, x1 PCIe links with a factory modification to the JXT board. Contact Trenton if you require this B0 link configuration change. An optional PEX10 module connected to a dual-processor JXT6966 provides more backplane links than are currently supported in the PICMG 1.3 specification. This JXT6966 capability provides additional PCI Express bandwidth and option card support in the system design.

In addition to the standard PICMG 1.3 edge connector PCIe interfaces and the PEX10 expansion links, the JXT boards also have an additional x1 link available for use on a backplane. This extra x1 link is routed to the SHB's controlled impedance connector for use with the Trenton IOB33 plug-in option card. The IOB33 routes this x1 PCI Express link down to a physical x4 PCIe edge connector on the board. A x4 connector is used so that the IOB33 can be used on other Trenton SHBs that may support a x4 PCIe expansion link rather than a x1. The electrical width of this expansion link is determined by the board's

chipset. The IOB33 edge connector mates with a backplane's PCIe Expansion slot. This extra link is useful in supporting an additional system card slot. Refer to the *IOB Expansion Board - Appendix D* for more information the IOB33 and the *PCI Express Reference* chapter for more information on the PCI Express signal routings to the SHB edge connectors.

The figures below show some typical SHB and backplane combinations that would result in all of the PCI Express slots successfully establishing communication with the SHB host device. The first figure shows a server-class SHB; the second shows a graphics-class SHB.

Server-Class SHB:

PCI Express[™] Edge Connectors A & B: One x4 and two x8 PCI Express[™] Links with five reference clocks

Graphics-Class SHB:

PCI Express™ Edge Connectors A & B: One x16 and one x4 PCI Express™ Link with five reference clocks

PCI Express link configuration straps for each PCI Express option card slot on a PICMG 1.3 backplane are required as part of the PICMG 1.3 SHB Express® specification. These configuration straps alert the SHB as to the specific link configuration expected on each PCI Express option card slot. PCI Express communication between the SHB and option card slots is successful only when there are enough available PCI Express links established between the PICMG 1.3 SHB and each PCI Express slot or device on the backplane.

For more information, refer to the PCI Industrial Manufacturers Group's SHB Express® System Host Board PCI Express Specification, PICMG® 1.3.

Off-Board Video Card Usage

If the system design requires an off-board video card, then the card must be placed in a backplane slot driven with PCI Express links from the JXT6966's first processor. This is an Aptio® 4.x BIOS limitation that may be corrected in future software revisions. Listed below are the acceptable BPC7009 and BPC7041 backplane slots for use with an off-board video card:

BPC7009 - Card slot PCIe1, PCIe2 or PCIe3 BPC7041 - Card slot PCIe6, PCIe7, PCIe8, PCIe9 or PCIe10

JXT6966 & JXTS6966 and Compatible Trenton Backplanes

The JXT6966 and JXTS6966 will function with a wide variety of industry standard PICMG 1.3 backplanes. However, some non-Trenton backplanes may not utilize the full capabilities of the Trenton JXT6966 and JXTS6966. The table below illustrates the JXT/JXTS electrical compatibility with the current listing of Trenton PICMG 1.3 backplanes. A "Yes" in the compatible column below means that all slots on the backplane will function with a JXT6966 board. The clarification column explains any specific backplane limitations; such as mechanical option card slot interferences. Trenton continuously adds to the backplane product line. Contact us for the latest backplane availability information.

PICMG 1.3 Backplane	Compatible with JXT6966 / JXTS6966 (i.e. all backplane slots are functional)	Why not or clarification
2U Butterfly Backplar		
BPC8219	Yes	
BPG6741	Yes, option card slot restrictions	PCIe4 slot accommodates single width cards only
		PCIe2 slot obstructed*, PCIe4 slot accommodates
BPX6736	Yes, option card slot restrictions	single width cards only
Multi-Segment Backp	lanes	
BP6FS6605	No	SHB segment spacing
BP4FS6890	Yes, option card slot restrictions	The first and second PCIe slots in each segment are obstructed* and the third slot in any segment accommodates single-width cards only
BP2S6929	Yes, option card slot restrictions	SLTA1 and SLTC1 slots are obstructed*, SLTA2 and SLTC2 accommodate single-width cards only
Combo Backplanes		
BPC7041	Yes for the JXT6966 with a PEX10 and No for the JXTS7059 single CPU	CPU2 needed to provide the links for BP slots PCIe 1 through PCIe4
BPC7009	No	Link compatibility issue
Server-Class Backplan	nes	
BPX8093 [#]	Yes for the JXT6966 with a PEX10	Requires JXT6966 with PEX10 for PCIe1 and PCIe3 slot functionality
BPX6806 [#]	Yes, option card slot restrictions	PCIe1 slot obstructed*, PCIe2 slot accommodates single-width cards only
BPX6620 [#]	Yes, option card slot restrictions	PCIe1 slot obstructed*, PCIe2 slot accommodates single-width cards only
BPX6610	Yes, option card slot restrictions	PCIe1 slot obstructed*, PCIe2 slot accommodates single-width cards only
BPX6571	Yes, option card slot restrictions	PCIe1 slot obstructed*, PCIe2 slot accommodates single-width cards only
BPX3/14 [#]	Yes, need IOB33 for PCIe2 slot	JXT7059 provides x4 via IOB33
BPX3/8	Yes, option card slot restrictions	SLTD1 card slot obstructed*, SLTD2 slot accommodates single-width cards only
BPX6719 [#]	Yes, need IOB33 for PCIe1 slot	PCIe1 slot obstructed*, PCIe2 slot accommodates single width cards only
BPX3/2	Yes, option card slot restrictions	PCIe1 & PCIe2 slots obstructed*, SLTA1 slot accommodates single-width cards only
BPX5 [#]	Yes, option card slot restrictions	PCIe1 slot obstructed*, PCIe2 slot accommodates single-width cards only
Graphics-Class Backp	lanes	
BPG8150	Yes for the JXT6966 with a PEX10	Requires JXT6966 with PEX10 for PCIe1 and PCIe2 slot functionality
BPG8032	Yes, option card slot restrictions	PCIe1 & PCIe2 slots obstructed*, PCIe3 slot accommodates single-width cards only
BPG7087 [#]	Yes, need IOB33 for PCIe1 slot	JXT7059 provides x4 via IOB33
BPG6615	Yes, option card slot restrictions	PCIe2 slot accommodates single-width cards only
BPG6600	No	32b/33MHz slots C1, C2, C3 & C4 are inoperative when using a JXT7059 SHB
BPG6544	No	32b/33MHz slots C1, C2, & ISA slots D1 & D2 are inoperative when using a JXT7059 SHB
BPG6714 [#]	Yes, option card slot restrictions	PCIe1 slot obstructed*
BPG2/2	Yes, option card slot restrictions	PCIe2 slot obstructed*, SLTA1 slot accommodates single-width cards only
BPG4 [#]	Yes, option card slot restrictions	PCIe1 slot obstructed*, PCIe2 slot accommodates single-width cards only

*Slot obstruction generally only applies to I/O cards that are longer than 4.3" (109.2mm). Contact Trenton for additional information *An optional IOB33 plug-in card is needed on the JXT/JXTS board to provide the x1 PCIe link to drive either the PCIe1 or PCIe2 option card slot.

This page intentionally left blank

Chapter 5 I/O Expansion Boards – IOB33 & PEX10

IOB33 Overview

The IOB33 is optional I/O expansion board designed for use with the JXT6966 and JXTS6966 SHBs. Additional board versions are available for use with other Trenton SHBs. The IOB33 provides legacy I/O support and features a x4 PCIe edge connector along the bottom edge of the card. This x4 card edge connector routes a x1PCI Gen 1.1 electrical link from the boards Intel® 3420 PCH down to the expansion slot on a PICMG 1.3 backplane. The electrical width of this expansion link is determined by the board's chipset. For example, an IOB33 used with a Trenton MCX/MCG will route a x4 PCIe link from the south bridge of these SHBs down to a backplane. This extra link is useful in supporting an additional system card slot.

The optional IOB33 also expands the I/O capabilities of the system. The IOB33 has the following interfaces available for use by the system designer:

- Two RS232 communication ports
- One Floppy drive interface
- One Parallel printer interface
 - One PS/2 Mini-DIN connector for PS/2 keyboard and mouse connections
 - Also includes separate, on-board PS/2 keyboard and mouse headers for systems that require separate PS/2 connections

There are three versions of the Trenton IOB33 I/O expansion board. This optional board is designed for the JXT6966 and JXTS6966 SHBs, but the additional versions may be used on other Trenton SHBs. The chart below identifies the IOB33 version that is compatible with specific Trenton SHBs.

IOB Module	T4L (6483)	TML (6490)	TQ9 (6731)	MCG- Series (6680, 6690, 6675, 6695)	NLI / NLT (6313, 6396)	SLT / SLI (6515, 6521)	MCX- Series (6633, 6685, 6638, 6700)	JXT / JXTS (6966)
IOB33JX (7015-004)								Х
IOB33MC (7015-002)			Х	Х			Х	
IOB33 (7015-000)	X	Х			Х	Х		

IOB33 Models

Model #Model Name	Description	
7015-004	IOB33JX	Includes the I/O Plate for use with the JXT6966 or JXTS6966 System Host Boards
7015-002	IOB33MC	Includes the I/O Plate for use with MCX, MCG and TQ9 system host boards
7015-000	IOB330	Includes the I/O Plate for use with TML, SLT, SLI, NLT, NLI and T4L system host boards

IOB33 Features

IOB33 (7015-004, 7015-002, 7015-001)

- I/O plate versions for a variety of Trenton system host boards
- Two serial ports and PS/2 mouse/keyboard mini DIN on the I/O bracket
- PS/2 mouse, keyboard, parallel port and floppy drive connectors
- PCI Express expansion capability for use with PCI Express backplanes
- Compatible with PCI Industrial Computer Manufacturers Group (PICMG®) PCI Express Specification

IOB33 Temperature/Environment

Operating Temperature:	0° C. to 60° C.
Storage Temperature:	-20° C. to 70° C.
Humidity:	5% to 90% non-condensing

IOB33 (7015-xxx) Block Diagram

IOB33 (7015-xxx) Layout Diagram

IOB33 (7015-xxx) I/O Plate Diagram

IOB33 Connectors

NOTE: the square pad on the PCB indicates Pin 1 on the connectors.

P1 Serial Port Connector _ 9 position "D" right angle, Spectrum #56-402-001 Pin Signal Pin Signal Carrier Detect Data Set Ready-I 6 1 7 Request to Send-O 2 Receive Data-I 3 8 Clear to Send-Transmit Data-O 4 Data Terminal Ready-O 9 **Ring Indicator-I** 5 Signal Gnd **P2 Serial Port Connector** 9 position "D" right angle, Spectrum #56-402-001 Pin Signal Pin Signal Carrier Detect Data Set Ready-I 1 6 Request to Send-O 2 Receive Data-I 7 Clear to Send-3 8 Transmit Data-O 4 Data Terminal Ready-O 9 **Ring Indicator-I** 5 Signal Gnd **P3** PS/2 Mouse and Keyboard Connector 6 pin mini DIN, Kycon #KMDG-6S-B4T Signal Pin Ms Data 1 2 Kbd Data 3 Gnd Power (+5V fused) with self-resetting fuse 4 5 Ms Clock Kbd Clock 6 **P4 Floppy Drive Connector** 34 pin dual row header, Amp #103308-7 Pin Signal Pin Signal 1 N-RPM Gnd 2 3 Gnd 4 NC 5 Gnd 6 D-Rate0 7 Gnd 8 P-Index 9 Gnd N-Motoron 1 10 11 Gnd N-Drive Sel2 12 Gnd 14 N-Drive Sel1 13 15 Gnd 16 N-Motoron 2 17 Gnd 18 N-Dir 19 20 Gnd N-Stop Step 21 Gnd 22 N-Write Data N-Write Gate 23 Gnd 24 25 Gnd 26 P-Track 0 27 Gnd 28 **P-Write Protect** 29 Gnd 30 N-Read Data 31 Gnd 32 N-Side Select 33 Gnd 34 Disk Change

IOB33 Connectors (continued)

P5 - Parallel Port Connector

26 pin dual row header, Amp #103308-6

ХT

P7 - Keyboard Header

5 pin single row header, Amp #640456-5

- Pin Signal
- 1 Kbd Clock
- 2 Kbd Data
- 3 Key
- 4 Kbd Gnd
- 5 Kbd Power (+5V fused) with self resetting fuse

P8 - PS/2 Mouse Header

6 pin single row header, Amp #640456-6

- Pin Signal
- 1 Ms Data
- 2 Reserved
- 3 Gnd
- 4 Power (+5V fused) with self-resetting fuse
- 5 Ms Clock
- 6 Reserved

IOB33 CONNECTORS (CONTINUED)

P6 - Impedance Connector

76 pin controlled impedance connector, Samtec #MIS-038-01-FD-K

Pin 1	Signal	Pin 2
1 3	+12 NC	2 4
5	NC NC	4 6
5 7	NC	8
9	NC	o 10
9 11	NC	10
13	ICH SMI#	12
15	ICH_SIOPME#	14 16
17	Gnd	18
17	L_FRAME#	20
21	L_DRQ1#	20
23	L_DRQ0#	22
23 25	SERIRQ	24 26
23 27	Gnd	28
29	PCLK14SIO	28 30
31	Gnd	32
33	SMBDATA_RESUME	34
35	SBMCLK RESUME	36
37	SALRT# RESUME	38
39	Gnd	40
41	EXP_CLK100	42
43	EXP_CLK100#	44
45	Gnd	46
47	C PE TXP4	48
49	C PE TXN4	50
51	Gnd	52
53	C_PE_TXP3	54
55	C_PE_TXN3	56
57	Gnd	58
59	C_PE_TXP2	60
61	C_PE_TXN2	62
63	Gnd	64
65	C_PE_TXP1	66
67	C_PE_TXN1	68
69	Gnd	70
71	+3.3V	72
73	+3.3V	74
75	+3.3V	76

in	<u>Signal</u>
	+5V_STANDBY
	+5V_STANDBY
	+5V_DUAL
	+5V DUAL
)	NC
2	NC
1	ICH_RCIN#
5	ICH_A20GATE
3	Gnd
)	L_AD3
2	L_AD2
1	L_AD1
5	L_AD0
3	Gnd
)	PCLK33LPC
2	Gnd
1	IPMB_DAT
5	IPMB_CLK
3	IPMB_ALRT#
)	Gnd
2	EXP RESET#
1	ICH WAKE#
5	Gnd
3	C_PE_RXP4
)	C_PE_RXN4
2	Gnd
1	C_PE_RXP3
5	C_PE_RXN3
3	Gnd
)	C_PE_RXP2
2	C_PE_RXN2
1	Gnd
5	C_PE_RXP1
3	C_PE_RXN1
)	Gnd
2	+5V
1	+5V
5	+5v

PEX10 Overview

The PEX10 is an optional PCIe link expansion board that takes advantage of the additional PCI Express 2.0 interfaces supported on the Intel[®] Xeon[®] EC5500/LC5500-series (i.e. Jasper Forest) processors.

Direct PCI Express 2.0 interfaces from the Jasper Forest processors are a compelling feature of Trenton's JXT6966 and JXTS6966 system host boards. The JXT6966 is a dual-processor SHB with more available PCIe links than the 20 PCIe links currently defined in the PICMG[®] 1.3 SHB Express[®] industry specification. Many system designs could utilize the additional 16 PCIe links offered by second processor on a Trenton JXT6966 SHB to increase a systems data bandwidth and information throughput. The PEX10 is an optional PCI Express expansion board that makes these addition 16 links available to the system designer.

The PEX10 is a passive board that mounts to the back of a Trenton JXT6966. This PEX10 passive interface card routes the four additional PCIe 2.0 x4 electrical links from second processor on a JXT6966 down to a mechanical x16 PCIe link expansion slot on the backplane. The Trenton BPC7009 and BPC7041 backplanes support this additional PCI Express 2.0 link expansion slot. The multiple x4 PCIe links are connected directly to option card slots on the passive BPC7041 backplane. PCIe Gen 2 link redrivers are used on the BPC7041backplane to ensure signal integrity between the SHB and the option card. The x4 links on a BPC7009 backplane are routed to PCIe switching devices to ensure signal integrity and to combine the x4 links into x8 electrical links for use on selected option card slots and other backplane devices.

NOTE: Currently, the PEX10 is compatible with only the Trenton JXT6966 SHB and the Trenton BPC7009 and BPC7041 backplanes. Trenton is constantly expanding its PCI Express backplane product offerings. See the Trenton website or contact us for additional backplane availability.

This page intentionally left blank

Appendix A BIOS Messages

Introduction

A status code is a data value used to indicate progress during the boot phase. These codes are outputted to I/O port 80h on the SHB. Aptio 4.x core outputs checkpoints throughout the boot process to indicate the task the system is currently executing. Status codes are very useful in aiding software developers or technicians in debugging problems that occur during the pre-boot process.

Aptio Boot Flow

While performing the functions of the traditional BIOS, Aptio 4.x core follows the firmware model described by the Intel Platform Innovation Framework for EFI ("the Framework"). The Framework refers the following "boot phases", which may apply to various status code descriptions:

- Security (SEC) initial low-level initialization
- Pre-EFI Initialization (PEI) memory initialization¹
- Driver Execution Environment (DXE) main hardware initialization²
- Boot Device Selection (BDS) system setup, pre-OS user interface & selecting a bootable device (CD/DVD, HDD, USB, Network, Shell, ...)

¹ Analogous to "bootblock" functionality of legacy BIOS

² Analogous to "POST" functionality in legacy BIOS

BIOS Beep Codes

The Pre-EFI Initialization (PEI) and Driver Execution Environment (DXE) phases of the Aptio BIOS use audible beeps to indicate error codes. The number of beeps indicates specific error conditions.

# of Beeps	Description
1	Memory not Installed
1	Memory was installed twice (InstallPeiMemory routine in PEI Core called twice)
2	Recovery started
3	DXEIPL was not found
3	DXE Core Firmware Volume was not found
7	Reset PPI is not available
4	Recovery failed
4	S3 Resume failed

PEI Beep Codes

DXE Beep Codes

# of Beeps	Description
4	Some of the Architectural Protocols are not available
5	No Console Output Devices are found
5	No Console Input Devices are found
1	Invalid password
6	Flash update is failed
7	Reset protocol is not available
8	Platform PCI resource requirements cannot be met

BIOS Status Codes

As the POST (Power On Self Test) routines are performed during boot-up, test codes are displayed on Port 80 POST code LEDs 0, 1, 2, 3, 4, 5, 6 and 7. These LED are located on the top of the SHB, just above the board's battery socket. The POST Code LEDs and are numbered from right (position 1 = LED0) to left (position 8 - LED7).

The POST code checkpoints are the largest set of checkpoints during the BIOS pre-boot process. The following chart is a key to interpreting the POST codes displayed on LEDs 0 through 7 on the JXT6966 and JXTS6966 SHBs. Refer to the board layout in the *Specifications* chapter for the exact location of the POST code LEDs.

The HEX to LED chart in the POST Code LEDs section will serve as a guide to interpreting specific BIOS status codes.

BIOS Status POST Code LEDs

As the POST (Power On Self Test) routines are performed during boot-up, test codes are displayed on Port 80 POST code LEDs 0, 1, 2, 3, 4, 5, 6 and 7. These LED are located on the top of the SHB, just above the board's battery socket. The POST Code LEDs and are numbered from right (position 1 = LED0) to left (position 8 - LED7).

The POST code checkpoints are the largest set of checkpoints during the BIOS pre-boot process. The following chart is a key to interpreting the POST codes displayed on LEDs 0 through 7 on the JXT6966 and JXTS6966 SHBs. Refer to the board layout in the *Specifications* chapter for the exact location of the POST code LEDs.

Upper Nibble (UN)				
Hex. Value	LED7	LED6	LED5	LED4
0	Off	Off	Off	Off
1	Off	Off	Off	On
2	Off	Off	On	Off
3	Off	Off	On	On
4	Off	On	Off	Off
5	Off	On	Off	On
6	Off	On	On	Off
7	Off	On	On	On
8	On	Off	Off	Off
9	On	Off	Off	On
А	On	Off	On	Off
В	On	Off	On	On
С	On	On	Off	Off
D	On	On	Off	On
E	On	On	On	Off
F	On	On	On	On

Lower Nibble (LN)				
Hex. Value	LED3	LED2	LED1	LED0
0	Off	Off	Off	Off
1	Off	Off	Off	On
2	Off	Off	On	Off
3	Off	Off	On	On
4	Off	On	Off	Off
5	Off	On	Off	On
6	Off	On	On	Off
7	Off	On	On	On
8	On	Off	Off	Off
9	On	Off	Off	On
Α	On	Off	On	Off
В	On	Off	On	On
С	On	On	Off	Off
D	On	On	Off	On
E	On	On	On	Off
F	On	On	On	On

JXT6966 & JXTS6966 POST Code LEDs

Status Code Ranges

Status Code Range	Description
0x01 - 0x0F	SEC Status Codes & Errors
0x10 - 0x2F	PEI execution up to and including memory detection
0x30 - 0x4F	PEI execution after memory detection
0x50 - 0x5F	PEI errors
0x60 - 0xCF	DXE execution up to BDS
0xD0 - 0xDF	DXE errors
0xE0 - 0xE8	S3 Resume (PEI)
0xE9 - 0xEF	S3 Resume errors (PEI)
0xF0 - 0xF8	Recovery (PEI)
0xF9 - 0xFF	Recovery errors (PEI)

SEC Status Codes

Status Code	Description
0x0	Not used
Progress Codes	
0x1	Power on. Reset type detection (soft/hard).
0x2	AP initialization before microcode loading
0x3	North Bridge initialization before microcode loading
0x4	South Bridge initialization before microcode loading
0x5	OEM initialization before microcode loading
0x6	Microcode loading
0x7	AP initialization after microcode loading
0x8	North Bridge initialization after microcode loading
0x9	South Bridge initialization after microcode loading
0xA	OEM initialization after microcode loading
0xB	Cache initialization
SEC Error Code	\$
0xC - 0xD	Reserved for future AMI SEC error codes
0xE	Microcode not found
0xF	Microcode not loaded

SEC Beep Codes

There are no SEC Beep codes associated with this phase of the Aptio BIOS boot process.

PEI Status Codes

Status Code	Description
Progress Codes	
0x10	PEI Core is started
0x11	Pre-memory CPU initialization is started
0x12	Pre-memory CPU initialization (CPU module specific)
0x13	Pre-memory CPU initialization (CPU module specific)
0x14	Pre-memory CPU initialization (CPU module specific)
0x15	Pre-memory North Bridge initialization is started
0x16	Pre-Memory North Bridge initialization (North Bridge module specific)
0x17	Pre-Memory North Bridge initialization (North Bridge module specific)
0x18	Pre-Memory North Bridge initialization (North Bridge module specific)
0x19	Pre-memory South Bridge initialization is started
0x1A	Pre-memory South Bridge initialization (South Bridge module specific)
0x1B	Pre-memory South Bridge initialization (South Bridge module specific)
0x1C	Pre-memory South Bridge initialization (South Bridge module specific)
0x1D-0x2A	OEM pre-memory initialization codes
0x2B	Memory initialization. Serial Presence Detect (SPD) data reading
0x2C	Memory initialization. Memory presence detection
0x2D	Memory initialization. Programming memory timing information
0x2E	Memory initialization. Configuring memory
0x2F	Memory initialization (other).
0x30	Reserved for ASL (see ASL Status Codes section below)
0x31	Memory Installed
0x32	CPU post-memory initialization is started
0x33	CPU post-memory initialization. Cache initialization
0x34	CPU post-memory initialization. Application Processor(s) (AP) initialization
0x35	CPU post-memory initialization. Boot Strap Processor (BSP) selection
0x36	CPU post-memory initialization. System Management Mode (SMM) initialization
0x37	Post-Memory North Bridge initialization is started
0x38	Post-Memory North Bridge initialization (North Bridge module specific)
0x39	Post-Memory North Bridge initialization (North Bridge module specific)
0x3A	Post-Memory North Bridge initialization (North Bridge module specific)
0x3B	Post-Memory South Bridge initialization is started
0x3C	Post-Memory South Bridge initialization (South Bridge module specific)
0x3D	Post-Memory South Bridge initialization (South Bridge module specific)
0x3E	Post-Memory South Bridge initialization (South Bridge module specific)
0x3F-0x4E	OEM post memory initialization codes
0x4F	DXE IPL is started

0x50	Memory initialization error. Invalid memory type or incompatible memory speed
0x51	Memory initialization error. SPD reading has failed
0x52	Memory initialization error. Invalid memory size or memory modules do not match
0x53	Memory initialization error. No usable memory detected
0x54	Unspecified memory initialization error.
0x55	Memory not installed
0x56	Invalid CPU type or Speed
0x57	CPU mismatch
0x58	CPU self test failed or possible CPU cache error
0x59	CPU micro-code is not found or micro-code update is failed
0x5A	Internal CPU error
0x5B	reset PPI is not available
0x5C-0x5F	Reserved for future AMI error codes
3 Resume Prog	ress Codes
0xE0	S3 Resume is stared (S3 Resume PPI is called by the DXE IPL)
0xE1	S3 Boot Script execution
0xE2	Video repost
0xE3	OS S3 wake vector call
0xE4-0xE7	Reserved for future AMI progress codes
0xE0	S3 Resume is stared (S3 Resume PPI is called by the DXE IPL)
33 Resume Erro	r Codes
0xE8	S3 Resume Failed in PEI
0xE9	S3 Resume PPI not Found
0xEA	S3 Resume Boot Script Error
0xEB	S3 OS Wake Error
0xEC-0xEF	Reserved for future AMI error codes
Recovery Progre	ss Codes
0xF0	Recovery condition triggered by firmware (Auto recovery)
0xF1	Recovery condition triggered by user (Forced recovery)
0xF2	Recovery process started
0xF3	Recovery firmware image is found
0xF4	Recovery firmware image is loaded
0xF5-0xF7	Reserved for future AMI progress codes
Recovery Error	Codes
0xF8	Recovery PPI is not available
0xF9	Recovery capsule is not found
0xFA	Invalid recovery capsule
0xFB - 0xFF	Reserved for future AMI error codes

PEI Beep Codes

# of Beeps	Description
1	Memory not Installed
1	Memory was installed twice (InstallPeiMemory routine in PEI Core called twice)
2	Recovery started
3	DXEIPL was not found
3	DXE Core Firmware Volume was not found
7	Reset PPI is not available
4	Recovery failed
4	S3 Resume failed

DXE Status Codes

Status Code	Description
0x60	DXE Core is started
0x61	NVRAM initialization
0x62	Installation of the South Bridge Runtime Services
0x63	CPU DXE initialization is started
0x64	CPU DXE initialization (CPU module specific)
0x65	CPU DXE initialization (CPU module specific)
0x66	CPU DXE initialization (CPU module specific)
0x67	CPU DXE initialization (CPU module specific)
0x68	PCI host bridge initialization
0x69	North Bridge DXE initialization is started
0x6A	North Bridge DXE SMM initialization is started
0x6B	North Bridge DXE initialization (North Bridge module specific)
0x6C	North Bridge DXE initialization (North Bridge module specific)
0x6D	North Bridge DXE initialization (North Bridge module specific)
0x6E	North Bridge DXE initialization (North Bridge module specific)
0x6F	North Bridge DXE initialization (North Bridge module specific)
0x70	South Bridge DXE initialization is started
0x71	South Bridge DXE SMM initialization is started
0x72	South Bridge devices initialization
0x73	South Bridge DXE Initialization (South Bridge module specific)
0x74	South Bridge DXE Initialization (South Bridge module specific)
0x75	South Bridge DXE Initialization (South Bridge module specific)
0x76	South Bridge DXE Initialization (South Bridge module specific)
0x77	South Bridge DXE Initialization (South Bridge module specific)
0x78	ACPI module initialization
0x79	CSM initialization

0x7A - 0x7F	Reserved for future AMI DXE codes
0x80 - 0x8F	OEM DXE initialization codes
0x90	Boot Device Selection (BDS) phase is started
0x91	Driver connecting is started
0x92	PCI Bus initialization is started
0x93	PCI Bus Hot Plug Controller Initialization
0x94	PCI Bus Enumeration
0x95	PCI Bus Request Resources
0x96	PCI Bus Assign Resources
0x97	Console Output devices connect
0x98	Console input devices connect
0x99	Super IO Initialization
0x9A	USB initialization is started
0x9B	USB Reset
0x9C	USB Detect
0x9D	USB Enable
0x9E - 0x9F	Reserved for future AMI codes
0xA0	IDE initialization is started
0xA1	IDE Reset
0xA2	IDE Detect
0xA3	IDE Enable
0xA4	SCSI initialization is started
0xA5	SCSI Reset
0xA6	SCSI Detect
0xA7	SCSI Enable
0xA8	Setup Verifying Password
0xA9	Start of Setup
0xAA	Reserved for ASL (see ASL Status Codes section below)
0xAB	Setup Input Wait
0xAC	Reserved for ASL (see ASL Status Codes section below)
0xAD	Ready To Boot event
0xAE	Legacy Boot event
0xAF	Exit Boot Services event
0xB0	Runtime Set Virtual Address MAP Begin
0xB1	Runtime Set Virtual Address MAP End
0xB2	Legacy Option ROM Initialization
0xB3	System Reset
0xB4	USB hot plug
0xB5	PCI bus hot plug
0xB6	Clean-up of NVRAM
0xB7	Configuration Reset (reset of NVRAM settings)
l	

0.00	
0xB8 - 0xBF	Reserved for future AMI codes
0xC0 - 0xCF	OEM BDS initialization codes
DXE Error Code	S
0xD0	CPU initialization error
0xD1	North Bridge initialization error
0xD2	South Bridge initialization error
0xD3	Some of the Architectural Protocols are not available
0xD4	PCI resource allocation error. Out of Resources
0xD5	No Space for Legacy Option ROM
0xD6	No Console Output Devices are found
0xD7	No Console Input Devices are found
0xD8	Invalid password
0xD9	Error loading Boot Option (LoadImage returned error)
0xDA	Boot Option is failed (StartImage returned error)
0xDB	Flash update is failed
0xDC	Reset protocol is not available

DXE Beep Codes

# of Beeps	Description
4	Some of the Architectural Protocols are not available
5	No Console Output Devices are found
5	No Console Input Devices are found
1	Invalid password
6	Flash update is failed
7	Reset protocol is not available
8	Platform PCI resource requirements cannot be met

ACPI/ASL Status Codes

Status Code	Description
0x01	System is entering S1 sleep state
0x02	System is entering S2 sleep state
0x03	System is entering S3 sleep state
0x04	System is entering S4 sleep state
0x05	System is entering S5 sleep state
0x10	System is waking up from the S1 sleep state
0x20	System is waking up from the S2 sleep state
0x30	System is waking up from the S3 sleep state
0x40	System is waking up from the S4 sleep state
0xAC	System has transitioned into ACPI mode. Interrupt controller is in PIC mode.
0xAA	System has transitioned into ACPI mode. Interrupt controller is in APIC mode.

OEM-Reserved Status Code Ranges

Status Code	Description
0x5	OEM SEC initialization before microcode loading
0xA	OEM SEC initialization after microcode loading
0x1D - 0x2A	OEM pre-memory initialization codes
0x3F - 0x4E	OEM PEI post memory initialization codes
0x80 - 0x8F	OEM DXE initialization codes
0xC0 - 0xCF	OEM BDS initialization codes

Appendix B Certificates of Compliance

Certificate of Compliance – CE

ertificate 4 ompliance (Application of Council Directive: 2004/108/EC - EMC Directive) Standards to which Conformity is Declared: IEC 61000-6-2: 2005 and IEC 61000-6-4: 2006 including EN 55022: 1998 + A1: 2000 + A2: 2003 Class A, IEC 61000-3-2: 2005, IEC 61000-3-3:1994 + A1:2001 + A2:2005, IEC 61000-4-2:2008, IEC 61000-4-3: 2006 + A1: 2008 + A2: 2010, IEC 61000-4-4: 2004 + A1: 2010, IEC 61000-4-5: 2005, IEC 61000-4-6: 2008, IEC 61000-4-8: 2009, IEC 61000-4-11: 2004 Applicant: Trenton Systems Address: 2350 Centennial Drive Gainesville, GA 30504 USA Tel.: (770)-287-3100 Fax: (770) -287-3150 Product Tested: System Host Board Model Tested: JXT 92-XX6966 Tested By: **ITC Engineering Services**, Inc. 9959 Calaveras Road, PO Box 543 Sunol, CA 94586-0543 Tel: (925) 862-2944 Fax: (925) 862-9013 Email: itcemc@itcemc.com http://www.itcemc.com Date of Issue April 7, 2010 Report Number: 20100401-02-CE I, the undersigned hereby declare that the model(s) listed above was tested and conforms to the Directives and Standards listed above. Certified By: Date: April 23, 2010 Mr. Michael Gbadebo, PE (California License #11303) Chief Engineer/Principal Consultant NVLAP Accredited (code 200172-0)

Certificate of Compliance – FCC Part 15

