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Abstract
Accurate measurements of pneumatically driven particle mass flow rate and particle size are
necessary in order to maintain optimal combustion efficiency in coal-fired power plants and
cement manufacturing facilities, as well as numerous other operations which are fed by
multiple particle injection ports. Existing sensors for pneumatic particle concentration, such as
concentration sensors, are typically prohibitively expensive and their measurements are
sensitive to particle moisture content. A new sensor was developed for particle concentration
measurement in pneumatic pipeline flow based on measurement of particle effects on
fluid-induced oscillations of a probe extending into the flow. Since fluid-induced oscillations
occur at a much lower frequency than do particle collisions, the measurements can be made
with much simpler and less expensive equipment than is the case with impact sensors that
attempt to resolve individual particle collisions. Experimental tests indicate three statistical
measures of the probe acceleration data that exhibit smooth variation with the particle
diameter and concentration data. The experimental data are used to train a neural net, which
serves to interpolate the data. It is found that by training the neural net data on the statistical
measures of the sensor probe acceleration, information on the particle concentration field can
be extracted with a reasonable degree of accuracy.

Keywords: particle concentration sensor, particle impact, neural net

Notation

Roman letters

ã2 power spectral density
arms acceleration root mean square
di diameter of a particle size i
D probe diameter
f a accelerometer frequency
f zc acceleration zero-crossing frequency
fT characteristic frequency for turbulent eddy impact on

the probe
fv vortex shedding frequency
H pipe diameter
k spring constant

3 Author to whom any correspondence should be addressed.

� integral length scale of the turbulent flow
L probe length
mp mass of one particle
ṁp particle feed rate
Mi mass of particles of size i in the mixture
ṅ particle collision rate
q turbulent kinetic energy (per unit mass)
Q̇p particle volumetric flow rate (= ṁp/ρp)
ReC probe Reynolds number (=DU/ν)
ReF pipe flow Reynolds number (=HU/ν)
Rep particle Reynolds number
Sh Strouhal number (= fvD/U )
St Stokes number (equation (4))
u0 turbulent velocity fluctuation standard deviation
Ui fluid velocity at setting i
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Greek letters

ε turbulence dissipation rate (per unit mass)
φ particle concentration
η Kolmogorov length scale of the turbulent flow
λ Taylor microscale of the turbulent flow
μ fluid viscosity
ν fluid kinematic viscosity (≡μ/ρ)
ρp particle density

1. Introduction

Controlling a modern pulverized coal-fired boiler, furnace or
kiln at, or near, maximum efficiency is an extraordinarily
complex problem. To achieve efficient combustion requires
consistent and balanced fuel distribution and optimum air-to-
fuel mixtures. Uneven fuel distribution can cause unstable
flame intensities and related safety issues and is one of the
principle causes of burner inefficiency. Imbalanced fuel
distribution can also result in local sub-optimal air-to-fuel
ratios, thus increasing CO, NOx and unburned fly ash carbon
content of the exhaust. In the cement industry, an increased
unburned carbon content directly degrades the quality of the
cement produced. Unnecessary additional air flow will not
only decrease valuable heat generation rate, but also create
excessive NOx emissions.

Various approaches have been used to measure mass flow
rate, concentration and particle diameter in industrial gas–
solid particulate flow processes. These approaches utilize
ultrasound attenuation [1–6], radiometric methods based on
beta- or gamma-ray absorption [7–9], electrical capacitance
[10–15], light scattering [16], microwave backscatter
[17–19], acoustic emissions and resonance [20, 21], magnetic
resonance [22] and mechanical vibrations [23, 24]. Reviews
of particle sensing approaches for pneumatic conveyance are
given by Yan [25], Beck et al [26], Penner et al [27] and
Ahmed and Ismail [28]. Monitoring and controlling the fuel
delivery system with many current particle flow sensors is
difficult due to requirements on sensor accuracy, durability and
cost–benefit ratio. Also, some sensors based on electric field
measurements, such as capacitance, are sensitive to particle
moisture content [29], which is not often accurately known
during system operation.

A number of sensor designs have recently been proposed
which are based on measuring the vibrations caused by impact
of particles either with a bend in the pipeline wall [30] or
with an obstacle introduced into the pipeline flow [23, 24].
Impact sensors are often used in geophysical applications for
measurement of particle motion near the ground. For instance,
Rickenmann and McArdell [31] used a piezoelectric impact
sensor to measure bedload sediment transport rate in a stream,
and Schaer and Islar [32] used an impact sensor to measure
the effective size, density and velocity of snow particle clusters
in avalanches. Coghill [23, 24] designed an impact sensor for
measurement of pneumatic particle transport. In this approach,
particles collide with a rigid sensor arm that is held in the flow
field, and the duration and amplitude of the acoustic pulse
propagated on the sensor arm is measured. The Hertzian

particle impact theory is then used to estimate the particle
size and impact velocity [33], and the particle concentration
is estimated from the collision frequency. This approach is
most applicable for low concentrations, so that incidents of
more than one particle impacting the sensor at any given
time are rare, and for larger particles, so that particles are
not substantially deflected by the air flow about the sensor.

The current paper describes a different approach to
particle impact/vibration sensing in which the sensor probe is
designed to oscillate slightly in the flow stream in response
to both the flow oscillations and particle collisions. The
flow oscillations are related both to vortex shedding from the
probe and to impact onto the probe of upstream turbulent
eddies. Statistical measures of the probe acceleration are
identified which vary smoothly with changes in particle size
and mass flow rate. A neural net is used to relate the
statistical measures to the particle size and concentration
field. The proposed approach has the advantage of being
very simple and inexpensive, since it is constructed entirely
of standard commercially available parts, while providing
simultaneous measurement of particle concentration with
reasonable accuracy once sufficient data are collected to train
the neural net.

2. Methods and materials

2.1. Sensor design

The impact/vibration sensor is illustrated in figure 1. The
impact surface consists of a cylindrical probe (diameter
D = 0.95 cm) that extends a distance of L = 2.8 cm into
the flow through a hole threaded into the pipe wall. The
probe is supported by a pin located approximately at the inner
surface of the pipe, about which the probe is free to pivot. The
pin is attached to a straight nipple that is threaded into the
pipe wall, so that the outer surface of the nipple is flush with
the outer surface of the pipe wall. A flexible nylon bushing is
positioned around the probe and the nipple at the same location
as the pin in order to eliminate particle leakage into the sensor.
The opposite end of the probe is attached to two compression
springs (spring constant k = 0.08 N mm−1), which are attached
to rigid support bars within the sensor housing. At the outer
end of the probe end (within the sensor housing) is attached an
accelerometer (Analog Devices ADXL203, ± 2 g, 0–5000 Hz
range), the data from which are fed to a DataQ data acquisition
device and stored on a laptop computer.

2.2. Experimental tests

The impact-vibration sensor was tested in a two-phase,
gas–solid, open flow loop at Auburn Systems. The main
components of the flow loop, illustrated in figure 2, consist
of an air inlet section with a fan to generate the air flow, a
pitot tube flow meter, a particle hopper and feed rate control,
a straight 3.1 m long test section of pipe (from the feeder
to the sensor) with a diameter H = 7.3 cm and an outlet
port. Experiments were conducted with five different values
of the mean velocity within the test section, U1, . . . , U5, and
five different mean particles diameters, d1, . . . , d5, listed in
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(a) (b)

Figure 1. (a) Schematic diagram and (b) photograph of the impact-vibration sensor, showing [A] probe, [B] housing, [C] pivot, [D] springs,
[E] spring support and [F] accelerometer.

(This figure is in colour only in the electronic version)

(a)

(b)

(c)

(d)

Figure 2. Schematic diagram of the Auburn system flow loop used for testing the sensor: (a) fan and motor, (b) fabric filter and dust
collector, (c) particle feeder and (d) sensor placement.

table 1. The particles used in the experiment were glass beads
obtained from Potters Industries, Inc., and consisted of three
mesh sizes, 40–60 (325), 60–120 (188), and 170–325 (66 μm).
The remaining two particle sizes were obtained by mixing the
40–60 and 60–120 mesh (256 μm) and by mixing the 60–
120 and 170–325 mesh (129 μm), and the average particle
diameters were obtained by weighing the amount of each mesh
type added to each mixture and using the equation

d3 = M1

M1 + M2
d1 +

M2

M1 + M2
d2, (1)

where d is the average particle diameter, M is the mass of
particles added to the mixture, subscripts 1 and 2 represent
each mesh used, and subscript 3 represents the resultant

Table 1. Values of velocity and mean particle diameter used in the
experiments.

Parameter Velocity, Mean particle
number, i Ui (m s−1) diameter, di (μm)

1 10.2 ± 0.51 66 ± 22
2 15.2 ± 0.51 129 ± 43
3 20.3 ± 1.02 188 ± 63
4 25.4 ± 1.02 256 ± 69
5 30.5 ± 1.02 325 ± 75

mixture. The uncertainty in the flow velocity listed in
table 1 represents the standard deviation of the velocity
readings under constant experimental conditions. The
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uncertainty in the particle diameter listed in table 1 was
determined by the upper and lower mesh sizes used for
straining each particle size class, such that the particle diameter
varies between these limits with uniform probability.

The particle feed rates used in the experiments were
set through the use of a dc screw feeder which could vary
the volumetric rate at which particles left the feeder by a
0–100% control knob that directly adjusts the speed of the
motor. The experiments were conducted with particle feed
rates ṁp ranging from 0.008 to 0.06 kg s−1. The feed rates
were determined by measuring how much time it took for a
measured mass of particles to flow out of the feeder. The
uncertainty in the mass flow rate has an average value of
±0.000 23 kg s−1, which was determined via a multivariate
propagation of error equation of the form

	ṁp =
√

(	Mi)2(1/t)2 + (	t)2(−Mi/t2)2, (2)

where Mi is the mass of particles of type i, t is the time
interval and 	 denotes the uncertainty of the given variable.
The particle mass and time measurement uncertainties are
estimated to be 	Mi = 2.3 × 10−4 kg and 	t = 0.1 s,
respectively. The particle concentration φ was determined
by assuming that the average fluid and particle velocities are
equal, and then taking the ratio of the particle volumetric flow
rate to the total volumetric flow rate, giving

φ = Q̇p

(π/4)H 2U + Q̇p

, (3)

where Q̇p = ṁp/ρp is the particle volumetric flow rate.

2.3. Sensor analysis

Particles impacting on the cylindrical probe impart an
impulsive force on the probe that is proportional to the particle
impact velocity. The impact velocity is a function of both the
upstream flow speed and the particle Stokes number St, defined
as the ratio of the particle response time to the characteristic
time scale of the fluid flow, where the latter is typically set
equal to the ratio of the pipe diameter H and the mean fluid
velocity U. The Stokes number is then given by

St = ρpd2U/18μH, (4)

where ρp are the particle density and μ is the fluid viscosity.
For large values of St, the particle inertia is much greater
than the fluid drag force, so that particles impact the cylinder
with a velocity on the same order of magnitude as the fluid
velocity U. For St � 1, the particle inertia is small compared
to fluid drag force and particles approximately travel with the
fluid streamlines, plus a small drift velocity of O(StU). (A
detailed derivation of this result can be obtained from a scaling
argument using the particle inertia and fluid drag terms of
the particle momentum equation, as presented in the book by
Crowe et al [34].) For the experimental test conditions used in
this study, the Stokes number varies between 4 and 330, so we
may assume that the particles were only moderately influenced
by the fluid flow around the probe. For a particle flow with
concentration φ carried past a cylindrical probe with a frontal

area DL, the average particle collision rate ṅ on the probe is
therefore given by [35]

ṅ = ρpDL

mp

Uφ, (5)

where mp = (π/6)ρpd3 is the particle mass. The collision
rate ranges from 1.3 × 104 to 6.8 × 106 Hz for the particles
used in the current study.

In addition to probe oscillations caused by collisions
with individual particles, the probe also responds to fluid-
induced oscillations caused by periodic vortex shedding from
the probe. The probe Reynolds number ReC = DU/ν

varies from 6100 to 18 400 in our experiments, so the probe
flow field is laminar with a vortex shedding Strouhal number
Sh = fvD/U of approximately 0.2, where fv is the vortex
shedding frequency [36]. For the experimental conditions
examined in this study, this Strouhal number corresponds to a
vortex shedding frequency of between 210 and 640 Hz. The
probe lift force oscillates at the vortex shedding frequency and
the drag force oscillates at a frequency fd equal to twice the
vortex shedding frequency [36]. Lashkov [35], in a study of
the effect of micron-size particles on the drag force acting
on a cylinder, reports that particles can induce early onset of
turbulence in the cylinder wake, thereby decreasing the critical
Reynolds number for drag crisis. There appears to have been
no detailed study to date of the effect of particles on the vortex
shedding from the cylinder.

In addition to the vortices shed from the cylinder, the probe
experiences collisions with upstream vortices in the turbulent
pipe flow. The pipe flow Reynolds number ReF = HU/ν

averages approximately 94 120 for our experiments, so the pipe
flow is clearly turbulent. The flow turbulent kinetic energy
q = 3u2

0

/
2, where u0 is the root-mean-square fluctuation

velocity, and the dissipation rate ε can be used to characterize
the length scales of the turbulent flow. (In accord with usual
usage, q is expressed as energy per unit mass and ε is expressed
as energy per unit mass per unit time.) Three primary measures
of length scale exist for turbulent flows—the Kolmogorov scale
η, the Taylor microscale λ and the integral scale � are defined
by

η = (ν3/ε)1/4, λ = (15ν/ε)1/2u0, � = 0.5u3
0

/
ε.

(6)

The Kolmogorov scale is the characteristic scale at which
eddies decay due to viscous dissipation, the Taylor microscale
is characteristic of the inertial range eddies, and the integral
length scale is characteristic of the large, energy-containing
eddies. Turbulence quantities for single and two-phase flows
are measured by Tsuji et al [37] and Bohnet and Triesch [38]
for pipe flow with a similar Reynolds number and diameter
to that reported in the current experiments. These studies
found that the ratio u0/U varies between 0.05 and 0.1 for pipe
turbulence, giving on average q ∼= 0.008U 2. Tsuji et al [37]
report values for the Taylor scale and the Kolmogorov scale
as 1.5 and 0.1 mm, respectively, for a case with no particles at
the center of the pipe. Using the definitions of the three length
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scales, the integral length can be expressed as a function of the
other two length scales as

� = 1

30
√

15

λ3

η2
, (7)

so that the corresponding integral length scale is � = 2.9 mm.
The characteristic frequency for large eddy impact with the
probe is therefore approximately fT = U/�, which using the
data of Tsuji et al [37] to estimate the integral length scale and
the average velocity of 20 m s−1 yields a large eddy collision
frequency of about 6900 Hz.

The inclusion of particles in the fluid can influence the
turbulence of the flow, thus altering the different turbulence-
induced effects, such as eddy impact frequency. While not
all of the relationships between the inclusion of particles and
turbulence are understood at this time, the inclusion of particles
with Rep > 400, where Rep is the particle Reynolds number,
will increase the turbulence of the fluid due to particle-induced
vortex shedding [39]. While large particles typically enhance
the fluid turbulence, small particles will attenuate the affects of
turbulence. The distinction between the two is determined by
the ratio of the particle diameter to the turbulence integral
length scale �, such that for d/� < 0.1 the turbulence is
attenuated by the particles [40]. A review of recent research
on effects of particles on turbulent pipe flow is given by
Bohnet and Triesch [38]. Assuming that the particle relative
velocity is of the same order of magnitude as the average air
velocity, the particle Reynolds number varies from about 40
to 630 for the current experiments, and the ratio d/� varies
between 0.023 and 0.11. Hence, the smallest size particles
(d = 66 μm) are clearly in the range that we would expect
attenuation of the turbulence by the particles and the largest
size particles (d = 325 μm) are close to the dividing point
between turbulence attenuation and enhancement.

It is also well known that turbulence can induce particles
to be thrown out of the turbulent eddies by centrifugal
action and to collect in thin, high-density sheets in-between
eddies. Numerical simulations by Squires and Eaton [41] for
homogeneous turbulence demonstrate that the local particle
concentration can increase via this mechanism to over 25
times the mean concentration. Thus, even if the particle
mean concentration is low enough that it does not substantially
influence the turbulence, the magnitude of the turbulent-
induced vibrations on the probe could be substantially
increased due to impact of high-concentration particle clusters
onto the probe, at a frequency approximately equal to the
large-eddy impact frequency fT .

It is evident from the above discussion that the probe is
subject to forcing oscillations over a broad range of frequencies
due to a variety of mechanisms. Resolution of the highest
frequency forcing, caused by collisions of the probe with
individual particles, requires very high temporal resolution,
making such systems expensive and data intensive. On
the other hand, the fluid-induced oscillations arising both
from vortex shedding from the probe and from impact of
upstream turbulent eddies with the probe occur at much lower
frequencies, in the range of 400–7000 Hz and can be measured
using a standard accelerometer. Whereas previous impact

Figure 3. Power spectra of the acceleration field for d = 325 μm
particles transported through a flow loop with a particle
concentration of φ = 0.0456 for U = 30.5 m s−1. Due to the limited
number of data points for low frequencies, the lack of complete data
for the spike at around 4000 Hz, and the fact that the spike at around
70 Hz is not particle dependent, all frequency plots and average
power spectral density values are determined only for the ranges of
125 to 3000 Hz as represented by the dashed lines in the figure.

sensors are based on resolution of individual particle impact
[23, 24], the sensor used in the current study seeks instead to
determine the particle flow properties indirectly by examining
the effect of particle diameter and concentration on the much
slower fluid-induced oscillations of the probe.

3. Results and discussion

3.1. Statistical measures

Probe acceleration is measured as a function of time, and
statistical measures of the acceleration data are computed using
Matlab. The computed measures include root mean square,
skewness and zero-crossing frequency of the acceleration
signal. The power spectrum of the acceleration is computed,
and additional statistical measures include maximum and
average values of the power spectral density function.

While the accelerometer used to collect the experimental
data provided a bandwidth of 0–5000 Hz, the power spectra
plots and the average values of the power spectral density are
determined only for the accelerometer frequency, fa , range of
125–3000 Hz. This range was determined, as illustrated in
figure 3, with respect to three observable phenomena in the
logarithmically scaled power spectra plots. The first involved
the inaccuracy of results for frequencies below 25 Hz due to
the limited number of data points. The second regarded the
lack of complete data for an observable spike in the plots at
around 4000 Hz. While this frequency response illustrated a
very distinct trend with respect to changes in particle size and
concentration, it was omitted from further data analysis due to
a portion of the response being at a frequency greater than the
upper limit of the accelerometer bandwidth thus not providing
a complete representation of the response effect. The third
consisted of a spike in the plots at around 70 Hz which is
not particle dependent, but is instead related to the natural
frequency of the probe oscillations. Because this response was
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(a) (b)

Figure 4. Power spectra of the acceleration field for no particles (solid triangle) and for d = 66 μm (diamond), d = 188 μm (circle), and
d = 325 μm (triangle) particles with an average particle concentration of φ = 0.0422: (a) U = 10.2 m s−1 and (b) U = 30.5 m s−1.

(a) (b)

Figure 5. Power spectra of the acceleration field with respect to different fluid velocities; starting at the base of the plots and moving to the
top, U = 10.2 m s−1 (solid), U = 15.2 m s−1 (dashed), U = 20.3 m s−1 (solid), U = 25.4 m s−1 (dashed) and U = 30.5 m s−1 (solid); for
flows consisting of an average particle concentration of φ = 0.0422: (a) d = 66 μm and (b) d = 325 μm.

(a) (b)

Figure 6. Power spectra of the acceleration field with respect to different particle concentrations; starting at the base of the plots and moving
to the top, φ = 0.0 (solid), φ = 0.0086 (dashed), φ = 0.0172 (solid), φ = 0.0258 (dashed), φ = 0.0345 (solid) and φ = 0.0422 (dashed); for
U = 30.5 m s−1: (a) d = 66 μm and (b) d = 325 μm.

not particle-dependent and had a value of the power spectral
density, ã2, approximately ten times larger than the remaining
power spectra values, it was omitted from further analysis.
The statistical and neural net analyses reported in the paper
have been repeated with different ranges in the spectral plots,
including the entire range f > 125 Hz, and the qualitative
results of the paper do not differ significantly.

Examples of the power spectra plots with respect to
changes in particle diameter, fluid velocity and particle
concentration are given in figures 4–6, respectively. As can
be seen from the plots, the ã2 values increase with either an
increase in fluid velocity or an increase in concentration and,

with a few exceptions, the values generally increase with an
increase in particle diameter. For low fluid velocities, the
ã2 values increase over a majority of the frequency range
with respect to an increase in particle diameter; however, at
larger fluid velocities the values tend to overlap at different
frequencies, such that an increase in particle diameter may
or may not increase the ã2 value. Two notable observations
in the power spectra plots with respect to particle diameters
occur at the approximate frequency values of 200 and
2000 Hz. For fluid velocities above 25 m s−1, it is observed
that the ã2 values decrease with an increase in particle size
at 200 Hz while at velocities below 25 m s−1 the values are
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(a) (b) (c)

Figure 7. Plots showing variation of (a) acceleration root mean square, (b) acceleration zero-crossing frequency, and (c) average power
spectral density with particle concentration for d = 66 μm (triangle), d = 129 μm (circle), d = 188 μm (diamond), d = 256 μm (solid
triangle) and d = 325 μm (solid circle), for experiments with U = 30.5 m s−1.

nearly the same. At 2000 Hz, a frequency response that is
directly related to an increase in particle diameter is observed
within the range of fluid velocities used in this study.

The skewness and maximum power spectral density
exhibited significant fluctuations with variation in particle
diameter and concentration, and hence were not used for
further data analysis. However, the acceleration root
mean square (arms), zero-crossing frequency (f zc) and
average power spectral density (ã2) all exhibit smooth
variation with particle diameter, concentration change or
both. The plots showing variation of these three statistical
measures as a function of particle concentration are given in
figure 7 for different particle sizes and mean transport velocity
U = 30.5 m s−1. The plots with other velocity values
appear qualitatively similar. All three of these measures
are observed to increase with an increase in flow velocity,
particle concentration and particle diameter in nearly all cases
examined; however, the rate of increase is not linear and
there are some exceptions. For instance, experiments with
the smallest particle diameter exhibit very little change in
root-mean-square acceleration as the particle concentration
is increased, whereas the experiments with the largest size
particles exhibit a substantial increase in this parameter with
an increase in the concentration. On the other hand, the
largest particles exhibit very little change in zero-crossing
frequency with concentration variation, whereas the smaller
particles exhibit a larger increase in this measure with an
increase in the concentration; an exception of this includes
the change of decreasing to increasing values, with respect
to an increase in the concentration, for 66 μm particles as
the fluid velocity increases. We also observed that the two
largest and the three smallest particle sizes have nearly the
same value of the average power spectral density; however,
the larger particles have a much larger value of this measure
at the same concentration. A significant change in values of
the zero-crossing frequency between the largest and smallest
particles is also noticeable from these plots.

3.2. Neural net data interpolation

Since the process by which particles modify the fluid flow
about the probe is complex, it is difficult to analytically

Figure 8. Flow chart illustrating use of a neural net to measure
particle concentration with known fluid velocity and particle
diameter.

determine the dependence of the various statistical measures
on the particle size, velocity and concentration. For this reason,
a neural net is used to predict the concentration from data
for the three statistical measures of the sensor acceleration
output, where it is assumed that the fluid mean velocity U is
known by separate measurement of the air intake rate. In the
current work, we used commercial neural net software called
NeuroXL Predictor for this purpose. The neural network is
trained using a zero-based log-sigmoid activation function and
the experimental data for particle concentration, diameter, air
velocity and the three statistical measures shown in figure 7.
Given sufficient data on the effect of particle parameters on
these statistical measures to train the network, the neural net
can be used to predict the particle concentration field from
the given air flow velocity and the measured values of the
acceleration root mean square, zero-crossing frequency and
average power spectral density function obtained from the
sensor output. The process used for neural net prediction of
the particle concentration is illustrated in the flow chart in
figure 8.

A plot is shown in figure 9 demonstrating the ability of the
neural net to reproduce the same data for which it is trained.
All of the experimentally measured data for particle diameter,
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Figure 9. Neural net predictions for particle concentration for set A (triangles) and set B (plus signs) are plotted with respect to the original
experimental data (circles). Dotted lines separate the results for each particle size. Each line represents the mean fluid velocity used to
obtain that set of data, with velocity U1 on the left progressing through velocity U5 on the right for each particle size section.

Figure 10. Neural net predictions for particle diameter for set B (plus signs) are plotted with respect to the original experimental data
(circles). The lines have the same meaning as in figure 9.

concentration, fluid velocity and the three statistical measures
discussed earlier in this section are used to train the neural net.
Once trained, the neural net is then asked to predict certain
output quantities from this same data set based on the value of
a set of input quantities. Two sets of predictions are performed
in this study. In set A, only the particle concentration is used as
an output variable and the particle diameter, fluid velocity and
the three statistical measures are all used as input variables.
In set B, both the particle concentration and diameter are
used as output variables and the input variables are the fluid
velocity and the three statistical measures. The differences
between the measured concentration values and these two
prediction approaches are indicated by the different symbols in
figure 9. As can be seen in the plot, both approaches produce
results that match reasonably well with the experimental
data, but in general the set A predictions are more accurate
than the set B predictions. Figure 10 shows the particle
diameter results from the set B predictions in comparison to the
measured values from the experiments. While the predictions
in this case exhibit greater variation than for the concentration

predictions, particularly for small particle diameters, it is noted
that the experimental uncertainty in the particle diameter is
also quite large, averaging about one third of the mean particle
diameter.

In order to assess the accuracy of the neural net in
predicting data that are different from that for which it is
trained, a second set of tests were conducted in which the
neural net was trained only for data for particles sizes d1,
d3 and d5, and then used to predict the results for particle
sizes d2 and d4. Again, predictions were made with only
concentration as an output (set A) and with both concentration
and particle size as outputs (set B). A comparison between the
results of these two sets of predictions with the experimental
data is shown in figure 11. Both prediction approaches tend
to under-predict the concentration values for particle size d2,
although set A results are better than those from set B. The set
A predictions for particle size d4 agree well with the data, but
the set B predictions again exhibit substantial deviation.

The sensitivity in the neural net predictions to data
uncertainty was estimated by evaluating the standard deviation

8
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Figure 11. Neural net predictions for particle concentration for set
A (triangles) and set B (plus signs) are plotted with respect to the
original experimental data (circles). The lines have the same
meaning as in figure 9. For this figure, only the data for particle
sizes d1, d3 and d5 are used to train the neural net and predictions are
reported for sizes d2 and d4.

in the statistical measures obtained from the sensor data.
Upper and lower bounds in the neural net prediction are
determined by considering cases where the three statistical
measures are perturbed by an amount equal to their measured
value plus their measurement uncertainty, as well as their
measured value minus their uncertainty, and for each case
the neural net prediction was determined. These predictions
were then subtracted from the original interpolated results and
averaged in order to determine the uncertainty range of the
neural net predictions. For the set A and set B predictions, the
average variation between the upper and lower bound values in
the neural net particle concentration prediction is 2.78 × 10−5

and 1.16 × 10−4, respectively. These values are approximately
an order of magnitude larger than the standard deviation of the
experimentally measured values of the particle concentration,
which has an average value of approximately 7.83 × 10−6.

4. Conclusions

An inexpensive vibration sensor has been developed for
prediction of particle concentration in pneumatic gas–solid
particulate pipeline flow. The sensor consists of a cylindrical
probe extending orthogonally into the flow, which is hinged
about a pin at the position of the pipe wall. The opposite end of
the probe is attached to two compression springs, allowing it
to vibrate slightly, and acceleration data from the probe tip are
collected. Three statistical measures of the probe acceleration
field are found to vary smoothly with the particle size, velocity
and concentration fields—the acceleration root mean square,
the zero-crossing frequency and the average power spectral
density. The power spectral density is clipped in frequency
space to provide an estimate of the signal ‘energy’ in a
frequency interval in which significant variation is observed
with particle concentration change. These measures generally
tend to increase in value as the particle size, concentration and
velocity increase, indicating higher amplitude and more rapid
fluctuation of the probe. A neural net system is trained on
the data obtained from the vibration sensor and is found to be

reasonably accurate for interpolating the data set. Specifically,
when measures of the three statistical measures, the flow
velocity and the particle size are input into the neural net,
the system yields predictions for particle concentration that
agree with reasonable accuracy to the experimental data,
both for predicting the data used to train the system and
for interpolating data lying in-between that used to train the
system. Predictions of both particle concentration and size
as an output produced reasonable, but not as accurate, results
when reproducing the same data used to train the neural net
and poor results predicting data not used to train the neural
net. In general, the accuracy of the neural net prediction will
increase as more data are included in the training set.

The proposed system can be made entirely from
inexpensive, commercially available parts. We do not attempt
to resolve individual particle impacts on the probe, but
instead base the measurements on the much lower-frequency
oscillations of the probe–spring system, which are caused both
by the fluid-induced oscillating forces on the probe and from
the collective particle impact. Since the probe fluctuations
arise, at least in part, from the fluid flow fluctuations, including
those from the upstream turbulence incident upon the probe, it
is not clear what the effects of the pipeline upstream conditions
on the sensor performance are, if any. Hence, without further
testing it is not clear whether the data used for training the
neural net can be obtained at a place of sensor manufacture,
or whether these data must be taken in situ at the location
where the sensor will be used. In either case, the proposed
sensor is much simpler and less expensive than existing sensors
for pneumatic particle concentration field. These sensors are
well suited to applications in which a large number of sensors
are required, such as in balancing the many different fuel
pneumatic feed lines for a pulverized coal combustion process.
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