
UNTANGLING VEHICLE SOFTWARE
WITH AUTOMOTIVE SOA

2 | GuardKnox Proprietary l www.guardknox.com

TABLE OF CONTENTS
ABSTRACT ...		 3

INTRODUCTION..		 3

EVOLUTION OF AUTOMOTIVE FUNCTIONS ...		 4

HISTORY OF AUTOMOTIVE SW DEVELOPMENT ...		 6

How did we get here? ..		 6

Where is the problem? ...		 7

What has been done until now ...		 8

COMMUNICATION REQUIREMENTS ..		 10

Internal communication ...		 10

External communication ..		 11

THE SOA CONCEPT AND VIRTUALIZATION ..		 12

The Service Oriented Architecture (SOA) ..		 12

Virtualization ..		 13

AUTOMOTIVE SOA ..		 14

Requirements ...		 14

The architecture ..		 15

Generic framework ..		 16

Security ...		 19

PHASED INTRODUCTION OF AUTOMOTIVE SOA ...		 20

Types of ECUs ..		 20

The Steps to an Automotive SOA Future ..		 21

BENEFITS FOR THE SUPPLY CHAIN ...		 22

BENEFITS OF GUARDKNOX’ SOA FRAMEWORK FOR DRIVERS AND PASSENGERS		 23

GUARDKNOX’ PRODUCT OFFERING ..		 23

CONCLUSION ...		 24

LIST OF GUARDKNOX PATENTS ..		 25

LIST OF ABBREVIATIONS ...		 25

https://www.guardknox.com/

ABSTRACT
Software-Defined, Connected and Autonomous Vehicles require a fresh look at software development in
the automotive industry. With increasingly complex software, the industry must move away from today’s
inflexible monolithic blocks of code to a software design methodology based on service oriented approaches.

This White Paper starts by reviewing the history of automotive software development, and it discusses the
emerging requirements for automotive software today and in the future.

It explains why today’s approaches are not scalable and how Automotive SOA, derived from the existing SOA
concept, can support the entire software lifecycle in the automotive industry.

The introduction of SOA in the automotive industry will not happen as a revolution, but in evolutionary steps
compatible with today’s processes and legacy models.

The benefits for drivers and passengers as well as OEMs, Tier 1s and the rest of the supply chain are clearly
identified.

INTRODUCTION
The automotive industry is experiencing a dramatic paradigm shift. Where previously vehicles were built
with complex hardware-oriented designs, new models are designed as Software-Defined Vehicles (SDV)
with a software-oriented design. The majority of functions previously implemented in hardware (HW) or
with simple electronics are increasingly implemented using software (SW) on computing platforms with
different performance and cost positions.

This paradigm shift is driven by changing consumer demands and advances in technology. Modern drivers
want their car to perform like their smartphone with flexibility for SW customization and connectivity to the
surrounding environment. Technological advances in Advanced Driver Assistance Systems (ADAS) have been
introduced to relieve the driver of some of the boring tasks while in stop-and-go traffic or on long highway
drives. This trend will continue pushing to the industry goal of the introduction of autonomous vehicles.

Part of this evolution is the emergence of the Connected Vehicle which communicates closely with its
environment, to increase driving safety and efficiency, to receive entertainment content, to support its
passengers’ multimedia communication with the outside world, and to facilitate remote maintenance
of the vehicle. Today’s vehicle architectures only support these new requirements to a small degree. The
automotive software architecture and the development processes have evolved over a long period, without
the stringent efficiency standards of the non-automotive SW industry. Automotive SW is still created
and deployed as monolithic blocks of code that are very difficult to customize and to maintain. For every
change all potential side effects have to be taken into consideration which makes the process of software
development, testing, deployment and maintenance slow and error-prone.

In order to overcome these inefficiencies automotive SW development has to adopt the concept of
a Service-Oriented Architecture (SOA) that was introduced in enterprise SW long ago. All the functions
inside a vehicle are defined as services - Software Components (SWC) that can be implemented and tested
individually and independently. They communicate across a virtualized communication infrastructure using
well-defined interfaces.

GuardKnox has developed a secure Automotive SOA framework to support the automotive industry in
its move towards a service-oriented SW design methodology. This framework will facilitate the entire SW
lifetime process from architecture definition, over development, test, deployment, all the way to continuous
SW maintenance and upgrades after a car has left the production line.

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

3 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/

1

0Level -

3

4

2

5

Cars have historically been designed as complex
systems of sophisticated hardware (HW) with a
small amount of software (SW) to control their
(relatively) few electronic components.

Some of the first electronic functions deployed in
cars provided increased comfort for drivers and
passengers with features such as power windows,
air conditioning systems, interval control of
windshield wipers and central lock systems.

Requirements for more efficient engines led to
the introduction of electronic ignition and digital
engine control, and the need for improved driving
safety led to ABS (Anti-lock Braking System) and
ESC (Electronic Stability Control) systems.

The demand for more safety functions and
comfort led to the introduction of numerous
additional devices, like distance sensors for parking
or emergency braking, cameras to watch the
surroundings of the vehicle, read speed limit signs,
or to stay on track.

The standard car radio morphed into a highly
sophisticated infotainment system that not
only provides entertainment, but also includes
navigation, external communication, and
convenient control of many vehicle functions.

The evolution towards connected and autonomous
vehicles will lead to more and more electronic
functions being implemented in software
on computing platforms in the vehicle with
increasing performance.

EVOLUTION OF AUTOMOTIVE FUNCTIONS

History

The Path to Autonomous Vehicles

Level -

Level -

Level -

Level -

Level -
The Society of Automotive Engineers (SAE) has
defined 6 autonomy levels on the path towards
autonomous driving with increasing reliance on
electronic functions. Levels 1 and 2 are already
widely available today.

No Driving Automation (manually
controlled): The human provides the dynamic
driving task although there may be systems in
place to help the driver. An example would be the
emergency braking system―since it technically
does not drive the vehicle, it does not qualify as
automation.

Driver Assistance: Cruise control is an
automated system for driver assistance, keeping
a car at a constant speed. Adaptive cruise control,
where the vehicle is kept at a safe distance behind
the next car, qualifies as Level 1 because the human
driver monitors the other aspects of driving such as
steering and braking.

Partial Driving Automation: With
Advanced Driver Assistance Systems (ADAS) the
vehicle can control both steering and accelerating/
decelerating. This is not considered self-driving
because a human sits in the driver’s seat and can
take control of the car at any time. Many modern
cars have ADAS systems implemented that can
keep them in the lane and keep a safe distance to
the car in front. This relieves the driver in common
stop-and-go driving situations.

Conditional Driving Automation:
Level 3 vehicles have environmental detection
capabilities and can make informed decisions
for themselves, such as accelerating past a slow-
moving vehicle, but they still require human
override. The driver must remain alert and ready
to take control if the system is unable to execute
the task.

High Driving Automation: The key
difference between Level 3 and Level 4 automation
is that Level 4 vehicles can react if things go wrong
or there is a system failure. Thus, these cars do not
require human interaction in most circumstances.
However, a human still has the option to manually
override. Level 4 vehicles can operate in self-driving
mode. But until legislation and infrastructure
evolves, they can only do so within a limited area
(usually an urban environment where top speeds
reach about 50km/h). This is known as geofencing.

Full Driving Automation: Level 5
vehicles do not require human attention―the
dynamic driving task is eliminated. Level 5 cars
will not even have steering wheels or acceleration/
braking pedals. They will be free from geofencing,
able to go anywhere and do anything that an
experienced human driver can do.

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

4 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/

5 | GuardKnox Proprietary l www.guardknox.com

From the description of the levels it is obvious that
a large number of additional distance sensors
and cameras are required to analyze the vehicle’s
environment. Enormous computing power
is needed to process all the inputs and make
decisions for steering, accelerating/decelerating
and braking. Gradually, Artificial Intelligence (AI)
mechanisms will be introduced.

Autonomous vehicles do not only analyze their
environment, but also communicate with it. They
talk to other vehicles, traffic lights, pedestrians
and more. Communication architectures between
vehicles and their environment are summarized
under the term V2X (Vehicle to everything). This will
be discussed in more depth below.

Expectations for car customization will grow
with the continued progress towards Level 5
autonomous vehicles. Their interior will resemble
a living room or home office environment instead
of today’s vehicle interior or a cockpit. Audio and
video-based entertainment functions, video
conferencing and professional workstation features
will require support via large screens and high-
speed wireless external communication.

Nowadays, the majority of cars are shared only
amongst family and perhaps friends, but this is
going to change with commercial car sharing
becoming much more popular, in particular
autonomous ones. Cars will be easily adapted to
meet the preferences of any user. Some users want
to be entertained while commuting in their vehicle
while others have different preferences such as
working or resting while travelling. Portable digital
identities or profiles will customize the car to a
particular user as soon as they log their profile into
the car.

An unfortunate reality of software development is
that software in any computing environment can
always contain bugs. The number of residual bugs
typically grows as the size of the SW packages
increases. We have grown accustomed to regular
software updates to correct bugs and add new
functionality in our everyday environments and
devices, but not for our cars.

If a bug is severe enough to impact driving or
functional safety, automakers traditionally initiate
a very expensive and reputation-impacting recall
program to get the software fixed in an authorized
garage with a physical connection to the vehicle -
usually only happening as a last resort.

The standard Over-the-Air (OTA) updates approach
used in our smartphones and computers is not
available in a vehicle today where it could be abused
as an entrance to safety-critical functionalities.
However, as the SW complexity grows, OTA
updates for cars will become mandatory because
of the higher frequency of required updates, and to
support upgrades for customization.

The Connected Vehicle

Software Updates

Communication with the environment has to be
very secure. False information can cause a vehicle
to make wrong – and potentially fatal – decisions.
Wireless networks to supply this information will
never be 100% available in every locale. Therefore,
externally supplied information can only serve as
context information to improve decision-making,
but an autonomous vehicle’s safety must not rely
on this information, but on its own sensors and
stored maps.

Consumers are used to downloading and
installing apps on their computers, smartphones
or tablets, customizing their devices to their
preferences. For the generation who grew up
with customization as a basic offering in most
consumer-facing software, it is an expectation
to be able to customize their cars in the same
ways. They want to add new functions (e.g. new
ADAS functions, games, videoconferencing SW,
additional performance (horse power), etc). The
physical infrastructure that would allow greater
interactivity and communication similar to personal
computers or smartphones (e.g. screens, powerful
computing platforms and external connectivity) is
often available in modern cars. However, the SW
architecture of today’s vehicles typically does not
support using the hardware for additional purposes
beyond specific predefined use cases decided by
the automakers.

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

5 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/
https://www.guardknox.com/

6 | GuardKnox Proprietary l www.guardknox.com

HISTORY OF AUTOMOTIVE SW DEVELOPMENT

In early vehicles, there was a simple 1:1 relationship between sensors and actuators. A switch was connected
via a direct cable to the lights (sometimes using a relay in between to increase the allowed current), the
ignition lock was connected directly to the starter relay. Today, this is no longer the case as drive by wire
sub-systems proliferated. For example, the acceleration pedal does not mechanically control a carburetor.
Instead, it has a position sensor that provides its information to the engine control electronics, which in turn,
combine it with information from ADAS systems. Direct electronic control of the brakes, beyond ABS, will
likely be approved in the near future as well.

With more and more functions and sophistication that have been introduced into vehicles the complex
interconnection of all the sensors and actuators no longer allows any direct wiring in the vehicle. Functions
are now performed by Electronic Control Units (ECUs), computing platforms using either microcontrollers
(MCUs) or microprocessors (MPUs), depending on the performance requirements. In any modern car,
more than 100 ECUs are distributed across the vehicle with functionalities determined by their respective
applications. These ECUs are connected to centralized control systems (gateways and domain controllers)
through digital communication media.

ECUs can be as non-critical and rarely used as those for seat adjustment, while ECUs for brakes or steering
are highly safety-critical and have to operate deterministically.

The trend to connected and autonomous vehicles means that a lot more computing platforms,
interconnected sensors and actuators will be required for optimal functioning and performance.

When ECUs were first introduced SW development was seen as a necessary evil to control these devices.
More and more ECUs enabled more functions, and vehicle functionality became largely SW-defined.

With the number of ECUs in a car exploding, SW development became a key capability for OEMs and Tier 1
suppliers who split their responsibilities roughly between overall architecture and specific implementations
of ECUs and domain controllers. All the SW components (SWCs) are then integrated by the OEM, tested,
and deployed on the production line.

How Did We Get Here?

6

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

6 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/
https://www.guardknox.com/

Where is the Problem?

Initially the SW in centralized or domain controllers was directly addressing peripheral ECUs by their network
addresses and the logical interfaces determined by the makers of the ECUs. ECU addresses had to be
predetermined and hard-coded into the SW. As the complexity of the system grew, it became more error-
prone and every modification caused numerous side effects that became more and more complex to
resolve.
This strong coupling between software and hardware components has led to the monolithic SW system.
Whenever one SWC is changed a complete re-integration and re-testing of the entire system is required
rather than just testing this single SWC, to make sure no unexpected side effects will occur.
Customizing the vehicle SW to specific customer desires is virtually impossible in this system as it would
require high cost for development and deployment on the production line or once the car is already on the
road. Software updates or aftermarket enhancements are very complex and have to be deployed physically
in the shops of authorized dealerships, after significant development, integration and testing by the OEM
that might take many months.
Every SWC is written for a specific SW system on a specific computing platform. Therefore, reuse of SWCs
and cross-platform support is difficult to achieve and the same function has to be implemented over and
over again if required in a different context.
With the increasing complexity of SW systems, we have reached the scalability limits for integration and
testing with this legacy approach.

Waterfall of problems in current SW development process

Strong coupling

Monolithic SW (Legacy)

Low reuse & cross
platform support

Non-scalable
integration & testing

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

7 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/

8 | GuardKnox Proprietary l www.guardknox.com

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

Starting in 2004, the automotive industry developed an approach to create some level of abstraction for
the ECUs’ interfaces through the AUTOSAR consortium. The AUTOSAR Classic definitions have allowed a
certain standardization and complexity reduction, but the SW system in a vehicle remains a monolithic
block of code.

Recognizing the fact that the increasing SW complexity requires a more modular approach, AUTOSAR
published its first version of AUTOSAR Adaptive in 2017. It has been an attempt by the automotive industry
to introduce a service-oriented architecture.

AUTOSAR Classic structure (From AUTOSAR website)

What Has Been Done Until Now

AUTOSAR Adaptive structure (from AUTOSAR site)

https://www.guardknox.com/
https://www.autosar.org/standards/classic-platform/
https://www.autosar.org/standards/adaptive-platform/
https://www.autosar.org/standards/classic-platform/
https://www.autosar.org/standards/adaptive-platform/

9 | GuardKnox Proprietary l www.guardknox.com

Its core is an operating system based on the POSIX standard. The operating system can be used by
applications via a subset of POSIX. The communication protocol used for the in-vehicle networking using
the Adaptive Platform is SOME/IP on top of Ethernet.

Two types of interfaces are available - services and application programming interfaces (APIs). The platform
consists of functional clusters which are grouped into services and the AUTOSAR Adaptive Platform
foundation.

Adaptive Platform services include:

	y Update and Configuration management

	y State Management

	y Network Management

	y Diagnostics

The AUTOSAR Adaptive Platform contains both specification and code. In comparison to the Classic
Platform, AUTOSAR Adaptive develops implementations to shorten the validation cycle and illustrate the
underlying concepts. These implementations are available to the AUTOSAR partners.

While AUTOSAR adaptive can be considered a step into the right direction, to reach a truly Service-Oriented
Architecture, much remains to be done and will be discussed in later sections.

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

9 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/
https://www.guardknox.com/

10 | GuardKnox Proprietary l www.guardknox.com

COMMUNICATION REQUIREMENTS

Communication between the ECUs in a vehicle today is largely based on legacy communication networks,
of which CAN is the most popular. CAN versions exist with different speeds. HS (High-Speed) CAN provides
a gross data rate of 1 Mbps, LS (Low-Speed) CAN of 125 kbps, and CAN FD (Flexible Data rates) of 2 or 5 Mbps.
While these speeds are sufficient for many applications they are not enough for use-cases like transfer of
uncompressed video which is important in the context of autonomous vehicles. High data rates are also
required to achieve low latency for time-critical applications, like ADAS functions. Furthermore, the device
addresses on a CAN bus have to be defined up-front and have to be hard-coded in the vehicle SW.

The automotive industry has started to replace CAN and other legacy automotive communication systems
with Automotive Ethernet, which is available in speed classes from 10 Mbps up to 10 Gbps and beyond,
and in various topologies, like star and bus arrangements. However, there are still many legacy ECUs that
continue to be used within cars in production. Any new SW architecture, therefore, has to support these
legacy ECUs and their communication mechanisms. This involves gateways to CAN, mapping message
formats, abstracting their physical interfaces and treating their communication with the adequate levels
of security.

Autonomous vehicles will rely strongly on the integrity and proper function of ECUs for safety-critical
services, like steering, braking, acceleration/deceleration. In order to protect these components from being
compromised by faulty or malicious SWCs, their communication has to be protected by sophisticated
security mechanisms.

Internal Communication

Layered Security Approach

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

10 | GuardKnox Proprietary l www.guardknox.com| GuardKnox Proprietary l www.guardknox.com10

https://www.guardknox.com/
https://www.guardknox.com/automotive-ethernet/
https://www.guardknox.com/

11 | GuardKnox Proprietary l www.guardknox.com

Driving safety, traffic efficiency, energy savings, and convenience in connected cars will be improved by
providing vehicles with information about their environment. Communication architectures between vehicles
and their environment are known as V2X (Vehicle to everything). Communication mechanisms include
cellular mobile radio, WLAN, as well as some dedicated radio interfaces and protocols, depending on the
location of the vehicle.

Furthermore, external communication is required for Over-the-Air (OTA) download of SW updates, 3rd party
applications, or map updates, or simply for web browsing. Streaming or downloading entertainment content
might use the same mechanisms or its own cellular modem connectivity.

External Communication

V2X
(VEHICLE TO EVERYTHING)

V2I (Vehicle-to-Infrastructure)

enables vehicles to communicate with the road infrastructure in
the form of road signs (e.g. dynamic speed limits), traffic lights,
parking management systems, hazard and congestion warnings.

V2N (Vehicle-to-Network)

stands for the vehicle’s communication with the network, in
terms of servers, databases, cloud.

V2V (Vehicle-to-Vehicle)
represents the communication among vehicles to agree on
precedence at intersections or for platooning (when the first car
in a platoon brakes it communicates this to all other cars in order
to prevent them from slamming the brakes when the distance
shrinks). Furthermore, warnings about unexpected road hazards
can be communicated between vehicles.

V2P (Vehicle-to-Pedestrian)

helps discover pedestrians or cyclists in the perimeter of the
vehicle and estimate the direction of their movement such that
the vehicle can protect them.

V2G (Vehicle-to-Grid)

allows electric or hybrid vehicles to communicate with
charging stations.

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

11 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/
https://www.guardknox.com/
https://blog.guardknox.com/software-defined-vehicles-ota-automotive-updates
https://www.guardknox.com/

Years ago enterprise SW was faced with the problem of large numbers of different applications, each with
their own specific interfaces, OS requirements, programming languages, etc. Integrating these applications
into a common system became very difficult and involved complex translations of input and output data.
Interactions between applications had to be explicitly programmed. A solution to the problem became
known as Service-Oriented Architecture (SOA). It is based on the concept of self-contained services that
can communicate with other services through an Enterprise Service Bus (ESB), a virtual bus structure
interconnecting all the services. The ESB is a significant part of the middleware that forms the basic SW for
the integration of services into an overall system.

A service has four properties:

1.	 It logically represents a repeatable activity with a specified functionality
and outcome.

2.	 It is self-contained.

3.	 It is a black box for its consumers, meaning the consumer does not have
to be aware of the service's inner workings.

4.	 It may be composed of other services.

The Service Oriented Architecture (SOA)

General SOA concept

THE SOA CONCEPT AND VIRTUALIZATION

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

12 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/

13 | GuardKnox Proprietary l www.guardknox.com

Each SOA building block can play any of the three roles:

1.	 Service provider: It creates a service and provides its information to the service broker registry.

2.	 Service broker, service registry or service repository: Its main functionality is to make the information
regarding the service available to any potential requester.

3.	 Service requester/consumer: It locates entries in the broker registry using various find operations and
then binds to the service provider in order to invoke one of its services.

An example for the specification of an object / service-oriented middleware is CORBA (Common Object
Request Broker Architecture). Its core is the Object Request Broker (ORB) and an Interface Definition
Language (IDL) for the interface definition between objects/services and the middleware.

SOA building blocks and their relationships

Another important concept is virtualization. It has been introduced in the context of data centers where
an increasing amount of SW is hosted today. Applications are usually implemented on the basis of various
operating systems. For commercial applications these are mostly different versions of Windows and Linux.

For efficiency reasons multiple applications have to run on the same server, but each application typically
expects to run on its own computing platform, along with its OS. Therefore, servers have to be virtualized.
This means that a piece of SW, called a Hypervisor, presents a virtualized version of the CPU to the different
OSs which, in turn, support the respective applications. In this way, applications can be moved flexibly across
the servers within a data center without impacting the applications. OSs and applications can be updated
individually, independent of other instances.

Virtualization

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

13 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/
https://www.guardknox.com/

14 | GuardKnox Proprietary l www.guardknox.com

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

For automotive SW development, we require the following capabilities:

HW abstraction - masks the complexity
of the hardware with all the sensors and
actuators below an abstraction level and
allows applications to find them in a
directory instead of programming their
interfaces into the code base, essentially
decoupling the software f rom the
hardware.

Flexible Service Allocation - allows
applications to run on any computing
platform / ECU that has the necessary
performance characteristics. The
distribution of applications to ECUs does
not have to be pre-determined during
the design phase. If additional or more
demanding applications are required,
existing resources in the car can be
reallocated to match the computing
requirements. If this is not enough,
then further ECUs can be added or
existing ECUs can be replaced with
higher performance models during the
lifetime of the car. In case of HW failures,
critical applications can be re-deployed
to remaining functional compute
platforms providing resilience and self-
healing qualities.

Consolidation - consolidates multiple
application-specific ECUs into fewer
higher-performance generic ECUs
that act as computing platforms, thus
reducing overall cost and complexity,
a n d a d d i n g H i g h Pe r fo rm a n ce
Computing (HPC) capabilities.

OTA update / upgrade - allows to update
/ upgrade the SW during the lifetime
of the vehicle, either by an authorized
dealership or a third party, over a wired
connection or OTA, using WLAN or
mobile radio.

Security - provides the necessary level of
security for every communication inside
and outside of the vehicle, and for every
installation of an application.

Service orientation - defines all the
functions in a vehicle as services
prov ided by cer ta in dev ices or
applications and consumed by other
services. Services can be combined to
provide a required function, feature or
capability.

Requirements

AUTOMOTIVE SOA

1 3

2 4

5

6

https://www.guardknox.com/

The Automotive Service-Oriented Architecture is also part of the evolution towards a Zonal E/E Architecture
which brings:

Hardware Consolidation - Consolidating
multiple functions that are today served
by separate ECUs into ECUs that are
multi-functional and provide HPC
functionality.

Ethernet Backbone - Moving from the
legacy bus architectures to a modern
high-speed Ethernet communication
network.

Wiring Optimization - Consolidation
of ECUs together with new topologies
for the vehicle networks to reduce the
needed cabling length, weight, and cost
to a fraction of what it currently is.

Software-Driven Service-Oriented
Architecture - An evolved modular
software architecture to accommodate
the needed flexibility, security and agility
for the new software-defined cars.

The Architecture

AUTOMOTIVE SOA

Ethernet
Backbone

Wiring
Optimization

HW
Consolidation

SOA
Architecture

Zonal E/E
Architecture

Zonal E/E Architecture

Considering the nature of today’s automotive
SW development it is quite obvious that a
service-oriented approach will greatly facilitate
development , testing, deployment and
maintenance of automotive SW. GuardKnox has
developed a framework of components to build
an automotive middleware. This middleware
provides an ESB among the services that
represent the applications. It decouples the
individual SWCs from the underlying HW, thus
enabling SW portability / SWC ‘lift and shift’ inside
a vehicle’s architecture.

Automotive SOA takes the fundamental
SOA concept of service providers and service
consumers and translates them to the
automotive software environment. Every ECU
uses layers of abstraction to hide the complexities
of network topology, communication, and HW
implementation. Interactions between software
components are therefore no longer hard-
coded. Every new service is represented in a
directory from where its functions and services
can be offered and where it can find the services
that it needs to consume. Binding between
services across the ESB is not fixed and can be
changed dynamically.

2

4

1

3

15 | GuardKnox Proprietary l www.guardknox.com

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

https://www.guardknox.com/

16 | GuardKnox Proprietary l www.guardknox.com

Introducing the SOA approach in the automotive
industry enables an unprecedented degree of
modularity. Services can be implemented and
tested independently. Any change in a service
implementation does not require renewed
integration and testing of the entire software
system as long as its interfaces do not change.

With automotive SOA a SW architect defines the
services and the parameters to be exchanged
through the standard interfaces using the
language OMG IDL (Interface Definition Language
defined by the Object Management Group). A
tool then creates descriptions and code templates
for each service. This description is called a
manifest. The developer of a certain service takes
the manifest and completes it with the code
representing the logic of the service, like reading
a sensor, processing input values, invoking an
actuator, transmitting information or alerts, etc. The
resulting SWC is then fed into the code repository
and made available to other services through the
service directory. Since the interfaces of the SWCs
have been created automatically and uniformly, the
communication with other services is guaranteed.
If during integration tests an SWC shows bugs it
can be corrected and rebuilt without impacting any
other SWC.

The SOA Framework creates a uniform SW
environment, similar to today’s common PC
or mobile platforms where new or updated
applications do not have to be tested against
all other applications. As for PCs, smartphones
or tablets, with automotive SOA developers can
build applications in an abstract manner, without
platform constraints. This greatly simplifies the
development process and enables multiple
developers to work largely independently on a
common project.

Multiple different operating systems can run in
parallel on each ECU, supported by a hypervisor.
Popular OSs like Windows, iOS, Android, etc. can
be supported to enable the installation of standard
applications and 3rd party apps on microprocessor-
based ECUs.

The below figure displays the generic framework
of the Automotive SOA approach. On top of the
HW the Secure Separation Kernel (SSK) is located.
A separation kernel is defined as a SW layer which
creates an environment that is indistinguishable
f rom that provided by a physically distributed
system. It must appear as if each regime is a
separate, isolated machine and that information
can only flow from one machine to another along
known external communication lines. The secure
separation kernel adds sophisticated security
features to the separation functions.

On top of the SSK is the hypervisor that creates a
Virtual Machine (VM) environment decoupling the
SW environment from the HW. For this purpose
it emulates a HW platform on which multiple
guest partitions with their respective Operating
Systems (OSs) can run. This means that for a Guest
OS it is indistinguishable whether it runs on top
of a hypervisor or directly on top of a processor
HW. Every guest partition contains a SOA Node
Manager on top of the OS which manages this
particular partition or node. Every application
contains an SOA Port which is responsible for the
unified communication (ESB) of the SWCs.

There are two additional partitions which are part
of the SOA framework:

	y The Management Partition with the SOA
Domain Manager and the Health Monitor

	y The Security Partition with Security
Monitor, Crypto Module and Lockdown Core
Applications

A SWC can be manually and automatically
deployed or redeployed, by the SOA framework,
into a compatible partition. When the SWC’s
source was compiled using a supported compiler
for a deployment target compatible OS, it can be
seamlessly shifted between partitions.

A POSIX-compliant SWC can be activated on top of
any OS and hypervisor which is POSIX compliant.

Generic Framework

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

16 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/
https://www.guardknox.com/

Access to the virtualized communication infrastructure (ESB) is seamlessly mediated through the SOA
framework. This infrastructure allows for virtualized RPC and data exchange.

Generic GuardKnox SOA framework

Secure Separation Kernel

SECURITY PARTITION MANAGEMENT PARTITION PARTITION 1 PARTITION 2

Hardware

Hypervisor

SOA Node Manager SOA Node Manager

SOA Domain Manager

Health Monitor

SOA Node
Manager

OS 1

SOA Node
Manager

SOA
Port

ApplicationSOA
Port

Application

SOA
Port

Application

SOA
Port

Crypto

SOA
Port

Lockdown
Core

SOA
Port

Security
Monitor

OS 2

Component of GuardKnox SOA Framework

The SOA Domain Manager has four responsibilities:

1.	 Software Distribution is responsible for bringing new SW components into the different ECUs. The
OTA Agent receives a SWC through secure communication. The Software Verifier / Activator verifies
and activates the SWC, potentially involving a license from a cloud management server. From the SW
repository the deployment location is determined and the SWC sent to the right partition. Within the
partition the SOA Node Manager initializes the SWC and starts its service.

2.	 Application Lifecycle Management employs an Applications Catalog listing all available Services, and
optimizes their locations and communications. The decisions about the SW life cycle – from deployment
to uninstallation –including all the operations which are supported by the framework use AI mechanisms
and are performed in real time.

	y Install

	y Instantiate

	y Initialize

	y Start

	y Stop

	y Shutdown

	y Teardown

	y Uninstall

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

17 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/

18 | GuardKnox Proprietary l www.guardknox.com

Management partition

Secure Separation Kernel

Hardware

Hypervisor

SOFTWARE
DISTRIBUTION

APPLICATION LIFECYCLE
MANAGEMENT

UNIFIED
COMMUNICATION

HEALTH MONITORING &
MANAGEMENT

OTA
Support

SW Distribution

Cataloging

Command &
Control

Discovery
Protocols

Control
Protocols

Smart
Monitoring

Proactive
Recovery

CommunicationSystem Virtual Unified

3.	 Unified Communication is in charge of the communications infrastructure represented by the
Enterprise Service Bus (ESB), based on CORBA, DDS, SOME/IP. It is aware of the network connectivity,
along with the paths to all the different ECUs.

4.	 Health Monitoring and Management guarantees the proper functioning of the entire system. It
monitors the flow of messages in the system, initiates recovery actions in case of failures and logs events.

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

18 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/
https://www.guardknox.com/

19 | GuardKnox Proprietary l www.guardknox.com

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

A unique feature of the GuardKnox SOA Platform is its patented Communication Lockdown™ approach for
providing holistic vehicle cybersecurity. Using the vehicle’s communications matrix and OEM’s specifications
of the vehicle, GuardKnox builds a state machine that is used to inspect activity on three layers:

	y Routing Layer - verifying that messages originate from the appropriate network or sub-segment

	y Content Layer - verifying that message content is permissible down to the bit level

	y Contextual Layer - verifying that each message is legitimate within the context of the vehicle’s
specific functional state (e.g., braking and accelerating at the same time)

The three layers of inspection ensure that if the external vehicle network is compromised by a message
from an external source, the internal vehicle network remains fully protected from the propagation of
malicious activity.

The Communication Lockdown method is agnostic to known, unknown and future cyber attacks since the
proper behavior of all messages has been fully modeled by the communications schema and certified by
the OEM.

This also enables the solution to become fully autonomous after installation and operate deterministically
without the need for frequent software or firmware updates— unlike traditional Intrusion Detection /
Intrusion Prevention Systems (IDS / IPS) or firewalls. This approach removes the possibility of an undetectable
hidden backdoor that is possible in all AI/ML based approaches.

If the OEM changes the vehicle’s technical specifications or its configuration, a new Communication
Lockdown™ schema can be generated, certified and installed via secure OTA update or via a wired
connection (such as the standardized OBD port).

For the strongest protection of the vehicle’s SW system a domain controller can be designed which runs on
a dedicated HW featuring all the necessary external communication interfaces. Using the Communication
Lockdown method, it examines all the communication with the environment and blocks any unauthorized
traffic. It supports the OTA download of updates and upgrades to the vehicle SW and of 3rd party apps, and it
ensures they are installed in the correct ECUs and partitions and that their rights for internal communication
are restricted to the necessary interactions. Where functions require cloud support, the secure domain
controller maintains secure cloud access. GuardKnox has designed a Communications Engine FPGA to
implement these functions.

A connected vehicle’s safety depends strongly on its secure internal and external communication. Therefore,
communication between services is restricted to mandatory interactions. Everything else is blocked. Highly
secure OTA download and deployment of SWCs prevent malicious or accidental attack vectors from
impacting the safety of the car.

Security

Verifies that the messages has
arrived from a legal source

(from routing layer).

Routing Layer Content Layer

Verifies that the content of
the message, down to the

bit level, is legal.

Contextual Layer

Verifies that this specific message, is
legitimate in the specific functional
state of the vehicle (state machine).

https://www.guardknox.com/
https://www.guardknox.com/communication-lockdown/
https://www.guardknox.com/products/fastercommengine/

The ECUs installed in new cars today can be roughly classified into two categories.

1.	 High-performance microprocessor (MPU)-based computing platforms that support the infotainment
systems, run navigation systems, perform external communications, or support vehicle cameras. They
use Ethernet and/or legacy networking interfaces.

2.	 Low-cost microcontroller (MCU)-based devices which have been optimized for their respective
applications and which are manufactured in large quantities. They use mostly legacy interfaces like
CAN and others.

The high-performance ECUs, like in PCs and Smartphones, will need more processing power as applications
become more demanding and many new SW-based capabilities are introduced in Software-Defined
Vehicles (SDV), especially autonomous ones. Consequently, such new ECUs are regularly inserted in the
vehicle production even during subsequent production runs of a particular model. In the architecture
diagram they represent the Vehicle Server and the Domain Controllers.

The low-cost devices support simple functions that will only change slightly. For example, a microcontroller-
based ECU that operates seat adjustment is idle most of the time and has no strict real-time requirements.
These ECUs are very stable, sometimes spanning even several vehicle model generations. It is highly
likely that they will continue to be used going forward and will continue to be supported by future E/E
architectures. Any shift to new, cost optimized generic devices that support a native SOA approach and use
Ethernet interfaces will happen gradually. This will then allow consolidation of these MCU-based ECUs if it
makes sense within the network topology.

Types of ECUs

Example for a modern vehicle’s internal communication architecture

PHASED INTRODUCTION OF AUTOMOTIVE SOA

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

20 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/

21 | GuardKnox Proprietary l www.guardknox.com

	 For example, message routing protocols
up to layer 5 have to be handled when
using AUTOSAR. This function can also be
implemented as part of other ECUs, using a
Communication Engine FPGA.

�	 Domain controller for external
communication

	 All communication to the external world
has to be highly secure in order to prevent
malicious actors and applications from
compromising the vehicle’s functionality and
impacting driving safety. To perform these
secure external functions, a dedicated domain
controller can be introduced that is physically
separate from other ECU implementations.
This domain controller will support both wired
(Ethernet) and wireless (WLAN, cellular mobile
radio) external communication. It is based on
the Communication Engine FPGA.

�	 Low-cost MCU-based ECUs

	 Over time, the legacy low-cost ECUs will
become technologically obsolete. More
powerful microcontrollers with more
integrated functions, like interfaces and
more memory, will become available at a low
cost which will enable the replacement and
consolidation of these ECUs.

	 This will allow a consistent implementation
of the SOA framework also in these devices.
When this is achieved, along with the
implementation of Ethernet interfaces across
the entire E/E network, the communication
infrastructure will become significantly
simplified.

The Steps to an Automotive SOA
Future
In order to reach the Automotive SOA vision both
new hardware and software solutions have to
be brought into the automotive development
environment in well-defined steps.

�	 Starting with the powerful computing
platforms

	 An initial step will be the introduction of
universal MPU-based ECUs. Such ECUs have
sufficient performance and memory size
to support fully-featured automotive SOA
implementations.

	 This allows applications or services to run on
top of standard operating systems with a
central management partition that organizes
the overall SOA framework. Support for
AUTOSAR Adaptive will be provided from
the beginning to ensure legacy compatibility
and these ECUs typically support high-speed
Ethernet versions (e.g. Gigabit Ethernet)
supporting fast, new network-demanding
applications and low latencies.

	 The high-performance universal ECUs,
on the one hand, allow a consolidation of
these devices and lead to a significant cost
reduction. On the other hand, additional ECUs
can be introduced relatively easily to scale the
overall computing performance, due to the
SOA framework approach, even after a car has
left the manufacturing plant.

�	 Message router supporting legacy ECUs

	 To support existing low-performance
ECUs, their interfaces have to be adapted,
their message formats converted, and the
messages routed properly.

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

21 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/
https://www.guardknox.com/

22 | GuardKnox Proprietary l www.guardknox.com

BENEFITS FOR THE SUPPLY CHAIN
Automotive SW development is not confined to the OEM, but there is a complex work-split
between the OEM and a large number of suppliers, with each player providing their ECUs
along with their specific SW or Firmware (FW) implementations. This entire set of HW and
SW needs to be integrated and tested to build the overall system. The lack of modularity
today makes any modifications to the SW system a complex and slow task which requires
re-building and re-testing, resulting in today’s lengthy time to market.

The complexity reduction resulting f rom Automotive SOA will lead to significant
development cost reductions and much quicker integration cycles. Fewer errors will be
created, and, e.g., the number of testers might also be substantially reduced. This will lead
to a significant acceleration of correction cycles, reducing them from several months to just
a few weeks, greatly improving time to market.

The Automotive SOA development approach facilitates simulation of the SW system.
With well-defined interfaces of all the services there is no need to run these on the target
platform. Instead, a simulation environment can be created to test the interactions of the
services with emulated HW components like sensors and actuators. For certain functions
some services may not be required, so they will not be addressed by the other services,
although they might already be represented in the services directory, running some dummy
code.

The SW configuration for each particular car is dynamically created at startup of the system.
Therefore, for any car model, all available services are stored in a repository and published
in the directory. The binding of the services is dynamic and can change due to HW and SW
modifications in the car. Modifications of services during the manufacturing process can
be made on the fly, while the car is still on the production line and even after it has left the
factory.

The work-split between OEM and suppliers will be redefined: the main responsibility of
the OEM remains the definition of the architecture, and the services and their interactions,
while the service implementations can be performed by any suitable party.

3rd party application developers, who may not be part of the classical automotive
ecosystem, can create new services for the vehicle without in-depth knowledge of the HW
configuration. Opening the app market to new entrants will increase competition and
improve capabilities and number of offered applications instead of relying on a limited
number of OEM or pre-defined developers.

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

22 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/
https://www.guardknox.com/

BENEFITS OF GUARDKNOX’ SOA FRAMEWORK FOR
DRIVERS AND PASSENGERS

GUARDKNOX’ PRODUCT OFFERING

Depending on drivers’ and passengers’ needs and preferences, sophisticated driver assistance, safety and
comfort functions can be installed in any car. A car can be customized based on portable profiles in such
a way that a shared or rented vehicle’s functions and interior can be adapted to each users’ requirements.

Consumers will be able to enjoy a similar experience in their vehicles as they do with their smartphones
resulting from a broadening developer market. They will be able to buy their apps from the app stores of
the OEMs or from independent after-market app stores. Consumer apps and specific ADAS functions will
be downloaded via WLAN or cellular mobile radio. The vehicle’s safety is maintained by the strict security
mechanisms built into Automotive SOA.

SW updates will no longer require a visit to an authorized garage but will be performed OTA, so severe bugs
can be fixed without undue delay and with significantly reduced cost.

GuardKnox’ Secure Automotive SOA product consists of the core framework and customized solutions.
Which elements will be generic or customized depends very much on the target solution.

Deliverables that are part of the product include

	y A SW package of components that constitute the basic core framework

	y Interfaces and APIs

	y Binaries and libraries required to run the framework on the target environment

	y Technical documentation for developers and system architects

	y Tools required for efficient development of applications running on the framework

	y Services

	y 	 Professional engineering services to customize the framework

	y Integration services

	y Certification packages

	y Source code under specific commercial conditions, otherwise source code will be on escrow

The design is open and extensible. It features cross-platform support, where a platform consists of CPU
architecture + hypervisor + partition OS. Several MPUs (e.g. ARM-VA) and MCUs are supported, as well as
several partition OSs (e.g., Linux, Android, RTOS, ...). GuardKnox’ SOA framework supports AUTOSAR Adaptive
in order to reuse existing concepts and implementations.

GuardKnox’ toolchain allows system architects to utilize multiple pre-existing components and automatically
create a SWC shell with IDL interfaces utilizing manifests.

The framework supports multiple ESBs concurrently, and it can accommodate middleware implementations
based on CORBA, DDS, SOME/IP.

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

23 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/

24 | GuardKnox Proprietary l www.guardknox.com

The GuardKnox SOA Framework offers the following key benefits:

	y Automatic management of the software lifecycle within the vehicle, down to every
ECU – automatic deployment, initialization, start, stop, teardown and removal of SW
components

	y Flexible unified communication between SWCs and services, where the underlying
transport middleware can be easily changed, allowing for multiple ESBs to co-exist
seamlessly together

	y Cross-platform support: Platform = CPU architecture + Hypervisor + Partition OS

	y Support for service deployment decisions and health monitoring

	y Support integration of AUTOSAR Adaptive Platform in our framework

	y Streamlined software developer tool suite including:

	y Modeling Tool that lets architects develop car E/E network and components

	y Analysis Tool that lets developers, integrators, and testers verify the software
packages deployment and overall functionality

CONCLUSION
The automotive industry has always been driven by unique innovation. The current paradigm shift focuses
on functionality and on fundamentally changing the way consumers interact with and drive their vehicles.
Purely mechanical machines transporting goods or people from point A to point B are long gone and the
way a vehicle is designed and built is already evolving.

The development of automotive software needs to change to reach the goals of a customizable personalized
experience for each driver. The current method of using a monolithic block of code is bulky and inflexible,
leading to a lengthy time to market and rigid update protocols through a physical presence even for those
fixes that could be done over-the-air with the proper software infrastructure.

Automotive SOA offers a way for vehicles to evolve even after they are on the road through app stores
and aftermarket enhancements with no risk to vehicle performance or safety. Development time, errors
and frustrations will be reduced immensely thanks to the decoupling of software and hardware. 3rd party
vendors will be able to create unique software customized to drivers that could apply to any vehicle using
the SOA Framework.

Vehicle app store
leading to new

revenue streams

Large infotainment
screens for pleasure,

work and gaming

Secure autonomous
driving

Downloadable
ADAS functionalities

1 2 3 4

Automotive SOA Enables:

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

24 | GuardKnox Proprietary l www.guardknox.com

https://www.guardknox.com/
https://www.guardknox.com/

At GuardKnox, we are proud that our expertise in E/E Architecture and automotive cybersecurity has led to many international patents
in the USA, EU, Japan and China, including:

Patent #9,866,563: Specially programmed computing systems with associated devices configured to implement secure
communication lockdowns and methods of use thereof

Patent # 10,009,350: Hardware components configured for secure physical separation of communication networks in a vehicle and
methods of use thereof

Patent #10,055,260: Service-Oriented Architecture (SOA) for vehicle ECUs, including Secure SOA and efficient implementation of in-
vehicle SOA

Patent # 10,129,259: Installment configurations within a vehicle and interoperability of devices configured to implement secure
communication lockdowns, and methods of use thereof

Patent # 10,191,777: Distributed SOA to enable services not solely related to a single ECU within a vehicle

Patent # 10,776,169: Centralized services ECU based on Service- Oriented Architecture and methods of use thereof

ABS

ADAS

AI

API

AUTOSAR

CAN

CORBA

CPU

DDS

E/E

ECU

ESB

ESC

FW

HPC

HW

IDL

IDS

IPS

MCU

MPU

OBD

OEM

ORB

OS

OSI

OTA

PC

POSIX

RPC

RTOS

SAE

SDV

SOA

SOME/IP

SSK

SW

SWC

V2G

V2I

V2N

V2P

V2V

V2X

VM

WLAN

Anti-lock Braking System

Advanced Driver Assistance System

Artificial Intelligence

Application Program Interface

AUTomotive Open System ARchitecture

Controller Area Network

Common Object Request Broker Architecture

Central Processing Unit

Data Distribution Service

Electrical / Electronic

Electronic Control Unit

Enterprise Service Bus

Electronic Stability Control

Firmware

High-Performance Computing

Hardware

Interface Definition Language

Intrusion Detection System

Intrusion Prevention System

Micro-Controller Unit

Micro-Processor Unit

On-Board Diagnostic

Original Equipment Manufacturer

Object Request Broker

Operating System

Open Systems Interconnection

Over the Air

Personal Computer

Portable Operating System Interface

Remote Procedure Call

Real-Time Operating System

Society of Automotive Engineers

Software Defined Vehicle

Service-oriented Architecture

Scalable Service-Oriented Middleware over IP

Secure Separation Kernel

Software

Software Component

Vehicle to Grid

Vehicle to Infrastructure

Vehicle to Network

Vehicle to Pedestrian

Vehicle to Vehicle

Vehicle to Everything

Virtual Machine

Wireless Local Area Network

LIST OF GUARDKNOX PATENTS

LIST OF ABBREVIATIONS

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

25 | GuardKnox Proprietary l www.guardknox.com

https://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=6&f=G&l=50&co1=AND&d=PTXT&s1=guardknox&OS=guardknox&RS=guardknox
https://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=5&f=G&l=50&co1=AND&d=PTXT&s1=guardknox&OS=guardknox&RS=guardknox
https://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=4&f=G&l=50&co1=AND&d=PTXT&s1=guardknox&OS=guardknox&RS=guardknox
https://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=3&f=G&l=50&co1=AND&d=PTXT&s1=guardknox&OS=guardknox&RS=guardknox
https://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=2&f=G&l=50&co1=AND&d=PTXT&s1=guardknox&OS=guardknox&RS=guardknox
https://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=/netahtml/PTO/srchnum.htm&r=1&f=G&l=50&s1=10129259.PN.&OS=PN/10129259&RS=PN/10129259
https://www.guardknox.com/

GUARDKNOX: THE LEADING
CYBERTECH TIER VENDOR
GuardKnox is a technology and engineering company specializing in E/E products and
solutions for the automotive market. The automotive industry’s first Cybertech Tier
vendor, GuardKnox empowers OEMs, Tier 1 suppliers, and the aftermarket to deliver the
next generation of secure, software-defined and service-oriented vehicles. GuardKnox’s
secure, flexible and scalable solutions enable added connectivity, Zonal E/E Architecture,
hosted applications, high-speed routing (including network recovery and service discovery
functionalities) and vehicle personalization.

By partnering with GuardKnox, OEMs, Tier 1s and aftermarket suppliers can quickly provide
the next generation of drivers with the high-performing vehicles that they expect powered
by the latest technologies and advanced app capabilities.

The company’s pioneering approach to automotive innovation is inspired by the founders’
experience in missile defense systems and the aviation industry and has led to multiple
technology patents for automotive architecture. The GuardKnox leadership team’s vast
experience in developing and testing cybersecurity for military systems places them in the
unique position to apply these solutions to similar civilian challenges in vehicles.

The challenges of today’s automotive E/E Architecture are similar to those the team faced with
fighter jets and solved by decoupling functionalities from the hardware and implementing
a Zonal Architecture. This patented approach uses SOA methodology to enable any ECU,
domain controller or gateway to serve as a vehicle-wide computing platform.

GuardKnox is based in Israel, with subsidiaries in Stuttgart, Germany and Detroit, Michigan.

Please feel free to contact us at info@guardknox.com for more information!

Let us empower you with the

UNTANGLING VEHICLE SOFTWARE WITH AUTOMOTIVE SOA

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=0&f=S&l=50&TERM1=GuardKnox&FIELD1=&co1=AND&TERM2=&FIELD2=&d=PTXT
mailto:info%40guardknox.com?subject=

