7SIGNAL[®]

Wi-Fi Roaming Revealed

June 22nd, 2017

Veli-Pekka Ketonen, Chief Innovation Officer, Founder

S @VPonwireless

Wi-Fi Roaming

- Enables Mobility
- Layer 2 / Layer 3 roaming
- Wi-Fi terminals make the decision
- Large variance in Wi-Fi drivers/devices
- Various techniques used at the network side
- Roaming gap from 10ms to >1000ms depending on encryption and authentication
- Acceptable gap depends on the application
 - Voice requires < 100-150ms delay
- Enterprises should use only WPA2-Enterprise level security with Radius server

Layer 2 roaming phases

-

Client operation during roaming

- Makes always the final roaming decision
- Vendor proprietary, mostly confidential
- Pre-emptive discovery / Roam time discovery
- Active scanning threshold around -65 -70 dBm
- Roaming threshold around -70 -75 dBm
- Hysteresis, 5-12 dB better signal needed, prevents ping-pong
- Client's roaming decision factors
 - Signal strength (RSSI)
 - SNR
 - Missed beacons
 - Frame retries
 - Data rates
 - Bit error rate/CRC

Coleman, D, et. al. CWSP Study guide 7signal Mysteries of Wi-Fi roaming revealed

AP-to-AP operation during roaming

- AP to AP operation during roaming is not standardized. Implementations vary.
- APs need to be in the same VLAN to be able exchange information

7signal Mysteries of Wi-Fi roaming revealed

Cisco Compatible Extensions (CCX) The early roaming aid for supporting devices

Cisco Centralized Key Management (CCKM)

- Early form of Fast Roaming technology for LEAP
- Allows roaming without accessing Radius server during the process
- Roam times < 50ms

CCX message S36 Radio Measurement request

- From AP to client, both supporting CCX
- Measurement include Channel load, Noise histogram, Beacon, Frame

CCX message S51 RF Parameters

- From AP to client, both supporting CCX
- Roaming thresholds
- Minimum RSSI needed, AP Tx Power, Start scanning threshold, Hysteresis, Allowed Transition time

http://expertwireless2be.blogspot.com/2011/10/why-wireless-80211-roaming-is-nightmare.html http://www.revolutionwifi.net/revolutionwifi/2012/02/wi-fi-roaming-analysis-part-2-roaming.html

Standards improving roaming

802.11r (2008)

- Fast secure roaming with Radius/EAP
- A roaming standard
- No need to authenticate with Radius during roaming
- Fast, standardized process

802.11v (2011)

- Wireless Network Management (WNM)
- BSS transition management the main feature related to roaming
- Network recommends and assists in roaming decisions

802.11k (2008)

- Radio resource management
- *Neighbor reports* the main feature related to roaming
- Scan only channels which are used by nearby APs

802.11e (2005)

- MAC enhancements QoS
- Admission control
- QBSS metrics relate to roaming
- Channel utilization
- Station count
- Available capacity

802.11i (2004)

- MAC security enhancements
- Authentication and key management. Robust Network Security (RSN), 802.1X/PSK
- PMK caching/Sticky Key Caching" SKC
- Pre-authentication

802.11u (2011)

- InterWorking with External Networks
- Hotspot 2.0
- Finds roaming partner Wi-Fi network automatically and securely connects
- Seamless as mobile roaming

802.21 (2008)

- Media Independent handovers
- Roam between Wi-Fi and cellular

802.11ai (2016)

- Fast initial link setup
- Makes initial connection setup faster for Radius authentication
- Improvements to active and passive scanning
- Addresses probing storms

http://www.cisco.com/c/en/us/td/docs/wireless/controller/8-1/Enterprise-Mobility-8-1-Design-Guide/Enterprise_Mobility_8-1_Deployment_Guide/Chapter-11.pdf 802.11v/k/r standards

Fast Secure Roaming alternatives (Radius/EAP) before 802.11r

PMK caching/ Fast Secure Roam Back (.11i)

- "Sticky Key Caching" SKC
- Pairwise Master Key (PMK) is cached
- If client roams back, fast authentication is available
- 802.1X/EAP can be skipped
- 4-way HS is needed
- Does not help roaming forward
- 40-60ms

Pre-authentication (.11i)

- PMKs pre-created over the existing AP before roaming
- Requires all clients create different keys with all APs
- High load to Radius
- Does not scale well
- 4-way HS is needed
- 40-60ms

Opportunistic PMK Caching (OKC)

- Vendor driven, non-standardized
- Enhancement for Pre-Authentication
- Original PMK shared with roaming target APs
- If fails, full 802.1X/EAP is used
- Supported quite widely in APs.
- Client side support more variable< 100ms

802.11r Fast BSS Transition, FT

Two phases Fast Secure Transition. A standardized method • 802.11r initial Mobility Domain association Works with both pre-shared key (PSK) and 802.1X ٠ • Initial association is not faster than full EAP Initial handshake with the new AP is done before the • Prepares the network and client for FT client roams to the target AP. Pairwise Transient Key 802.11r re-association • (PTK) is calculated in advance • Fast roaming, uses pre-stored keys No need to re-authenticate at the time of roaming Open authentication, re-association and 4-way HS combined • Target is <50ms handoff delay Benefits especially voice calls and video streams Two versions **Support** • Without resource request APs support broadly, feature may be on by default • With resource request Many legacy clients may not connect to a 802.11r

- Two methods
 - Over the Air
 - Over the DS

• Need to ensure compatibility before turning on.

beacons and probe responses

network. Clients may struggle recognizing .11r

 Vendor workarounds for compatibility, like Cisco Adaptive 802.11r

https://documentation.meraki.com/MR/WiFi_Basics_and_Best_Practices/Roaming_Technologies http://blogs.cisco.com/wireless/what-is-802-11r-why-is-this-important

802.11k Radio Resource Management/ **Neighbor Report**

Improves roaming with measurement data

- Not only roaming related standard •
- Neighbor report commonly used at this time ٠
- When supported, advertised in beacon IE element
- Many further roaming improvements ٠
 - Measurement pilots between beacons for passive better scanning, traffic counters indicating quality, device location

802.11k measurements

- **Neighbor Report**
- Beacon (client measures and reports)
- Frame (AP counters)
- Channel Load
- Noise Histogram
- STA Statistics (STA counters)
- Location
- **Configuration Information**
- Link Measurement
- Transmit Stream/Category Measurement

Benefits

- Faster roaming •
- Better roaming decisions •
- Battery usage (less probing) •
- Lower channel utilization (less probing) •

Operation

- Client requests neighbor report with Action Frame •
- AP responds with Action Frame including neighbor APs in the same SSID with channel numbers
- Client can scan only most relevant channels
- Neighbor list generated on demand
- Single (current) or dual band list
- Example: Cisco lists 6 best APs in the same floor/band ٠

http://blogs.cisco.com/wireless/why-the-802-11k-and-neighbor-report-are-important https://documentation.meraki.com/MR/WiFi Basics and Best Practices/Roaming Technologies

802.11v Wireless Network Management (WNM)/ BSS Transition Management

Network offering guidance for roaming decision

- Not only roaming related standard
- Enables clients to exchange information for the purpose of improving performance of the wireless network
- Enables client RF parameters management based on network conditions
- In addition for example Location information, multi-BSSID capability, WNM sleep mode

802.11v functionalities

- <u>BSS transition management</u>
- xxBSS Max idle period management
- Channel usage
- Collocated interference reporting
- Diagnostic reporting
- Directed multicast service (DMS)
- Event reporting
- Flexible multicast service (FMS)
- Location services
- Multicast diagnostic reporting
- Multiple BSSID capability

- Proxy ARP
- QoS traffic capability
- SSID list
- Triggered STA statistics
- TIM broadcast
- Timing measurement
- Traffic filtering service
- U-APSD Coexistence
- WNM-Notification
- WNM-Sleep mode

Benefits

- Network can guide clients roaming
- Network can force client to roam
- Client can ask advice for better AP
- Better roaming decisions

Operation

- Solicited request Client asks for better AP
- Unsolicited Load Balancing request AP suggests client roam due to load
- Unsolicited Optimized Roaming request AP suggests client roam due to low RSSI or data rate
- **802.11v BSS Transition Management Request** AP suggest client to roam or forces to roam with disassociation-imminent

802.11v-2011 standard

https://blogs.cisco.com/wireless/enhancing-hdx-optimized-roaming-extended-with-11v-bss-transition-management

Cisco adaptive 802.11r

- A proprietary functionality
- Developed by Cisco and Apple together. Available in Cisco and Meraki Wi-Fi
- Offers Fast Transition without the need to enable 802.11r on the configured Cisco wireless network
- With adaptive .11r, infrastructure will perform .11r authentication without advertising in beacons
- FT negotiation is in association request
- 802.11r remains disabled, while adaptive 802.11r is enabled
- Helps to avoid negatively impacting clients which do not co-operate with 802.11r
- iOS 10 includes support for adaptive 802.11r on Cisco wireless networks
- Requires Cisco WLC SW 8.3 or later and specific AP models

https://support.apple.com/en-us/HT202628 https://documentation.meraki.com/MR/WiFi_Basics_and_Best_Practices/Roaming_Technologies https://www.cisco.com/c/dam/en/us/td/docs/wireless/controller/technotes/83/Optimizing WiFi Connectivity and Prioritizing Business Apps.pdf

Wi-Fi CERTIFIED Voice-Enterprise

- Wi-Fi Alliance certification for voice over Wi-Fi
 - 411 phones
 - 33 APs
 - Only certain APs have this, not necessarily all new APs
- Performance
 - Pre-defined test cases
 - Latency (incl. BSS FT): One-way delay <50 ms
 - Jitter: <50 ms
 - Packet loss: <1%
 - Consecutive lost packets: No more than three

Layer 3 roaming

- Wi-Fi roaming operates only in layer 2, between APs under the same subnet.
- Client moving between controllers would cause change if IP address and termination of ongoing connections, like calls.
- Layer 3 roaming capability is provided by Wi-Fi vendors.
 - RFC 3344 defined Mobile IP standard
 - Uses tunneling and IP header capsulation between controllers
 - Allows packets traverse between two layer 3 domains
 - Maintains ongoing connections

7SIGNAL[®]

Factors impacting roaming

Passive scan / Active scan

Passive scan

- Passively capture beacons at all channels. Typical beacon interval is 102ms.
- To capture at least one beacon, would need to stay at least 102ms/channel
 - Voice traffic packet interval 20-30ms
 - Voice is interrupted if > 50ms break, cannot stay 102ms of channel during voice traffic
- Client may not be on channel when beacon is out
- Beacon may not be captured due to interference
- Device consumes more battery if radio is on continuously. Power save mode applied.
- => Passive scanning is very inefficient and use is minimized

Active scan

- Send probe requests at all channels
- Getting response to probe request takes 10-20ms
- Can probe again immediately after channel change
- Probe response may not be captured due to interference or congestion
- All APs which receive probe request will respond with probe response. Active scans, especially probe responses, consume significant amount of airtime in HD environments
- Active scans require probe request transmissions, which consume battery
- From information capturing point of view, active scans are 5-10x mode efficient than passive scans
- => Active scans are favored, but their use is also minimized as much as possible

BSSID selection and brute force steering methods

Initial BSSID selection

- Initial selections usually based on signal level only
- If 2.4 GHz is stronger, many clients will prefer it. Keep 5 GHz 6-7dB stronger at terminal.

• Band steering

- Delay or deny probe responses at 2.4 GHz until certain number of attempts
- Forces terminals scan 5 GHz more times

Load balancing

- After client count at AP reaches certain level (like 20) and other APs have light load, busy APs may stop responding to probing. This steers clients to other APs.
- This may be achieved by having AP respond to open authentication attempt with status code 17 (AP busy) up to certain times before allowing a persistent clients authenticate.

• "Smart roaming", brute force

• AP may disconnect client if too low signal level

Roaming based on low AP signal level RF propagation loss in not linear, 6 dB doubles distance in open space

Roaming on DFS channels

No immediate probing allowed

- Client cannot probe on DFS channel before at least one beacon is first received properly
- Need to always start with passive scan and if lucky, catch a beacon and get permission to probe

Impacts

- APs in DFS channels are much more difficult to discover quickly and thus roaming is more difficult
- In case of positive DFS event, AP disassociates clients within 1s channel closing time. If disassociation is missed or roam fails, client needs to start a new association and authentication.
- Roaming to AP does not work during 60s Channel Availability Check period. May cause lacking coverage

Region	Band	Non-DFS 20 MHz	DFS 20 MHz	
US	5 GHz	9	15	
EUR	5 GHz	4	15	

Hidden SSIDs

Hidden SSIDs in non-DFS channels

- Client cannot use beacon capture rate to determine quality of existing channel
- Passive scan of other channels does not add any value
- Need active scanning on current channel as well

Hidden SSIDs in DFS channels

- Client cannot use beacon to determine quality of existing channel, need active scan
- Any AP beacon on target channel allows start of active scan, even hidden SSID is ok
- => Roaming may be negatively impacted

Note:

802.11k neighbor lists improve roaming on hidden SSIDs by limiting scans to right channels only. 802.11v allows Wi-Fi network to steer clients.

Turning off low data rates

- Turning off lower data rates is often used to help roaming
 - Recommendation is often to use 12M or 24M as the lowest rate
- Clients listen to beacons in the current channel
- If client starts to miss beacons, it starts to actively probe
- Disabling lowest rates can be used to encourage clients roam sooner
 - Beacons using higher data rates cannot be decoded at large distance even though their signal level may still be above roaming threshold
- Disabling too many rates will make connection unreliable
 - All management and control traffic often use the lowest allowed rate
- Usually devices have no issues with this, but Wi-Fi driver implementations vary

802.11e QBSS metrics

- QoS enhancements for Wi-Fi
- QBSS metrics
 - Channel utilization
 - Station count
 - Available capacity
- Certain terminals use QBSS metrics for roaming decision
 - Apple iOS 10 forward
 - No knowledge of others
- Significant impact on roaming patterns
 - Client may avoid roaming to AP with best SNR/signal level
 - Roaming patterns become more load dependent
- Enabling/disabling impacts roaming
 - => Observe impacts when turning on

RF automation's impact

- RF automation generally does not consider roaming success
 - Automation uses neighbor signal levels, interference and utilization
 - Automation does attempt to maintain certain cell overlap
- Varies AP power levels
 - Sometimes automation drives power levels to min/max
- Varies channels
 - Channels vary between DFS and non-DFS channels
 - Max power levels vary between channels
- Varying channels and power levels adds variance roaming patterns

7SIGNAL[®] THE WI-FI PERFORMANCE COMPANY

Clients

MacOS roaming

- Signal level
 - Monitor and maintain connection until the RSSI crosses the -75 dBm
 - After RSSI -75dBm, macOS scans for roam candidates
 - Roams when BSSID RSSI is >=12 dB than current BSSID
- Other selection criteria
 - Band: Always defaults to the 5 GHz when 5 GHz RSSI is -68 dBm or better.
 - SSID: If multiple 5 GHz SSIDs meet -68 dBm level, preference 802.11ac -> 802.11n -> 802.11a.
 - Channel width: Order of preference: 80 MHz channel -> 40 MHz channel -> 20 MHz
 - 802.11v/k: No support
 - **PMK caching:** Supported
 - OKC: Supported
 - 802.11r (FT): No support, but interoperates with APs having 802.11r on

iOS roaming

- Signal level
 - **Starts probing** at RSSI of 70dBm
 - Roam if using Wi-Fi connection actively and there is 8 dB better AP
 - Roam if not using the Wi-Fi connection actively and there is 12 dB better AP
- PMK caching: Supported widely
 - Supported by all iOS devices with iOS 5.1 and later
- OKC: Not supported
- 802.11k/r: Supported widely
 - iPhone 4s and later, iPad Pro, iPad Air and later, iPad mini and later, iPad (3rd generation) and later, iPod touch (5th generation) and later
- 802.11v: Supported widely
 - iPhone 5c, iPhone 5s, and later, iPad Pro, iPad Air and later, iPad mini 2 and later, iPod touch (6th generation)
- Adaptive 802.11r: supported by new devices
 - iPhone 6s and later, iPhone SE, iPad Pro and later
- 802.11e/QBSS
 - iOS 10 and later use QBSS metrics (load, utilization) to determine best AP
- Blacklisting
 - If network denies iOS client 5 times, iOS blacklists SSID. Need to reboot device and disable radio to override.

https://support.apple.com/en-us/HT206207 https://support.apple.com/en-us/HT203068 Ekahau Webinar: Jerome Henry: Optimize your Wi-Fi network for the iPhone

Android roaming

- Many manufacturers and different variants
- "Vanilla" Android AP selection logic
 - Uses absolute SNR value as main factor
 - If the SNR value difference between the two "best" radios is **at least 7dB**, the decision is done based on **SNR alone**
 - If difference between best BSSIDs < 7dB, select one with highest max data rates. If rates are similar, uses SNR
 - If SNR not available, uses Quality metric
 - If difference in Quality is small, prefer 5 GHz
- 802.11r/k: Vendor specific
- 802.11v: Vendor specific
 - Many devices support
 - Galaxy S6, Galaxy S7, Galaxy S7 Edge, Moto E (2nd Gen), Moto X (2nd gen), Moto X (3rd gen) Moto Z Force, Nexus 6, Nexus 9, One Plus One, One Plus Two, Amazon Fire Phone

Phone	11r	11k	11v	Probing frequency	Roaming behavior
Samsung S4 / Android 4.2.2 /4.4.2	Yes	Yes	No	285s	AP signal is < 25 dB
Samsung S5 / Android 4.4.2	Yes	Yes	No	300s	
Samsung S6 / Android 5.0.2	Yes	Yes	No	300s	AP signal is < 25 dB
Samsung S7 Edge / Android 6.0.1	Yes	Yes	Yes		
HTC One (M8)	No	No	No	Never	AP signal is < 25 dB

Windows 10 roaming

- OKC: Supported
- 802.11r/k/v: Generally supported
 - However, variance between devices
- 802.11r
 - Radius supported
 - Pre-Shared Key (PSK) is not supported

Intel Wi-Fi cards and Windows 10

Product	802.11k	802.11v	802.11r
Intel® Tri-Band Wireless-AC 18260	Yes	Yes	Yes
Intel® Tri-Band Wireless-AC 17265	Yes	Yes	Yes
Intel® Dual Band Wireless-AC 8260	Yes	Yes	Yes
Intel® Dual Band Wireless-AC 3165	Yes	Yes	Yes
Intel® Dual Band Wireless-AC 7265	Yes	Yes	Yes
Intel® Dual Band Wireless-N 7265	Yes	Yes	Yes
Intel® Wireless-N 7265	Yes	Yes	Yes
Intel® Dual Band Wireless-AC 3160	No	No	No
Intel® Dual Band Wireless-AC 7260	No	No	No
Intel® Dual Band Wireless-N 7260	No	No	No
Intel® Wireless-N 7260	No	No	No

https://www.intel.com/content/www/us/en/support/network-and-i-o/wireless-networking/000021562.html

https://docs.microsoft.com/en-us/windows-hardware/drivers/network/fast-roaming-with-802-11k--802-11v--and-802-11r

Intel roaming controls

- Roaming aggressiveness
 - Lowest
 - Your wireless client won't roam. Only significant link quality degradation causes it to roam to another access point.
 - Medium-Low/Medium-High
 - Allow roaming.
 - Medium
 - Balanced setting between not roaming and performance.
 - Highest
 - Your Wi-Fi client continuously tracks the link quality. If any degradation occurs, it tries to find and roam to a better access point.

Preferred band

- No Preference
- Prefer 2.4 GHz band
- Prefer 5.2 GHz band

7SIGNAL[®]

Understanding and Optimizing Roaming

7SIGNAL[®]

Optimization, example of guiding clients to use 5 GHz band and optimal AP

7signal Sapphire

Number of active clients/AP for 2.4 and 5 GHz bands

Air utilization

Beacon air utilization

Probe response air utilization

7SIGNAL[®]

Hospital

Troubleshooting VoIP roaming

7signal Sapphire

AP retransmissions

Clients retransmissions

Client data rates, downlink

Client data rates, uplink

Client monitor data rate distribution summary

7SIGNAL[®]

Enterprise

End user terminal experience, roaming analysis

7signal Mobile Eye

Client RSSI over time

Stats: BSSIDs with low client signal levels

	Report Bu	uilder Profiles			Downloads \longrightarrow
		1hr 12hr 24hr 1w 1m	06/13/2017 05:25 PM to 06/20/2017 05:25 PM		All Networks \sim
SSID V BSSID	~	Sub Dimension - 🗸 🗸			Export CSV - Hidden Columns - 🗸 🗸
SSID	BSSID		Signal Strength (Max)	Signal Strength (Min) .	Throughput (Down/Up)
Corporate			-28 dBm	-88 dBm	104 / 107.5 Mbps
	1:d	ib:31	-88 dBm	-88 dBm	11 / 167 Mbps
BSSID with clients	:d	9:51	-50.5 dBm	-85 dBm	86.1 / 41.7 Mbps
having low signal	5:3	Bf:f1	-50.5 dBm	-83.5 dBm	98.9 / 86.3 Mbps
leveis	7:a	ıb:70	-50.5 dBm	-80 dBm	7.8 / - Mbps
	2:5	56:d4	-60 <i>dBm</i>	-80 dBm	23.1 / 22.6 Mbps
	2:	2a:33	-80 dBm	-80 dBm	- / - Mbps
Other BSSIDs with	4:0	ee:f0	-79 dBm	-79 dBm	12 / 1 Mbps
low client signal levels	(1:	06:71	-50.5 dBm	-77.5 dBm	45 / 8.7 Mbps
	:e4	4:11	-50 dBm	-77 dBm	181.3 / 153.6 Mbps
	b:	bb:c0	-60 <i>dBm</i>	-77 dBm	1.7 / 10.7 Mbps
	lb:	3d:b2	-74 dBm	-77 dBm	96 / 151 Mbps
	3:8	80:41	-77 dBm	-77 dBm	- / - Mbps
	7:6	62:a5	-77 dBm	-77 dBm	35 / 49 Mbps

Drill in: Client with low signal level in one AP

	Dashboard	Report Builder	Profiles				Do	wnloads \longrightarrow
One BSSID		1hr 12h	r 24hr 1w 1m 06/13/201	7 05:25 PM to 06/20	/2017 05:25 PM		All	Networks 🗸
BSSID ×BSSID: ::d9:5	Client ID	∨ Platform	✓ Adapter	V Driver	∨ Channel	∽ - Sub Dimension	Export CSV	- Hidden Columns - 🛛 🗸
BSSID	Client ID	Platform	Adapter	Driver	Channel	Signal Strength (Max)	Signal Strength (Min) 🛓	Throughput (Down/Up)
Corporate						-50.5 dBm	-85 dBm	85.1 / 39.9 Mbps
	E01945 A8FC-04	🗯 macOS	CoreWLAN - AirPort Extreme (0x14E4, 0x133)	11.0 (1101.20)	132	-85 dBm	-85 dBm	30 / 47 Mbps
	9BE5DS AC16-5	Client suffering from very low	CoreWLAN - AirPort Extreme (0x14E4, 0x152)	11.0 (1200.31)	132	-59 dBm	-67 dBm	193.6 / 192.8 Mbps
	0D5D44 50E8-58 841644	signal levels	CoreWLAN - AirPort Extreme (0x14E4, 0x15A)	11.0 (1200.31)	132	-62 dBm	-64 dBm	189.3 / 169.7 Mbps
	6ECB0C A85C-D	Windows	Intel - Intel(R) Dual Band Wireless-AC 8260	19.10.0.9	132	-50.5 dBm	-62.5 dBm	110 / 107 Mbps
	29C9F1 46FC-Bl	Windows	Intel - Intel(R) Dual Band Wireless-AC 3168	19.1.0.4	132	-50.5 dBm	-60 <i>dBm</i>	80 / 32.2 Mbps
	4C4C45 B5C04F	Windows	Intel - Intel(R) Dual Band Wireless-AC 8260	19.1.0.4	132	-60 <i>dBm</i>	-60 <i>dBm</i>	74 / 23 Mbps

Best practices

• Optimize RF coverage and utilization

- Target at 15-30% overlap with -70dBm coverage at both bands
- 5 GHz AP power level setting must be >6 dB higher than 2.4 GHz
- Keep link balanced, do not make DL direction much stronger than UL
- Limit allowed AP power control range within a few dBs
- Use 12M or 24M as the lowest rate

• Use secure roaming

- Use 802.1X/EAP authentication with Fast Transition techniques when possible
- Use secure methods which are supported by clients
- Use devices which support 802.11r
- Do not turn 802.11r on without testing actual clients first
- It may not be a good idea to enable 802.11r in Guest/BYOD network at this time
- Enable 802.11k/v. These give network and terminal vendors better ways of handling roaming
- Enable 802.11e QBSS, but remember AP load/utilization metrics do impact iOS 10 roaming
- Do not hide SSIDs. If you do for some reason, remember to use 802.11k/v and avoid DFS channels
- Use Wi-Fi vendor's roaming features, but understand how they change network and client operation

7SIGNAL[®]

Thank You

Veli-Pekka Ketonen, 7signal Solutions

@VPonwireless

This presentation: http://go.7signal.com/CWNP Roaming Whitepaper: http://go.7signal.com/download-wifi-roaming-whitepaper