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Abstract

In vivo imaging and quantification of amyloid-b plaque (Ab) burden in small-animal models of Alzheimer’s disease (AD) is a
valuable tool for translational research such as developing specific imaging markers and monitoring new therapy
approaches. Methodological constraints such as image resolution of positron emission tomography (PET) and lack of
suitable AD models have limited the feasibility of PET in mice. In this study, we evaluated a feasible protocol for PET imaging
of Ab in mouse brain with [11C]PiB and specific activities commonly used in human studies. In vivo mouse brain MRI for
anatomical reference was acquired with a clinical 1.5 T system. A recently characterized APP/PS1 mouse was employed to
measure Ab at different disease stages in homozygous and hemizygous animals. We performed multi-modal cross-
validations for the PET results with ex vivo and in vitro methodologies, including regional brain biodistribution, multi-label
digital autoradiography, protein quantification with ELISA, fluorescence microscopy, semi-automated histological
quantification and radioligand binding assays. Specific [11C]PiB uptake in individual brain regions with Ab deposition
was demonstrated and validated in all animals of the study cohort including homozygous AD animals as young as nine
months. Corresponding to the extent of Ab pathology, old homozygous AD animals (21 months) showed the highest
uptake followed by old hemizygous (23 months) and young homozygous mice (9 months). In all AD age groups the
cerebellum was shown to be suitable as an intracerebral reference region. PET results were cross-validated and consistent
with all applied ex vivo and in vitro methodologies. The results confirm that the experimental setup for non-invasive [11C]PiB
imaging of Ab in the APP/PS1 mice provides a feasible, reproducible and robust protocol for small-animal Ab imaging. It
allows longitudinal imaging studies with follow-up periods of approximately one and a half years and provides a foundation
for translational Alzheimer neuroimaging in transgenic mice.
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Introduction

Neuritic plaques containing Ab and neurofibrillary tangles

continue to define the neuropathological entity of AD and a

definite diagnosis can still only be established post-mortem [1–4].

The increased production of certain Ab species, their aggregation

and deposition as insoluble plaques is regarded as an early and key

pathology in the development of AD, and many modern treatment

approaches are directed at the prevention or reversal of Ab plaque

deposition in the brain [5]. Ab plaque imaging with PET has now

entered the realm of the revised criteria for diagnosis of

Alzheimer’s disease [6] and helps to further improve early and

specific diagnosis and treatment monitoring [7].

Several radiolabeled compounds with high affinity and

specificity for Ab aggregates have been developed [8–19]. Among

these compounds, [11C]6-OH-BTA-1 ([11C]PiB) is presently the

one most extensively evaluated worldwide.

Advances in PET technology have facilitated the imaging of

small animals [20–22]. Transgenic mice possessing the mutations

held responsible for familiar AD have been shown to develop Ab
deposits, tangles and synaptic dysfunction, thus, mimicking human

AD pathology [23–31]. However, the correspondence between

preclinical and clinical data on Ab imaging remains a challenge in

transgenic models of AD [32].

Earlier in vivo, in vitro and ex vivo analyses suggested that

[11C]PiB shows specific binding to Ab plaques in transgenic mice

[33]. Also, high-resolution imaging studies, such as MRI [34,35]

and in vivo optical imaging [36,37] demonstrated specific binding

to Ab plaques in transgenic mouse models. Although small-animal

PET imaging could allow for the quantification of global Ab
plaque load in the brain in vivo, previous studies suggest that

detection of small differences between transgenic and healthy

control animals by PET remains a challenge [33,38,39]. This may

be due to methodological limitations like image resolution in

relation to the small size of target structures, image co-registration,

animal motion, signal-to-noise ratios and cranial tracer distribu-

tion in rodents. Furthermore, transgenic mouse models suitable for

PET imaging of Ab plaques were lacking [40]. Only one study

showed in vivo mouse brain imaging using PET with [11C]PiB

[41], though very high specific activities of the tracer were

required to obtain a signal.

Here, we report the evaluation and multi-modal cross-validation

of a feasible small-animal PET imaging approach with [11C]PiB.

Specific binding of [11C]PiB to Ab plaques in transgenic AD

mouse brain could be demonstrated in PET using specific activities

as used in clinical routine for humans. The mouse study collective

was designed with three transgenic groups of an APP/PS1 mouse

model [31] which serve as examples for different AD stages. PET

distinguished animals according to their Ab plaque burden and

these in vivo findings were validated in all other experimental

modalities.

Results

Mouse brain PET with [11C]PiB
For in vivo assessment of cerebral Ab plaque deposition, 47

animals in five study groups were scanned at least once with

[11C]PiB. 35 of these animals also received an in vivo MR brain

scan on a human clinical scanner (Table 1).

Visual inspection of co-registered PET/MR images revealed

distinct activity retention in the cortex of all transgenic mice

corresponding to their study group, whereas for all control animals

the cortex appeared to be free of specific activity uptake (Figure 1).

In transgenic mouse brain the activity uptake expanded through-

out the entire cortex, with slightly stronger signal in frontal

neocortical compared to hippocampal regions and a stronger

signal in the thalamus. These findings are in good correspondence

to the earlier onset of plaque deposition in cortex and to large

plaque sizes in thalamus as observed by Willuweit et al. [31] ex

vivo.

Time-activity curves (TACs) of target and reference tissues

showed characteristics that were common for all study groups

(Figure 1 and Figure S6). Initial cerebellar uptake was always

higher than initial cortical uptake and cortical TACs of control

animals fell below cerebellar TACs early. In contrast, for each

transgenic animal the cortical TAC showed higher values than the

cerebellar TAC from around 3 min p.i. and remained distinctly

separable. From about 10 min p.i. on, each transgenic animal

could be assigned to its study group by its neocortex-cerebellum

TACs.

The individual in vivo radioligand binding was examined by

calculating the binding potential with a reference tissue approach

using the cerebellum [41–44]. Parametric images of regional Ab
plaque burden for representative animals were created with the 2-

step multilinear reference tissue model 2 (MRTM2, [43,45]) as

shown in Figure 2 and Figure S1. The binding potential values for

neocortex estimated by the same model for the whole study

collective showed highly significant separation of all transgenic

animals from controls and a clear distinction of AD animals

belonging to different study groups (Figure S10). Old homozygous

AD animals (tgtg-old) exhibited highest activity retention, followed

by old hemizygous (tg-old) and young homozygous mice (tgtg-

young). The tg-old animals were at all scans in between the

homozygous groups while their results were generally closer to

those of the tgtg-young group. In control animals we never

observed any specific tracer uptake within the entire brain.

In general, no significant differences in activity uptake were

found between old and young or female and male control animals.

Further, no significant difference was found between male and

female young homozygous animals. Also, there were no

differences between right and left hemispheric tracer uptake

observed in all animals.

The robustness and consistency of PET results was shown by

performing test-retest experiments (Figure S5), by calculating

alternative measures for radioligand binding (Table S1) and by

averaging all neocortical and all cerebellar TACs for each study

group (Figure S6).

In general, the results above show a tight correlation of visual

inspection and PET analysis with all other modalities (Figure 2 and

Figure S10).

Autoradiography with [3H]PiB ex vivo
Extensive ex vivo autoradiography of brain slices was performed

to verify that the cortical tracer uptake values as measured by PET

represent true binding of [11C]PiB to cortical Ab plaques. All

animals in this analysis had a PET scan with [11C]PiB, before.

On visual inspection, representative slices showed a homo-

genously dotted pattern of intensive multi-focal tracer retention

throughout the cortex of transgenic mice with a fully symmetric

right-left appearance. Particularly high uptake was detected in the

neocortex, hippocampus and thalamus (Figure 2 (column 2)). The

strong uptake in the thalamus was notable due to very high tracer

retention in fewer but much larger plaques. Plaques were also

present in the olfactory bulb although smaller in size (data not

shown). Without exception, the cerebellum was free of specific

[3H]PiB uptake in autoradiography. The entire brain of control

animals did neither show focal nor diffusely increased neocortical

tracer uptake (Figure 2). A clear difference in the amount of
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[3H]PiB uptake, corresponding to different stages of Ab plaque

burden, was noted even visually. Hence, the representative

samples of the four major study groups showed corresponding

results of ex vivo [3H]PiB uptake in autoradiography to [11C]PiB

uptake as measured in PET. In addition, individual uptake

patterns were in full correspondence to the patterns of Thioflavin

S and anti-Ab40/42 stains done on neighboring sections (Figure 2).

Visual perception of differences in ex vivo tracer uptake

between the study groups (Figure 2) could be confirmed

quantitatively by measuring a total of 64 slides from 24 animals

of the study collective yielding 248 observations for the cortical

region (Table 1).

The neocortex-to-cerebellum ratios of [3H]PiB uptake fully

reflected the in vivo PET findings for the same target region. The

average ratios for tg-old were 1.9060.26 (range: 1.46–2.11), for

tgtg-young 1.2560.07 (range: 1.19–1.33), for tgtg-old 2.5460.27

(range: 2.13–2.71) and for ctl-old 0.9360.02 (range: 0.90–0.95).

Statistical significance of differences between groups was tested for

ctl-old against tgtg-young (p,0.001), tgtg-young against tg-old

(p = 0.004) and tg-old against tgtg-old (p = 0.002) corresponding to

the staging of Ab load in these groups.

No significant differences in tracer uptake were found between

right and left neocortical regions in all animals and between old

and young control animals.

The individual results and pairwise correlations (Figure S10) are

reported below.

Regional brain biodistribution of [11C]PiB
Twenty animals from the homozygous transgenic study groups

and matched controls were used for ex vivo regional brain

biodistribution of [11C]PiB at 30 min p.i.. Mouse brains were

dissected into four regions: 1. telencephalon as the major target

region, 2. olfactory system for its proximity to high extracerebral

uptake regions, 3. cerebellum as the reference region and 4.

diencephalon and midbrain as the remaining brain structures. The

cerebellum was used as the reference region for ratio calculations

of individual %ID/g values.

The target-to-reference ratios for telencephalon confirmed the

in vivo PET measurements for neocortex in these study groups.

The results for the old homozygous animals showed a large

difference to the young homozygous mice (p,0.001). This

corresponded to the large differences between these two groups

as seen in all the other experimental modalities (Table 2).

The young transgenic animals could easily be separated from

the controls (p = 0.012). Differences between the young and old

control groups were not significant (p = 0.090). In the control

groups, it is notable that the tracer uptake for the telencephalical

region relative to cerebellum was reversed (,1).

A similar behavior of relative uptake of [11C]PiB was found in

the other two target regions. The PiB uptake in the olfactory

system in transgenic mice is specific, but considerably lower than

in cortical regions. Young transgenic animals even had no

significantly higher uptake than young controls (p = 0.491)

Table 1. Mouse study collective and numbers of mice per experiment.

study group
sub-
group

age
[months]

weight
[g] PET

injected dose
[MBq] MRI CT

auto
radio

histological
quantification ELISA biodistribution

binding
assay

Thio-
flavin S Ab 40/42 brain cranium

tg-old 5 R 23.260.1 24.561.2 5 13.963.1 5 5 5 5 2

2 R 29.160.0 2 1

tgtg-young 5 R 9.260.0 22.460.5 5 28.967.9 5 5 5 5 2

4 = 9.460.1 27.160.5 4 32.364.6 1

5 = 9.060.0 5 5

2 R 9.160.1 25.362.1 2 63.463.7 2 2 2 2 2 2

3 R 9.360.0 3 1

tgtg-old 4 R 21.160.1 23.360.6 5 22.462.6 4 4 5 5 4 1 1

4 R 21.660.0 21.960.9 4 32.062.7 4 4 4

3 R 18.760.0 3 1

ctl-young 5 R 9.460.1 25.660.8 5 15.861.9 5 2 5 1

5 = 9.060.0 31.060.3 5 25.563.3 5

5 R 9.360.0 5 5

2 R 9.060.6 32.761.0 2 51.261.4 2 2 2 2 2

ctl-old 5 R 23.660.1 29.861.9 5 20.763.3 5 4 5 2

5 = 23.060.0 33.361.5 5 11.963.1 5

5 = 23.260.0 5 5

1 R 29.8 1

SUM 47 35 4 24 29 22 22 24 20 4

Five study groups were defined, three of them with transgenic APP/PS1 mice, the others with age- and gender-matched controls. Major subgroups were female. Old
refers to an age of about 23 (hemizygous (tg)) and 21 months (homozygous (tgtg)). Young is defined as an age of 9 months. Young homozygous study group (tgtg-
young) and both control groups (ctl) were designed to reveal possible gender effects. As an overview and orientation for this study, numbers in each cell state how
many animals per subgroup were analyzed in the corresponding experiment. Mean ages, weights and injected doses are shown for each subgroup including standard
deviation. The pairwise correlations of these modalities are shown in Figure 7 and Figure S10.
(tg: hemizygous APP/PS1, tgtg: homozygous APP/PS1, ctl: C57BL6/J control animals).
doi:10.1371/journal.pone.0031310.t001
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Figure 1. Small-animal [11C]PiB PET/MRI overview. [11C]PiB PET co-registered to in vivo 1.5T cranial MRI of the same mouse. Overview of cranial
tracer uptake shows images of four representative animals from the major study groups in radiological orthogonal perspective (20–30 min frame). (A)
23 month old female hemizygous APP/PS1 mouse (weight: 20.8 g, injected dose: 14.7 MBq, color scale 37–144 kBq/cc), (B) 9 month old female
homozygous APP/PS1 mouse (weight: 22.2 g, injected dose: 15.2 MBq, color scale 60–350 kBq/cc) (C) 21 month old female homozygous APP/PS1
mouse (weight: 24.5 g, injected dose: 24.2 MBq, color scale 73–280 kBq/cc), (D) 23 month old female C57BL/6J control mouse (weight: 29.9 g,
injected dose: 15.1 MBq, color scale: 66–300 kBq/cc). Columns from left to right show horizontal (1), coronal (2) and sagittal (3) views. The right
column (4) shows corresponding neocortical (yellow) and cerebellar (magenta) time-activity curves (TACs). Inset (5) shows initial tracer dynamics on a
smaller time scale (1 to 3 min) to delineate the peak of uptake required for quantification of PET data. Difference between transgenic and control
animals is significant for each study group visibly and analytically. For the young homozygous animal, it is seen in the lower color scale range. Cortex
in B2 shows uptake towards blue and cyan. Same structures show lowest uptake in D2 (magenta, corresponding to cerebellum). TACs confirm visual
perception: neocortex TAC in B4 intersects cerebellum TAC and stays above it (neocortex-to-cerebellum ratio .1) while neocortex TAC in D4 remains
below the cerebellum TAC (ratio ,1). PET color look-up-table is UCLA (Pmod) with lower thresholds set to still visualize the cerebellum. Arrowheads
indicate slice positions. Slice coordinates (corresponding to Paxinos atlas) are: horizontal Bregma 21.90 mm, coronal Bregma 20.10 mm and sagittal
0.65 mm lateral. Image scale is double size of reality. Further results for these animals are shown in Figure 7.
doi:10.1371/journal.pone.0031310.g001
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corresponding to a low Ab plaque load in the olfactory bulb at

younger ages. The relative tracer uptake in old homozygous

animals was slightly higher than in young ones (p = 0.027) but by

far not as distinct as for the telencephalon. This confirmed

previous reports [31] and is consistent with our observations of

smaller and fewer plaques in the olfactory bulb. This result was

also notable in the context of unspecific tracer binding. The

olfactory bulb reaches in between extracerebral structures with

high unspecific tracer uptake but was not a contributing region for

these high uptakes.

Relative [11C]PiB uptake of the remaining basal brain structures

(diencephalon and midbrain) was already significantly higher in

young transgenic animals than in controls (p = 0.031)) (Table 2).

However, in old homozygous animals it was not significantly

higher to the young ones (p = 0.318). In our experience and in

consistency with previous reports in the same or similar models

[31,46,47], the neuroanatomical structure with the major

contribution to uptake in this region was the thalamus. The

difference between young and old control groups was not

significant (p = 0.114). For this region, it is notable that the

relative tracer uptake was not reversed in the control groups (.1).

The relative [11C]PiB uptake behavior is also shown graphically in

Figure 3.

Extracerebral tracer retention in proximity to brain
We observed considerable [11C]PiB retention in regions of the

mouse head that appeared to be extracerebral, possibly around

nasal and eye cavities, but very close to the brain (Figure 1). To

distinguish specific PiB uptake in brain from probably unspecific

extracerebral uptake and for further validation of our PET

imaging and co-registration protocol, we performed variants of the

general in vivo and ex vivo experiments.

Sequential [11C]PiB/[18F]FDG PET for five old homozygous

and five control animals while keeping the animal in place

provided automatic overlay of both PET images and clear spatial

localization of the brain. Thus, it was possible to confirm that the

high frontal [11C]PiB retention was indeed located outside the

brain (Figure S2).

Additionally, the in vivo PET protocol was modified to a two-

step in vivo/ex vivo PET protocol, in which complete heads

without brains of four male tgtg-young and four ctl-young animals

were scanned from about 35 min to 65 min p.i. (Figure 3B). The

remaining [11C]PiB retention in exclusively extracerebral ana-

tomical structures clearly shows the same uptake pattern as seen in

PET in vivo.

To confirm the findings from in vivo and ex vivo PET, the 20

animals from the regional brain biodistribution study (Table 2)

were also used to measure [11C]PiB uptake in various cranial

organs (Figure 3C). The organs with the most prominent [11C]PiB

uptake were the harderian and parotid gland and the eyebulbs. In

general, tracer retention varied unsystematically between animals

of the same groups and no differences could be detected between

transgenic and control animals.

To further validate unspecific extracerebral tracer retention, ex

vivo [3H]PiB autoradiographs of a complete transgenic homozy-

gous mouse head showed the exact locations of unspecific tracer

retention in various anatomical structures very accurately

(Figure 3A). Exposition time needed to be shortened to achieve

good resolution of extracerebral tissues. For this reason, only few

plaques can be seen. The analogy of the unspecific extracerebral

uptake pattern in ex vivo [3H]PiB autoradiography and ex vivo

[11C]PiB PET of the head can be seen well.

As the olfactory bulb reaches in between the anatomical

structures that have been characterized with high unspecific tracer

uptake, it was included in [11C]PiB regional brain biodistribution,

[3H]PiB autoradiography, Thioflavin S and Ab40/42 histological

analyses whenever possible. In general, it showed smaller and

fewer plaques and lower uptake values, confirming that it was not

involved in the higher tracer retention regions around it.

The spectrum of results, above, validated the high unspecific

tracer uptake to be extracerebral. The proximity of frontal brain

parts to extracerebral anatomical structures, in particular present

within the eye cavities, confirmed the importance of very accurate

image co-registration for reliable PET analyses described above.

The principle and high quality of our image co-registration

method is presented in Figure S3.

Thioflavin S and Ab40/42 antibodies for plaque
quantification

Brain sections were stained with Thioflavin S (29 animals) and

with double immunofluorescence against Abx–40 (anti-Ab40) and

Abx–42 (anti-Ab42) (22 animals) for the histological quantification

Figure 2. Mouse Ab plaque pathology in vivo and ex vivo. PET binding potential maps for [11C]PiB and corresponding autoradiography and
fluorescence microscopy images of neighboring horizontal brain sections showing data from the same animals presented in Figure 1. Left brain
halves are shown. Frontal cortex is at top and cerebellum at bottom of each panel. (A) 23 month old female hemizygous APP/PS1 mouse, (B) 9 month
old female homozygous APP/PS1 mouse, (C) 21 month old female homozygous APP/PS1 mouse, (D) 23 month old female C57BL/6J control mouse.
Column (1): Binding potential maps for [11C]PiB (BPND, MRTM2) matched to MRI. Shown is the same horizontal level as in Figure 1 and S1. Color table
is UCLA (Pmod). Width of color scale represents 3 mm in reality. Column (2): Digital [3H]PiB ex vivo autoradiograph with optical image (gray) of a brain
section of the same animal, killed 1 hour p.i.. Color table is Red Hot (ImageJ). Column (3): Double immunofluorescence microscopy for Ab40 (green)
and Ab42 (red). Anatomical reference (gray) is provided by control channel (Cy3). Column (4): Thioflavin S fluorescence (FITC excitation, cyan).
Anatomical reference (gray) is provided by DAPI fluorescence. Right column: Identical Ab plaque constellations of adjacent sections (as marked by white
rectangle in columns (1) to (3). Top panel (5): magnification of digital autoradiograph as seen in column (2). Middle panel (6): corresponding magnified
view of Ab40/Ab42 stain as seen in column (3). Bottom panel (7): corresponding magnified view of Thioflavin S stain as seen in column (4). Columns (2) to
(4) show directly neighboring 10 mm thick sections of the left brain half from bottom to top of skull at about 1.9 mm below Bregma. Width of zoom
panels in rightmost column represents 350 mm in reality. Complete orthogonal views for binding potential maps are shown in Figure S1.
doi:10.1371/journal.pone.0031310.g002

Table 2. Regional brain biodistribution of [11C]PiB.

study group
olfactory
system telencephalon

diencephalon
and midbrain

tgtg-young 1.2760.24 1.8760.58 1.7960.57

tgtg-old 1.9060.22 4.2360.46 2.2260.47

ctl-young 0.8760.23 0.8260.09 1.1060.17

ctl-old 0.6760.12 1.1160.13

Mouse brain was dissected into four regions (olfactory system, telencephalon,
cerebellum and remaining brain structures) 30 min p.i.. Results show mean
[11C]PiB uptake ratios (6 SD) of the three target regions relative to cerebellum
(initially measured as %ID/g) for the homozygous study groups and both
control groups. Data are reported graphically in Figure 3 as reference to
extracerebral [11C]PiB distribution.
doi:10.1371/journal.pone.0031310.t002
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of Ab plaque load and plaque size distribution (Table 1) by

applying a computerized image analysis and object recognition

algorithm similar as reported, previously [31].

Thioflavin S has not been used with the applied semi-automated

method of Ab plaque quantification in this mouse model, before

[31]. To validate Thioflavin S staining as a robust and comparably

easy method for Ab plaque quantification we first analyzed the

relation of Thioflavin S sensitivity to anti-Ab40/42 sensitivities for

Ab plaque detection in a pairwise manner. The correlations

between Thioflavin S quantification with each of the antibodies

and with their compound signal are presented in Figure S7. In

addition, Thioflavin S recognized a similar amount of relative Ab
plaque load as the anti-Ab40/42 compound signal (Figure 4A)

which seems to parallel the comparable affinities of PiB for both

Ab species [18]. Furthermore, the anti-Ab40/42 compound result

(Figure 4A) reflects that the anti-Ab40 and anti-Ab42 measure-

ments are mostly co-localized.

Thioflavin S staining was excellent for analyzing tissues with Ab
deposits. However, it showed some unspecific binding in Ab-free

regions depending on the neuroanatomical location, in contrast to

the specific Ab antibodies. Among the regions we have measured,

the highest unspecific values were found in thalamus of control

animals. We expect this to be mostly related to the texture of the

regional brain tissue. It may also be method-related as exposition

and measurement parameters were kept identical for each stain

and were adjusted to measurements in the neocortex.

Ab plaque area and plaque size distribution
Binding of [11C]PiB to Ab loaded brain regions is probably

influenced both by total plaque volume as well as by individual

plaque size and type [35,48]. Hence, we measured relative plaque

areas and plaque size distributions using a large dataset for a

robust analysis of neocortex with Thioflavin S (643 observations)

and Ab40/42 antibodies (158 observations) (Figure 4 and Figure

S7).

The results from histological Ab plaque quantification in

neocortex also were consistent with in vivo PET results for the

same region. Highest values were observed for the tgtg-old group,

followed by tg-old and tgtg-young (see Figure S10 for pairwise

correlations).

The results of plaque load as measured by Thioflavin S are

reported, here. Their values in target regions with Ab deposits

were representative for the analysis with Ab40/42 antibodies as

shown above (Figure S7). Plaque load based on Thioflavin S

binding in neocortex was measured for tg-old as 7.7261.03%

(range: 6.27–9.07%), for tgtg-young as 4.6860.70% (range: 3.53–

5.37%), for tgtg-old as 11.7861.63% (range: 9.88–13.31%) and

for ctl-old as 0.6160.17% (range: 0.34–0.79%). Differences

between groups were tested corresponding to the staging of Ab
load in these groups (ctl-old against tgtg-young, tgtg-young against

tg-old and tg-old against tgtg-old). The difference between all

groups was highly significant (p,0.001). For all relative plaque

load observations, no differences were found between right and left

brain sides in all animals and between old and young control

animals.

Plaque sizes considerably increased with age in hemizygous and

homozygous animals (Figure 4B). After histogramming the

individual plaque sizes for each transgenic group, and estimating

kernel density functions, we could calculate that the differences

between plaque size distributions of all transgenic study groups

were highly significant (p,0.001). While relative plaque areas and

size compositions were significantly different between the old study

groups, the size composition of plaques in neocortex at old ages

appeared to have a similarity independent of genotype.

Cerebellum as reference region
Willuweit et al. reported that the cerebellum seems to be free of

plaques in this animal model [31]. For our studies, we used the

cerebellum as a reference region in PET, biodistribution and

autoradiography. Therefore, we applied the histological quantifi-

cation of Ab plaques to the cerebellum, also, to analyze whether it

qualifies as a reference region for imaging purposes in this animal

model. For this, the same large dataset as above was used for the

Thioflavin S (599 observations) and Ab40/42 antibody (148

observations) modalities.

The Ab42 antibody was providing for the fluorescent channel

with the highest signal-to-noise ratio and was therefore the most

reliable signal for the analysis of a potentially target-free region.

The quantification results with the Ab42 antibody were always

lower than 0.09% compared to neocortex of tgtg-young animals

which was larger than 3.09%. The average cerebellar binding of

the Ab42 antibody per group was 0.0260.01% (range: 0.01–0.03)

for tg-old, 0.0160.00% (range: 0.01–0.02) for tgtg-young,

0.0460.03% (range: 0.01–0.09) for tgtg-old and 0.0260.01%

(range: 0.01–0.02) for ctl-old. No significant differences could be

seen between the groups: ctl-old to tgtg-young (p = 0.59), tgtg-

young to tg-old (p = 0.25) and tgtg-young to tgtg-old (p = 0.17).

Thioflavin S showed unspecific binding behavior in tissues

without Ab deposits (Figure 2D) as described above. Nevertheless,

the highest unspecific results in cerebellum were far below the

lowest specific results in neocortex (0.82 vs 3.53%). The average

cerebellar binding of Thioflavin S per group was 0.3660.05%

(range: 0.32–0.44) for tg-old, 0.2560.06% (range: 0.16–0.33) for

tgtg-young, 0.3060.04% (range: 0.25–0.36) for tgtg-old and

0.6660.13% (range: 0.45–0.82) for ctl-old. Differences between

groups were significant, here, but it was the control groups that

showed slightly higher binding than the transgenic animals.

These results for the cerebellum quantitatively confirmed that

this region can be used as a reference region.

Ab40 and Ab42 protein levels (ELISA)
Detailed differential Ab protein analyses were performed in this

animal model, previously, and tight correlations with relative Ab
plaque load were shown [31].

Figure 3. Extracerebral tracer retention. High [11C]PiB uptake in regions frontal to the brain were accurately validated to be extracerebral. (A)
Cranial [3H]PiB ex vivo autoradiography. 15 mm thick section of a complete mouse head showing exact anatomical locations of unspecific tracer
retention (male tgtg, 16 month old). Exposition time needed to be shortened to achieve good resolution of extracerebral tissues. For this reason, only
few plaques can be seen in the brain. Color table: Red Hot (ImageJ) (B) CNS removal during [11C]PiB PET. 9 month old male homozygous APP/PS1
mouse was scanned in vivo for 30 min before the complete brain was extracted and scanned for further 30 min together with the skull. The skull of
the ex vivo [11C]PiB PET scan is co-registered to a cranial CT for better orientation and shown on six horizontal slices which are 1 mm apart (top left
horizontal level at about 21.9 mm Bregma in correspondence to all other figures). Both parotid glands can be seen on bottom section. Color table is
UCLA (Pmod) (C) Ex vivo biodistribution of [11C]PiB relative to cerebellar uptake in (extracerebral) glandular tissues and eyebulbs in both homozygous
and both control study groups. Cerebral biodistribution data from the same animals as presented in Table 2 is included graphically as reference. Data
show that olfactory bulb does not contribute to high surrounding uptake in harderian glands and eyebulbs. Column heights represent means, error
bars represent standard deviation.
doi:10.1371/journal.pone.0031310.g003
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To further validate our PET imaging results and to understand

how our in vitro tracer binding results with human and mouse

brain homogenates (see below) relate to Ab protein levels, brain

tissue of 14 animals that received a PET scan, brain tissue of 8

animals and three samples of post-mortem human brain tissue for

radioligand binding assay were biochemically quantified for

human Abx–40 and Abx–42 protein (Table 1). Differential

extraction procedures were applied in order to determine the

levels of either soluble or insoluble forms of Ab species for all

samples.

In general, our results confirm the previous report [31].

Detailed individual results of ELISA analyses are shown in

Table 3 and Table 4 for the corresponding experiments and are

described there. The individual results and correlation of insoluble

Ab protein levels to results from PET imaging, autoradiography

and histological plaque quantification are shown in Figure S10.

In vitro [3H]PiB binding assay
In vitro tracer binding to brain homogenates provides a

sensitive reference to the other experimental modalities [33].

Therefore, seven samples of brain tissue were used for assessing in

vitro [3H]PiB binding to mouse brain tissue and postmortem

human brain tissue at distinct disease stages (mouse: tg-old, tgtg-

young, tgtg-old; human: Cerad-C/Braak V and Cerad-0/Braak

Figure 4. Histological Ab plaque burden and plaque size distribution in neocortex. Ab plaque burden and size of individual plaques were
analyzed on histological sections stained with Thioflavin S and double immunofluorescence against Ab40 and Ab42 by applying a semi-automatic
imaging algorithm. All animals were analyzed in PET, before. Shown here, are the results for neocortex of the transgenic study groups: tg-old (orange),
tgtg-young (yellow) and tgtg-old (red). (A) Ab plaque burden of each transgenic group as measured by Thioflavin S, compound anti-Ab40/42, anti-
Ab42 and anti-Ab40. Compound anti-Ab40/42 result shows co-localization of both Ab species. (B) Plaque size distribution in each transgenic study
group. Here, the anti-Ab42 signal was used for its highest signal-to-noise. Its strong association with the Thioflavin S signal is shown in Figure S7.
doi:10.1371/journal.pone.0031310.g004
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II). Binding to postmortem human brain tissue was performed to

provide a reference for the results from mouse brain tissue. A

binding assay to synthetic Ab1-40 fibrils was also performed and

used as positive control (Figure S8). The huAD-C (Cerad-C/Braak

V) tissue sample was retested twice (Figure S9). All brain tissues

used for in vitro binding were also analyzed for Ab protein levels

with ELISA (Table 3).

Some tissues were lacking sufficient [3H]PiB binding saturation

behavior (Figure 5). Hence, in vitro binding potential (BP) was

chosen as the target value for tissue comparisons after global

nonlinear regression with the single binding site model to total and

nonspecific binding data (Table 3). As Kd and Bmax are correlated,

BP can be measured very accurately either as ratio from the

estimates, as done here, or from the initial slopes to the specific

binding curves [49] even though independent estimates for Kd and

Bmax may not reasonably be possible.

Human brain. The severely affected human AD tissue

(huAD-C) homogenate provided an estimate for BP of 38.264.7

(Kd = 5.260.9 nM, Bmax = 200612 fmol/mg) for [3H]PiB.

Figure 5 shows how the huAD-C tissue homogenate reached

saturation binding at comparably low concentrations of the tracer

(around 8 nM).

While the huAD-C sample yielded binding values correspond-

ing to previous reports for severely affected human AD brain tissue

[8,50,51], the total binding data of the mildly affected human AD

sample (huAD-0) and the human control brain (huCTL) was

showing no difference to nonspecific binding data (data not shown)

indicating that a binding component which could compete with

3 mM PiB was not present (BP estimates close to 0). This

corresponded to the Ab protein quantification results (Table 3) in

spite of repeated positive neuropathological staging according to

BrainNet Europe standards.

In ELISA, human Ab-free matched control tissue was included

to provide reference values. The huAD-0 sample showed soluble

and insoluble Abx–40 levels comparable to control tissue, while

Abx–42 levels were increased and at about one third of the

huAD-C sample for the insoluble fraction. The Abx–42 levels of

huAD-C were more than fourfold to the Abx–40 levels of the same

sample.
Mouse brain. The initial steepness of the binding curves for

mouse brain tissue homogenates was comparable to and even

higher (tgtg-old) than for the severely affected human AD tissue

(Figure 5). This binding behavior at low tracer concentrations is

considered a prerequisite for successful PET imaging and confirms

our positive PET imaging outcomes described above.

BP in the transgenic mouse brain tissues were estimated to

11.960.9 (tg-old), 14.360.9 (tgtg-young) and 69.262.7 (tgtg-old).

The BP of homozygous old mouse brain tissue was clearly above

the value for severely affected human AD tissue while the tg-old

and tgtg-young samples were at about one third of the result for

huAD-C. The total binding data of mouse control brain (msCTL),

like the huAD-0 and huCTL samples was not different to

nonspecific binding (data not shown) indicating that a binding

component which could compete with 3 mM PiB was not present

(BP estimates close to 0).

Independent estimates for Kd and Bmax of the high-affinity

component were yielded for the tgtg-old tissue as it reached a

sufficient degree of tracer saturation binding. Fitting these data to

Table 3. In vitro binding potential and Ab40/42 protein
levels.

study group soluble protein insoluble protein
binding
potential

Abx–40 Abx–42 Abx–40 Abx–42

huCTL 0.7 1 15.9 23.1 0

huAD-0 0.8 1.6 15.8 121.9 0

huAD-C 5.8 28.5 120.5 449.9 38.2

tg-old 517.8 186.2 169915.9 145010.5 11.9

tgtg-young 450.5 304.8 172152.3 178821.1 14.3

tgtg-old 912.4 485.4 657818.2 572182.5 69.2

In vitro binding potential (BP) as yielded with [3H]PiB radioligand saturation
binding assay and corresponding soluble and insoluble Abx–40 and Abx–42

protein fractions (picogram protein per milligram wet tissue) for the same
human and mouse tissue samples. Binding curves of the severe human AD and
all transgenic mouse brain samples are shown in Figure 5.
doi:10.1371/journal.pone.0031310.t003

Table 4. Multi-modal combined experiment with [3H]PiB/[11C]PiB cocktail.

modality AD1* AD2 CTL1* CTL2

PET [BPND neocortex] 0.06 0.06 20.06 20.07

Biodistribution [11C]PiB [region-to-cerebellum ratio] olfactory system 1.00 1.07 1.05 0.98

telencephalon 1.24 1.24 0.92 0.92

diencephalon and midbrain 1.26 1.47 1.22 1.10

Autoradiography [neocortex-to-cerebellum ratio] [11C]PiB 1.88 2.1 0.72 0.95

[3H]PiB 1.26 1.24 0.90 0.97

Histology [% plaque area neocortex] Thioflavin S 4.00 4.10 0.54 0.41

Abx–40 3.63 3.57

Abx–42 5.88 6.14 0.02 0.01

Ab protein levels (forebrain) [pg protein/mg tissue wet weight] soluble Abx–40 272.0 212.1

Abx–42 267.3 191.3

insoluble Abx–40 91522.8 117849.6

Abx–42 134335.4 164156.0

An all-in-one experiment was performed for four animals of the young study groups (2 tgtg-young (AD1 and AD2) and 2 ctl-young (CTL1 and CTL2)) to retrieve a large
spectrum of multi-modal information from a single animal. Asterisk (*) marks animals that are shown in Figure 6.
doi:10.1371/journal.pone.0031310.t004
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the two site binding model revealed a Kd of 5.764.1 nM and a

Bmax of 289.36123.9 fmol/mg while the huAD-C data provided a

Kd of 3.461.4 nM and a Bmax of 156.767.3 fmol/mg as estimates

for the same fit.

Scatchard graphs corresponding to the specific binding curves

are displayed additionally in Figure 5, together with a semiloga-

rithmic representation of the specific binding curves. The

semilogarithmic plot shows the absence of infliction points in the

Figure 5. In vitro binding assay with [3H]PiB. Specific [3H]PiB binding to mouse and human brain homogenates and nonlinear modeling of data.
(A) Binding isotherms for [3H]PiB with transgenic mouse brain tissues and human AD tissue containing Ab deposits. Solid black curves show
nonlinear fits with a single site model. Dashed lines describe 95% confidence bands around the fit. Resulting in vitro binding potential (BP) values and
Ab protein levels of these tissues are described in Table 3. (B) Semilogarithmic representation of the specific binding data as seen in panel (A) to
delineate possible infliction points. (C) Scatchard graphs showing the same data as panel (A). Each data point is derived from the mean value of the
original data octuples. Data show representative samples from tgtg-old (red), tgtg-young (yellow) and tg-old (orange) transgenic study group and
severely affected human AD (huAD-C) tissue (green).
doi:10.1371/journal.pone.0031310.g005
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data of tg-old and tgtg-young which would be necessary for the

distinction of different binding sites and for the ability to fit one or

two lines (one- or two-site model) to the Scatchard data [52].

In accordance to previous reports [33], the Ab levels of mouse

brain tissue were higher than those found in human AD brain by a

factor of around 1000 (Table 3). Furthermore, the mouse Ab levels

also seem to indicate a correspondence to measured BP values.

Combined multi-modal experiment
To bring together a large set of experimental modalities applied

to an individual animal, and to cross-validate and address their

relationship within a single animal, a combined experiment was

performed (Figure 6 and Table 4) consisting of PET, regional

brain biodistribution, dual-label digital autoradiography, histolog-

ical Ab plaque quantification with Thioflavin S and anti-Ab40/42

and Ab40/42 ELISA.

Four animals from the young study groups (2 tgtg-young, 2 ctl-

young) were given a bolus cocktail of [11C]PiB/[3H]PiB in the

PET scanner and their brain tissue processed immediately after

PET imaging. The individual results for all four animals are shown

in Table 4. The good correspondence of ex vivo [11C]PiB and ex

vivo [3H]PiB autoradiography together with double anti-Ab40/42

fluorescent stains of a neighboring section are shown in Figure 6.

This combination experiment showed how excellent the results

from different experimental modalities correlate on the level of

individual animals and how activity uptake in PET is real tracer

uptake. Also, these individual results confirmed that young

homozygous animals could clearly be distinguished from control

animals in all modalities. Furthermore, it showed the consistency

Figure 6. Multi-modal combined experiment. Single multi-modal in vivo/ex vivo combination experiment with 4 animals from the young study
groups (2 tgtg-young and 2 ctl-young) showing the whole spectrum of results on an individual level. After a bolus injection of a [11C]PiB/[3H]PiB
cocktail, the animals passed a 30 min CT/PET scan, were then killed for immediate [11C]PiB regional brain biodistribution and dual-label digital
autoradiography. Brain halves used for biodistribution were analyzed for Ab protein levels. The other brain halves were stained with Thioflavin S and
anti-Ab40/42 and used for histological plaque quantification. Columns (1) to (3): 9 month old female homozygous APP/PS1 mouse (‘‘AD1’’) and
Column (4) to (6): 9 month old female C57BL/6J control mouse (‘‘CTL1’’), presented in a mirror fashion. Ex vivo [11C]PiB (red)/[3H]PiB (green) dual-label
digital autoradiographs with underlying optical scans of horizontal 12 mm half brain sections of AD1 (right brain) (A and B) and CTL1 (left brain) (D
and E) (marked with asterisk (*) in Table 3) and corresponding magnified views of double immunofluorescence stains for Ab40 (green) and Ab42 (red)
of neighboring sections for the same region (C and F). All four modalities are shown individually (outer two columns) and co-localized (central
columns). Limits of green and red color look-up-tables represent minimum and maximum of measured signal. The analytical results of all experiments
are shown in Table 3 below this figure.
doi:10.1371/journal.pone.0031310.g006
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and robustness of the groupwise results described above on an

individual analysis level.

Relationship of in vivo PET to other experimental
modalities

The study was designed to provide as many validation

experiments to PET imaging in every animal as possible, in order

to analyze the relationship of in vivo radioligand binding in PET

to relative ex vivo tracer uptake in brain biodistribution and

autoradiography, to histological Ab plaque burden and to Ab
protein levels (Table 1).

Neocortex, i.e. complete cortex without hippocampus, was used

as the primary target region. It was defined in the same way on

horizontal PET slices (Figure S4) and horizontal autoradiographi-

cal and histological sections. The brain region that was used for

ELISA analysis was defined as previously reported [31] and hence

contained telencephalon and the largest part of diencephalon and

midbrain without the olfactory system. This presumably provided

for slightly weaker correlations of Ab protein levels with the other

methods.

Figure 7 summarizes these relationships for the animals of the

three transgenic study groups and the old control group. In

general, [11C]PiB binding in PET was correlating strongly with ex

vivo tracer uptake and in vitro Ab load. In addition, each study

group was clearly separate from each other in all experimental

modalities (shown by different color for each study group). The

summary of data demonstrates the robustness of the small-animal

PET results and their consistency with the validation experiments.

A complete overview of the cross-validation approach is shown in

Figure S10.

Discussion

The need for more specific imaging markers of Ab, tau and

alpha-synuclein [53] requires robust and feasible translational

imaging tools to enable the evaluation and ranking of new tracers.

Previous PET imaging studies with [11C]PiB in different AD

mouse models were not successful, despite high Ab plaque loads

[33,38,39] and the only successful study relied on very high

specific activities of the tracer [41]. This led researchers to

principally question the feasibility and potential of this imaging

method for translational AD research [32,33,40,54].

For these reasons, we addressed the development of a feasible,

reproducible and robust preclinical Ab plaque PET imaging setup

in transgenic AD mice that reliably detects a specific signal in

animals young enough to allow for longitudinal follow-up studies.

We were able to show that the measured uptake of [11C]PiB with

PET in individual transgenic animals at different disease stages

was robust and strongly correlated with several independent

experimental methods in the same animals.

The old hemizygous AD group was selected to correspond to

animal ages used in previous imaging studies [33,38,41]. In

general, the results of this group tended to be relatively close to the

young homozygous animals. These results show the value of the

homozygous animals of this APP/PS1 mouse model for imaging:

the reliable specific PET signal in young animals in combination

with a virtually normal life span and low premature death rate of

homozygous mice allows for sufficiently long follow-up studies.

The PET results in control animals are notable as they indicate

a volume of distribution ratio ,1 (cerebellum as reference) and

hence a larger volume of distribution for the cerebellum than for

neocortex. This finding is consistent with Maeda et al. [41] and is

probably related to white matter binding of the tracer in the

cerebellum in contrast to the target region which does not contain

white matter. It is further supported by our regional brain

biodistribution results which also yielded ratios ,1 for telenceph-

alon-to-cerebellum ratios of injected tracer doses normalized to

tissue weight.

The considerable amount of unspecific PiB retention in tissues

outside of the brain (like the salivary and harderian glands) is likely

to be model-independent. Previous studies [33,38,41] do not

provide information on whether the applied PET technologies

have been able to resolve the uptake in extracerebral regions

neighboring the olfactory bulb and the frontal cortex. In our study,

we have identified these issues as a potential error source and it

highlights the importance of precise PET image co-registration to

MRI such that volumes-of-interest can be defined reliably. In our

experience, manual image co-registration of well pre-processed

small-animal data yields excellent and very reliable results. A

similar manual method has been reported by Pfluger et al. for

human MRI-SPECT data [55].

In a different APP/PS1 model, Klunk et al. detected an uptake

of [11C]PiB of 100–120% in the entire cerebrum relative to PS1

mice [33]. Their results were not statistically significant, which

may have been due to the small sample size (1 transgenic versus 1

control animal per age group) and the global VOI-based approach

employed (large VOI encompassing the entire brain, no reference

region). In another study, Toyama et al. included a reference

tissue-based analysis in their study with six Tg2576 mice at a mean

age of 22 months, using the cerebellum as a reference region [38].

Although they calculated significantly higher binding ratios in the

transgenic mice, Toyama et al. concluded that their study could

not prove specific binding of [11C]PiB to Ab plaques due to the

overall small difference in absolute tracer uptake between

transgenic and control animals which may have been due to the

presence of Ab plaques in the cerebellum of this animal model

[24]. The sole report on successful in vivo [11C]PiB imaging with

PET in a single transgenic mouse model (APP23) claimed

extraordinarily high specific activities of their PiB preparation

(max. 291 GBq/mmol) to be required for imaging of Ab plaques in

their animals [41]. Specific activities of this magnitude are not

obtainable at most PET centers which may explain why these

results have not been reproduced by others. Furthermore, the

proportionality between tracer uptake and Ab plaque load as

derived from a small-animal PET study may not be transferable to

humans, if 10 to 20-fold higher specific activities are applied in the

animal model. Another relevant aspect of the study of Maeda et al.

is that reasonable tracer uptake has been found in animals .21

months of age, despite the high specific activity preparations. This

further limits the applicability of this imaging protocol for follow-

up studies as the average life span of APP23 mice is around two

years [27,56].

In our study, significant tracer uptake in regions with Ab
plaques was demonstrated in transgenic mice as young as 9

months injected with 28.967.93 MBq of [11C]PiB in a specific

activity of 11 GBq/mmol. Hence, our specific activities were about

20-fold lower and better comparable to that routinely applied in

studies of AD patients (range: 11.1–14.8 GBq/mmol). An even

higher molar amount of [3H]PiB (2.5 nmol) was used for the ex

vivo autoradiography studies compared to our in vivo PET studies

(1.6 nmol of PiB) which both demonstrated specific binding of the

tracer to Ab plaques. Several factors may be responsible for this

discrepancy of our findings compared to previous work. The

choice of animal model may be a key explanation.

In contrast to the abundance of available transgenic AD models

with high content of cortical Ab plaques [57], good preclinical

models for imaging Ab deposits have still been lacking [32,40].

However, various ex vivo analyses with Ab ligands in AD mice
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[31,33,58,59] and in vivo fluorescent labeling [36,60] would

suggest that the in vivo measurement of Ab plaque load in mice

with PET should be possible. In humans, negative PiB imaging in

severely amyloid-positive patients with the arctic APP mutation

has been observed [61] and may indicate a parallel phenomenon

to negative PiB-PET results in animal models. In which way

different Ab isoform patterns [62] and their degree of fibrillarity

[63] contribute to PET imaging results remains to be examined.

A number of previously reported favorable characteristics of the

APP/PS1 mouse model employed in our study [31] probably

contribute to the observed positive findings for several reasons.

The potential advantages are: a) an early-onset and rapid

progression of plaque load, b) plaques showing similar morphology

to those in human AD, c) low inter-animal variability and no

gender effects (in contrast to other transgenic animal models which

show high variability of Ab plaque expression [27]), d) co-inherited

transgenes and a C57BL/6 background leading to good breeding

capabilities of a homozygous line and a low rate of premature

death of hemizygous and homozygous mice up to normal old age

[31]. The homozygous animals show earlier onset and more rapid

progression of Ab plaque deposition compared to hemizygous

animals and are therefore good candidates for at least one and a

half years of longitudinal imaging.

While some other models develop Ab deposits in the cerebellum

over time [24,30], we could show that the cerebellum of our model

stays free until old age and can therefore be used for reference

tissue approaches. This is an important feasibility advantage as

alternative methods for analysis require arterial input information

and calibration to injected dose both of which remain method-

ological challenges.

The plaque quantification results in our study differ somewhat

from what has been reported, previously [31]. Willuweit et al.

measured relative plaque burden in 19 to 20 months old

transgenic mice of 10.5% (hemizygous) and 35.2% (homozygous).

Here, the measured relative plaque burden in even older animals

were lower and the results lay closer together (around 5% and

12%). There may be several methodological reasons for this.

Firstly, we have used frozen brain material for this study while

Willuweit et al. took paraffin sections. Secondly, we have used

other primary antibodies for Ab40 and Ab42 detection with a

different staining protocol. Thirdly, the parameters for the

automated plaque detection algorithm needed to be adjusted to

histological material, stain and exposure times.

Thioflavin S is an easy to use staining agent and was applied for

histological Ab plaque quantification, before [64]. Here, we

applied our semi-automatic imaging algorithm [31] to Thioflavin

Figure 7. Relationship of in vivo PET to other experimental
modalities. Association of in vivo [11C]PiB binding potential in mouse
neocortex with relative neocortical [3H]PiB uptake in autoradiography
(A), with relative neocortical Ab plaque burden as stained by Thioflavin
S (B) and with insoluble Ab40 and Ab42 protein levels in forebrain (C
and D). Data across the modalities was acquired from tissue of the same
animals (as shown in Table 1). Individual animals are identified by their
unique number code within their study group. The coloring of study
groups in the scatter plots shows how each group is fully separated
from each other. Color code: tg-old (orange), tgtg-young (yellow), tgtg-
old (red) and ctl-old (blue). Pairwise correlation coefficients (r) for each
pair of modalities are noted in each scatter plot. Histological
quantification with Thioflavin S is used representatively for all
histological quantification results because of its tight correlation with
anti-Ab40/42 as described in Figure S7. Here, the animals presented in
Figures 1 and 2 are coded with #5 (tg-old), #5 (tgtg-young), #1 (tg-
old) and #1 (ctl-old). The full scatter matrix for the cross-validation of
experimental results is shown in Figure S10.
doi:10.1371/journal.pone.0031310.g007
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S stained sections for the first time and validated this approach in

relation to Ab40 and Ab42 antibodies.

The dual-label autoradiographs (Figure 6) show different

nonspecific binding of [11C]PiB and [3H]PiB to mouse brain tissue.

While [11C]PiB was also taken up by white matter (seen best in

panel D2), nonspecific [3H]PiB binding was mostly observed in

vessels (seen best in the choroid plexus). Both versions of PiB (i.e.

labeled with either 3H or 11C) had a similar specificity to Ab
plaques. The specific activities of both versions of PiB were the same

as they were applied in a cocktail bolus. However, the measurement

of uptake ratios relative to cerebellum in autoradiography is less

reliable with [11C]PiB, as slight deviations in thickness within a

section has direct influence on the ratios. This effect is negligible

when using [3H]PiB ratios due to less energy of tritium.

In vitro PiB binding was first studied in transgenic mice by

Klunk et al. who found only a very small high-affinity component

for [3H]PiB in very old hemizygous APP/PS1 animals (BP = 78)

[33] using classical Scatchard analysis. The authors reasoned that

the low concentration of high-affinity binding sites compared to

humans (BP = 636) might be the reason for unsuccessful PET

imaging in mice.

Our results agree with some aspects of what has been reported

by Klunk et al. (e.g. different binding kinetics for rodent AD tissue

and correlation of Bmax with insoluble Ab), while it deviates in

other points (e.g. existence of high-affinity binding component and

comparable BPs). Using a state-of-the-art global nonlinear

regression approach for analyzing total and nonspecific binding

data for a larger range of tracer concentrations, we revealed a

higher BP ( = 12) in young hemizygous animals relative to severely

affected human AD tissue ( = 38). Furthermore, the BP ( = 69) of

our old homozygous mouse brain sample was nearly double

compared to human.

The slow tracer saturation in AD mouse brain indicates a

different binding behavior to rodent Ab plaques in the presence of

considerably higher levels of Ab in mouse than in human [54]. It

may be difficult to identify a high-affinity component in

hemizygous old mouse brain tissue. Homozygous old mouse brain

tissue, however, provides a definite high-affinity binding compo-

nent comparable to human AD tissue.

A direct correlation between Bmax and insoluble Ab content was

reported by Klunk et al.. In our study, an association between BP

and insoluble Ab in the transgenic mice was observed. As one may

assume that the affinity of [3H]PiB to the binding sites of various

APP/PS1 mouse brain tissues of the same genetic strain is similar

and that, hence, BP is mostly related to Bmax [49] these

observations seem to be similar.

In summary, we have provided a cross-validated study for feasible

small-animal PET imaging of Ab plaque deposition with [11C]PiB

in an APP/PS1 mouse model of Alzheimer’s disease. In vivo PET

imaging results of three different transgenic mouse study groups and

matched control groups were validated with ex vivo and in vitro

methods. The transgenic study groups represented different disease

stages according to their Ab pathology and could well be

distinguished with PET. Group results were consistent in all

experimental modalities and individual results correlated tightly.

The reported PET imaging protocol uses readily achievable levels of

specific activity of the tracer and grants successful high-contrast

imaging down to ages of at least nine months. This provides the

opportunity for at least one and a half years of longitudinal studies

and, hence, truly translational Ab plaque imaging of Alzheimer’s

disease in a preclinical model. The established imaging setup and

multi-modal cross-validation protocol are applied to our tracer

development program for ranking and successful evaluation of new

imaging markers for Ab [18,19].

Materials and Methods

Animals
The experiments were carried out with the approval of the

institutional animal care committee (Regierung von Oberbayern,

Munich, Germany) and in accordance with the German Animal

Welfare Act (Deutsches Tierschutzgesetz). Animal husbandry

followed the regulations of European Union (EU) guideline

No. 86/609.

All experiments were performed in hemizygous (tg) and

homozygous (tgtg) APP/PS1 mice (B6;CB-Tg(Thy1-

PSEN1*M146V/Thy1-APP*swe)-10Arte) (TaconicArtemis

GmbH, Cologne, Germany) on a congenic C57BL/6J genetic

background and commercially available age- and gender-matched

controls (Harlan-Winkelmann, Borchen, Germany and Janvier, Le

Genest-St-Isle, France). The transgenic mouse model has been

characterized regarding onset, progression, distribution and extent

of Ab plaque deposition as well as behavioral features [31].

The animals were kept under temperature-controlled environ-

mental conditions (18–20uC, 50–60% relative humidity) on a

12:12 light-dark cycle (light from 6 am to 6 pm) and fed a standard

diet (Altromin 1326 mouse pellets, Altromin, Lage, Germany) with

free access to food and potable water until the start of the

experiments and after (no fasting). They were group-housed

(maximum of 5 individuals per group) in individually ventilated

type III cages (Ehret, Emmendingen, Germany) with dust-reduced

wood shavings as bedding. All animals underwent a minimum of

10 days acclimatization period.

Study design
Altogether 70 animals in five study groups were used in this

study such that groupwise and pairwise comparisons are possible.

Group age definition of animals was chosen to be ‘‘young’’ (9

months) and ‘‘old’’ (21 and 23 months). Three transgenic study

groups of hemizygous (tg-old) and homozygous (tgtg-young, tgtg-

old) animals were included to provide comparability with previous

reports and also to show how the imaging outcome can be

improved by using homozygous animals. In previous pilot studies,

young animals from seven to ten months were tested (unpublished

data). These preliminary results revealed reliable and satisfactory

Ab plaque detection and visualization with PET and we found an

age of nine months to be a feasible age definition for the young

study group. The two control study groups (ctl-young and ctl-old)

were designed to match gender and age and to additionally control

for any differences among the controls regarding gender (female

and male subgroups). Regarding body weight, female transgenic

animals tend to weigh less than female controls and female

controls weigh less than male controls. To our experience the

unavoidable differences in weight have no detectable influence on

the results presented, here.

Table 1 shows a detailed description of the study collective and

the combination of experiments performed for each subgroup.

Postmortem human brain tissue
Three samples of deep frozen human brain tissue were provided

by Neurobiobank Munich upon request to BrainNet Europe

(www.brainnet-europe.org) after approval of the ethics committee

at Technische Universität München. Neuropathological diagnos-

tics were performed according to BrainNet Europe standards.

All samples were taken from temporal cortex gray matter of

three female donors who died at an age of 79 to 85. Significantly

different amyloid-beta plaque load (as confirmed with 4G8

antibody stain) was a major selection criterium. Hence, one severe

AD brain staged as Cerad-C, Braak V (‘‘huAD-C’’), one mild AD
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brain (‘‘huAD-0’’) staged as Cerad-0, Braak II and one age- and

gender-matched control brain (‘‘huCTL’’) staged as Cerad-0,

Braak I (4G8-negative) were chosen.

Radiosynthesis
2-(49-amino-phenyl)-6-OH-benzothiazole (6-OH-BTA-0) and

2-(49-N-methylamino-phenyl)-6-OH-benzothiazole (6-OH-BTA-

1) were purchased from ABX Biochemicals, Radeberg, Germany.

Other reagents and solvents were purchased from Sigma-Aldrich.

Chromatography columns were from CS-Chromatographie (Lan-

gerwehe, Germany). HPLC pumps and UV detectors were from

Sykam (Fuerstenfeldbruck, Germany).

Cyclotron-produced [11C]CO2 was converted to [11C]CH3I by

the catalytic gas-phase iodination reaction via [11C]CH4 (GE MeI

MicroLab) and converted [11C]CH3OTf by distillation through a

column of AgOTf impregnated on a-alumina. Subsequent

radiolabeling and purification was carried out in a fully automated

synthesizer from Scintomics (Fuerstenfeldbruck, Germany).

10 mmol of the primary amine 2-(49-amino-phenyl)-6-OH-

benzothiazole (6-OH-BTA-0) was dissolved in anhydrous acetone

(250 ml). The vial was sealed, flushed with and maintained under

argon. The [11C]CH3OTf produced, swept with a He-flow at

50 ml/min, was trapped in the reaction vial. The reaction vial was

warmed to 65uC over 30 s and kept at this temperature for 2 min.

Thereafter the reaction mixture was diluted with 1 ml of MeCN:

0.1 M ammonium formate (27.5:72.5, V/V), loaded into a 2 ml

injection loop and transferred onto a m-Bondapak C18 column

(10 mm particle size; ID of 8 mm; length of 300 mm; CS-

Chromatographie). The column was eluted with a mobile phase

consisting of MeCN: 0.1 M ammonium formate (50:50, V/V) at a

flow rate of 4 ml/min. In-line HPLC detectors included a UV

detector (Sykam) set at 254 nm and a c-ray detector (Bioscan

Flow-Count fitted with a PIN detector).

For animal experiments, the fraction containing the product

was collected in a rotary evaporation flask containing 1 ml of 1%

HCl in EtOH and evaporated to dryness under reduced pressure.

The product was dissolved in 1 to 2 ml of phosphate buffered

saline (PBS). The pH of the final solution was between 7 and 8.

Analytical HPLC system 1 was a Nucleosil 100 5 mm CN

4.66250 mm reverse phase column (CS-Chromatographie) eluted

with acetonitrile/0.1 M ammonium formate (55:45, V/V) mobile

phase mixture. The flow rate was 1.0 ml/min. HPLC system 2

was a Nucleosil 100 5 mm C18 4.66250 mm reverse phase column

(CS-Chromatographie) eluted with acetonitrile/0.1 M ammonium

formate (55:45, V/V). The flow rate was 1.0 ml/min. The capacity

constant, k9 (k9 = tR2t0/t0) for N-[11C-methyl]-6-OH-BTA-1 on

HPLC system 1 was 3.2 and for system 2 2.1. The 11C-labeled

product co-eluted with an authentic standard of 6-OH-BTA-1.

Radiochemical and chemical purities were .98.5% as deter-

mined by analytical HPLC. The radiochemical yield averaged

35% at the end of synthesis (EOS) based on [11C]CH3OTf and the

specific activity averaged 76.7 GBq/ mmol at EOS.

Usually, two animals sequentially underwent PET scans with

the tracer as prepared from a single synthesis. In order to inject an

identical chemical amount of substance for the two scans, an

amount of authentic standard N-methyl-6-OH-BTA-1 was added

to the first injectate. This resulted in a specific activity of the

preparations in the range 300–400 mCi/mmol (11.1–14.8 GBq/

mmol).

Anesthesia
Inhalation anesthesia was used for PET scans, metabolites and

biodistribution experiments. Anesthesia was begun 15 min ahead

of experimental procedures by placing the animal in a cage

ventilated with isoflurane (3%) and oxygen (3.5 l/min) with a pre-

calibrated vaporizer. During the experiments, anesthesia was

maintained by 0.6% to 2% isoflurane and 3.5 l/min oxygen via a

nose cone, depending on length of scan such that the respiratory

rate stayed at 80–100/min. Body temperature was held at 37uC
with a temperature-controlled heating pad.

Peritoneal antagonisable triple anesthesia with medetomidine,

midazolam and fentanyl (MMF) was used for all animals during

the MR scan.

Whenever anesthetized the eyes of each animal were protected

with dexpanthenol eye ointment.

Substance administration
All injections were performed under isoflurane inhalation

anesthesia. An application catheter system for reliable intravenous

access to the lateral tail veins was prepared using 30 gauge needles,

polyethylene tubing (0.28 mm inner diameter), superglue and 1 ml

syringes. To achieve reliable and long-term access, an elastic

hollow vessel-loop was used as a tourniquet for catheter

placement. The catheter and syringe were initially filled with

isotonic sodium chloride solution. The functional catheter was

stabilized at the injection site with superglue. For dual-tracer PET

scans, a catheter system was placed in each of the two tail veins for

independent application of the radiotracers.

Small-animal PET with [11C]PiB
General PET scanning procedure. Most of the small-

animal PET data was acquired with a microPET FOCUS F120

scanner (Siemens Medical Solutions, Malvern, USA) [65]. In the

combined multi-modal experiment PET data for the four animals

was acquired with a docked Siemens Inveon PET/CT system

(Siemens Medical Solutions, Knoxville, USA) [21,66,67].

After induction of anesthesia and placement of the catheter

systems, the animals were placed with their heads in the center of

the field of view and were fixed in the scanner in prone head first

position (HFP). At the beginning of the PET scanning procedure, a

9 min transmission scan (68Ge rod source, Focus F120) or CT scan

(Inveon) was performed in all animals.

[11C]PiB was given via the catheter system intravenously in a

slow bolus, followed by flushing with isotonic saline solution such

that the total applied volume was 0.2260.06 ml. The amount of

injected activity was controlled real-time with registered prompts

such that they ranged between 150000 to 200000 at the end of

[11C]PiB application, ensuring a dead time ,5% at 30 min p.i..

The radioactivity in the syringe was measured immediately before

and after injection with a Capintec CRC 15R (Capintec Inc, NJ,

USA) dose calibrator. The time between measurements was 2 to

3 min.

Dynamic data acquisition was performed in 3D listmode for 30

or 60 min starting immediately with injection of the tracer. The

emission data were normalized and corrected for decay and dead

time. The resulting sinograms were reconstructed with FBP

(filtered back-projection using a ramp filter with a cut-off at the

Nyquist frequency) into 2, 3, 6, 12, 60 and 120 frames of equal

length used for motion correction, ratio measurements and image

production and 52 frames (24610 s, 12630 s, 106120 s, 66300 s)

and 162 frames (12061 s, 24610 s, 8630 s, 106300 s) for time-

activity-curve (TAC) generation. The image volume consisted of

1286128695 voxels, with a size of 0.86660.86660.796 mm3 per

voxel for the Focus F120 scanner and 12861286159 voxels, with

a size of 0.77660.77660.796 mm3 per voxel for the Inveon

scanner. Test-retest studies (1 week apart) with five transgenic

animals showed robustness of PET results for these measurements

in mouse brain.
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Sequential dual-tracer PET scans with [11C]PiB and

[18F]FDG. To gain additional information for manual PET

and MRI co-registration and to verify that the anatomical

localization of unspecific [11C]PiB uptake in vivo is

extracerebral, about one fifth of the animals in our PET

imaging protocol were scanned sequentially with [11C]PiB and

[18F]FDG (30 or 60 min) without being moved in the PET

scanner.

CNS removal during PET. The preparation of animals and

scanning setup were identical to the general PET protocol

described above. At 30 min p.i., the scan was interrupted and

the animal was guillotined. The complete brain (including the

olfactory bulb) was taken out of the skull such that cerebral and

cranial anatomical structures remained intact. The remaining

head and the isolated brain were placed separately in the field-of-

view of the scanner for another 30 min (ex vivo [11C]PiB PET).

Mouse brain MRI
MR scans were performed the same day as PET, immediately

following the application of [3H]PiB for later autoradiographic

analyses. Anesthesia was switched to peritoneal MMF and the

animal was transferred to the MR scanner. Animals were placed

prone head first (HFP) in the MRI scanner (Philips Achieva 1.5 T

clinical MRI system). Mouse CNS MRI was performed using a

23 mm microscopy coil fixed horizontally over the head of the

animal. A Philips T1-weighted 3D turbo gradient echo sequence

with an inversion pre-pulse was used: flip angle 8u, TR 13 ms

(shortest), TE 4.3 ms (shortest), TI 860 msec, FOV 64 mm, pixel

matrix 2562 reconstructed to 5122, section thickness 0.25 mm,

interpolated to 0.125 mm. The scan time of the sequence is

46 min 11 sec.

PET data analysis
All in vivo image data was processed and analyzed with PMOD

3.2 software package (Pmod Technologies, Zürich, Switzerland).

All PET, MRI and CT image datasets were scaled to calibrated

kBq/cc and saved in float format. Orientation of planes was

conform to radiological human brain standard such that the Z-axis

was perpendicular to horizontal sections. The median sagittal

plane was co-registered to the median sagittal plate (no. 101) of

Paxinos atlas [68]. Image origins were set to Bregma (0,0). All

datasets were controlled for motion of the animal during the PET

scan in image reconstructions with 60 and 120 frames of equal

length, i.e. 60 s and 30 s per frame.

Image co-registration and quality control. To retrieve

reliable small-animal PET results, accurate and standardized co-

registration of PET to MRI or CT is essential. Deviations in the

range of a single PET voxel may cause considerable differences

(Figure 3 and Figure S2).

To create an in vivo correspondence to the Paxinos atlas space

[68], sagittal atlas plate no. 101 was loaded into Pmod. The

anterior-posterior and left-right axis of a high-resolution mouse

head CT was aligned, the sagittal plane co-registered to the

Paxinos plate and origins set to Bregma (0,0). The co-registered

CT was cropped to a bounding box of 1261868 mm (x, y, z).

Spatial correspondence to brain structures was verified with co-

registered MRI datasets.

To provide a reliable basis for co-registration of PET datasets,

all MRI datasets were co-registered to the Paxinos atlas space by

creating an MRI template and using the automatic rigid matching

functionality of Pmod with the normalized mutual information

dissimilarity function for all individual MRI datasets.

To improve the manual co-registration of [11C]PiB scans, about

one fifth of the animals also received [18F]FDG for 30 to 60 min

immediately after the [11C]PiB scan without being moved to

provide for identical transformation matrices of both scans. The

advantage of [18F]FDG to delineate brain morphology was used

for a more reliable co-registration of PiB scans (Figure S2).

A two-step matching process of PET data was used. A PET

template of early tracer entrance (first 4 min) (Figure S3) was

created for initial automatic rigid matching with the normalized

mutual information dissimilarity function [69]. Automatic match-

ing results were verified and corrected if necessary by applying the

following quality control procedure: the PET template was color-

coded with a red binary look-up-table (LUT) and the energy

window set for the contour to delineate the brain. The PET study

was color-coded with a green binary LUT and the energy window

set accordingly. This quality control step was performed at various

energy contour levels in all three planes of view and the co-

registration corrected manually if necessary. This procedure was

repeated with the co-registered MRI datasets as individual

references. The pre-matched PET study was colored with a

binary LUT and evaluated on all orthogonal slices using at least

three different energy windows for the LUT contour.

Volumes-of-interest (VOI) definition. An MRI template in

Paxinos atlas space was created from the individual co-registered

MRI datasets of all transgenic animals of this study and, together

with a high-resolution CT scan, used as the basis for VOI

definition (Figure S4) according to Paxinos atlas [68] and the

mouse brain atlas provided by the Allen Institute for Brain Science

[70]. Paired brain structures were defined individually for right

and left side and were also merged. The mouse brain cortex was

defined in two subvolumes (neocortex and hippocampus). The

following cerebral VOIs were defined (right and left sides of paired

structures summed, volumes reported in brackets as mm3): whole

brain (504.8), cerebellum (48.7), neocortex (101.3), hippocampus

(39.4), thalamus (15.0) and olfactory bulb (14.6). Additionally,

three extracerebral VOIs were defined for the evaluation of

unspecific tracer retention: nasal sinus (39.9), harderian glands

(32.3) and eyebulbs (14.4).

Quantification of dynamic PET data. To assess varying

PiB retention of individual animals within the study collective and

to verify the consistency of results, three quantification methods

were used similar to Maeada et al. [41]. First, [11C]PiB uptake in

the target region was divided by [11C]PiB uptake in the cerebellum

as measured in a static 10 min-frame (20–30 min). Second, the

tissue ratio methods as proposed by Ito et al. [71] were calculated.

Third, the multilinear reference tissue model 2 (MRTM2, [45])

was fitted to cortex time-activity curves (TACs) (merged neocortex)

after reduction of parameters by estimating individual efflux rate

constants for [11C]PiB from the reference region (k29) with the

MRTM [45] and four regional cortical time-activity curves.

Parametric images of [11C]PiB retention (BPND maps

(MRTM2)) were generated for four representative mice (Figure 2

and S1). For all analyses, the cerebellum was used as the reference

region. To quantify the dynamic data, TACs with high initial time

resolution (162 frames: 12061 s, 24610 s, 8630 s, 106300 s)

were used (Figure 1).

Biodistribution with [11C]PiB
Regional brain biodistribution. Identical conditions as

used for in vivo PET imaging were implemented: Animals were

kept under inhalation anesthesia (isoflurane) on a temperature-

controlled heating pad (36uC) until death. All animals were killed

by decapitation at 30 min p.i.. The entire brain was taken out and

cut along the median sagittal line. One half was dissected into: 1.)

olfactory bulb including ventral olfactory regions towards the

olfactory tubercle, 2.) cerebellum, 3.) cortex and 4.) the remaining
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brain structures (diencephalon and midbrain). The other half of

the brain was rapidly frozen for histology. Radioactivity in

weighed tissues was determined using an automatic NaI(Tl) well-

type c-detector (Wallac 1480-011 Automatic Gamma Counter,

PerkinElmer, Waltham,MA, USA), related to a standard and used

for calculation of the injected dose per gram tissue (% ID/g).

A 30 min PET scan was acquired for all animals from the tgtg-

old group immediately before biodistribution and ELISA assays of

their brain tissues.

Cranial biodistribution of [11C]PiB. Additional to regional

brain biodistribution, cranial organs were dissected as some of

them are positioned very closely to frontal regions of the brain.

Individual uptake behavior of the submandibular gland, sublingual

gland, parotid gland, eyeballs (without muscles and optic nerve),

internal lacrimal gland and harderian gland were assessed

(Figure 3).

Tissue processing
Genotyping. The tails of mice were preserved and deep-

frozen at 275uC until processing. The genotype of all mice was re-

evaluated and confirmed with quantitative PCR (qPCR)

(Willuweit et al., personal communication).

Mouse brain for histology and autoradiography. Brain

tissue was generally preserved, rapidly frozen in fine-crushed dry

ice and stored air-tight at 275uC. For histological analyses, whole

or half brains were cut on a Leica CM3050S cryostat (Leica

Microsystems, Nussloch, Germany). Frozen sections were

mounted on dilute poly-L-lysine hydrobromide coated (mol wt

.300.000, (1:50) 0.01% w/v in water) microscopy slides.

Based on the histopathological data of the transgenic animal

model [31] we expected the highest plaque load in anterior cortex,

medium plaque load in olfactory bulb and no plaque deposition in

the cerebellum. To be able to correlate pathology and imaging

findings in cortical and cerebellar regions within every single slice,

we chose a cut level close to the horizontal sections in the Paxinos

atlas [68].

About 120 sections with 10 mm thickness were mounted on

about 40 slides. Slices were positioned to show three to four

different cut levels on each slide, about 0.5 mm apart. About 5 of

these slides were immediately stained with a thionin preparation

for anatomical orientation within the slide sequence. After drying

at ambient conditions the remaining slides were stored at 275uC
until assayed.

Mouse brain tissue for quantitation of Ab protein levels

and PiB retention. The brains of mice from the major study

groups (tg-old, tgtg-young, tgtg-old, ctl-old) were split into half and

the cerebellum of each side was taken off as in Willuweit et al. [31]

by cutting through along the coronal plane between the superior

and inferior colliculus. All parts of the brain were stored at 270uC.

All forebrains (right side without olfactory system) of the eight

transgenic animals went through ELISA analysis. From each

group, one representative sample was selected for subsequent

radioligand binding assay with [3H]PiB.

Mouse cranium for [3H]PiB ex vivo

autoradiography. To assess extracerebral uptake of [3H]PiB

ex vivo the general protocol was slightly modified. Animals were

killed at 30 min p.i.. The whole guillotined mouse heads were

skinned such that external head glands were preserved at their

natural positions. Upper and lower teeth were taken out. Air in

nasal and oral cavities and nasal sinuses was displaced with

wallpaper paste by intranasal lavage via a 26 Gauge IV cannula.

The heads were deep-frozen at 275uC in a full wallpaper paste

surrounding and cut on a Leica CM3500 cryostat for large tissue

blocks (Leica Microsystems, Nussloch, Germany). Horizontal

sections with 15 mm thickness were mounted on highly

transparent cellulose-acetate tape. They were dried in the

cryostat for 2 days and at ambient conditions for another 2

days. The sections on tape were mounted on microscopy slides and

stored at 275uC until autoradiography.

Tissue homogenization of human and mouse

brain. Tissue homogenization was performed to conform to

both the protocol for ELISA analysis [31] and the radioligand

binding assay [33].

The frozen mouse hemi-forebrains (50 mg/ml) and human

brain samples (100 mg/ml) for the radioligand binding assay were

first prepared in tissue homogenization buffer [33] (20 mM Tris

base, 1 mM EDTA, 1 mM EGTA, cOmplete Protease Inhibitor

Cocktail (Roche Applied Science, Mannheim, Germany)) using a

30 ml hand glass homogenizer (Dounce type, tight fit) (Sartorius

Stedim Biotech, Göttingen, Germany) which was used for

subsequent ELISA analysis. The stocks were then supplemented

with 250 mM sucrose and stored at 270uC for later tracer binding

analysis. All other tissue samples were processed for ELISA as

reported by Willuweit et al.

Autoradiography
The animals in the major subgroup of all study groups (Table 1)

received [3H]PiB (specific activity: 2.78 TBq/mmol, radiochem-

ical purity .97%) for ex vivo autoradiographical assessment of

brain distribution of the tracer 9.361.7 hr after the [11C]PiB

injection using the same injection protocol as in PET. After

induction of isoflurane anesthesia, 6.9560.81 MBq [3H]PiB was

injected and flushed with isotonic saline through the catheter

system such that the total applied volume was 0.2160.02 ml.

Once the [3H]PiB was applied intravenously, anesthesia was

immediately switched to peritoneal antagonisable triple anesthesia

(MMF) for MR scanning as explained above. Following the MR

imaging procedure, the animals were guillotined at 6262 min p.i.,

the full brain was removed within 862 min post-mortem, rapidly

frozen in fine-crushed dry ice and stored at 275uC until

autoradiographical data acquisition.

A total of 64 slides from 24 animals of the study collective were

measured (Table 1). A minimum of 2 slides with at least three

whole, or alternatively, at least four half horizontal sections were

measured for each animal from the transgenic study groups and

the old control group. 10 representative animals (6 transgenic and

4 controls) of the 24 were also measured in the digital

autographical modality for validation purposes, providing 44

cortical and 43 cerebellar regional measurements. Sections from

all animals were measured on tritium plates, providing 204

observations of the neocortical region and 195 observations of the

cerebellar region.

Digital autoradiography. Digital autoradiographic images

with a field of view of 24632 mm were taken with the M40 series

of m-ImagerTM (Biospace lab, Paris, France) using 10610 cm

scintillating foils with 1361.5 mm thickness (Applied Scintillation

Technologies, Harlow, England). The resolution with tritium is

20 mm, for carbon-11 it is about 40 mm, the detection threshold

for tritium is 0.4 cpm/mm2, for carbon-11 it is 0.7 cpm/mm2 and

the smallest pixel size is 1 mm. Instrument acquisition was

controlled with m-Acquisition software. Data was exported with

b Vision+ software (both by Biospace lab). A coregistered optical

image was taken with every scan.

Animals from the combined multi-modal subgroups were

measured in dual-label mode after injection of a cocktail of

[11C]PiB and [3H]PiB (Figure 6). Individual isotope signals were

seperated with an automated algorithm.
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Tritium plate autoradiography. A total of 50 slides with

deep frozen CNS sections were dried in ambient air for 60 min

and exposed under two halves of a large storage phosphor screen

BAS-IP TR 2040 E (GE Healthcare Lifesciences, Freiburg,

Germany). Then, the two plates were scanned with a CR35 Bio

(Raytest, Straubenhardt, Germany) in sensitive 25 mm resolution

mode. Scanning and data export was performed with AIDA

(Raytest).

Validity and reliability of quantification results as measured by

the tritium plate method was tested by measuring all samples from

digital autoradiography on the tritium plates as well. At least two

slides per transgenic animal containing three to four whole brain

or four to five half brain sections were acquired (Table 1).

Quantification of [3H]PiB retention on

autoradiographs. Lossless export of raw acquisition data to

16-bit grayscale TIFF images was executed with the software

packages from the imaging device manufacturers (BetaVision

(Biospace), AIDA Image Analyzer (Raytest)) for subsequent

processing, analysis and finishing in Adobe Photoshop CS5

Extended (PS5) for Mac (Adobe Systems Inc., San Jose, USA).

Regions for analysis (forebrain, neocortex and cerebellum) were

segmented in alpha channels of PS5 with neighboring Thioflavin

S-stained sections and the Paxinos atlas as anatomical reference

[68]. Integrated densities per region area were measured after

background subtraction and used for ROI ratio analyses [72].

Equality and validity of results was confirmed by measuring

samples of each group in NIH ImageJ, BetaVision and AIDA and

by correlating the results from digital and tritium plate

autoradiography.

Color tables for image presentation were imported from NIH

ImageJ.

Neurohistological staining
Thionin fast nuclear stain (Nissl). Fresh tissue mouse brain

sections were dried in ambient air for 15 min, immersed in 0.05%

(w/v) thionin acetate in a buffer of 0.1 M acetic acid and 0.1 M

potassium acetate for 4 min, mounted in Roti-Histokitt (Carl

Roth, Karlsruhe, Germany) and protected with coverslips for

rapid anatomical orientation within the set of histological material

for each animal.

Thioflavin S staining. Fluorescent staining with Thioflavin S

for frozen material was performed similar as reported by Willuweit

et al. [31]. Deep frozen mouse brain sections were dried in

ambient air for 15 min, immersion-fixed in ice-cold 4% (w/v)

paraformaldehyde (Carl Roth, Karlsruhe, Germany) for 20 min.

Sections were equilibrated in water twice for 2 min. Thioflavin S

was dissolved at 1% (w/v) in water, and the solution was filtered.

Sections were immersed in 1% Thioflavin S for 30 min at RT and

kept dark, rinsed twice for 2 min in water, and differentiated in

two changes of 80% ethanol (5 min and 1 min), washed in three

changes of water (2 min each) and mounted in ProLong Gold

antifade mounting medium (Invitrogen, Karlsruhe, Germany) with

coverslips. Thioflavin S staining of all sections for Ab plaque

quantification was performed in a single staining procedure to

ensure best possible comparability.

Ab40 and Ab42 Immunohistochemistry. Simultaneous

double immunofluorescence for frozen material was performed

similar to a staining protocol available in the Abcam (Abcam plc,

Cambridge, UK) online protocol database [73] with slight

modifications. Deep frozen mouse brain sections were dried in

ambient air for 15 min, immersion-fixed in ice-cold 4% (w/v)

paraformaldehyde (Carl Roth, Karlsruhe, Germany) for 10 min.

Sections were equilibrated in three changes of 1% PBS (1 min

each), permeabilized with 0.25% Triton X-100 in PBS for 10 min

and washed in three changes of PBS (5 min each). They were then

blocked with 10% normal donkey serum in PBS for 45 min,

washed quickly in three changes of PBS-Tween20 (0.05%) and

probed with the two primary antibodies (G2-10 (Merck Millipore,

Schwalbach, Germany) and AB3 (Araclon Biotech, Zaragoza,

Spain)) diluted in 1% BSA/PBS-Tween20 over night at 8uC.

Afterwards, they were washed in three changes of PBS (5 min

each) and incubated with two fluorophore-conjugated secondary

antibodies (A488-D-Rb (Invitrogen, Karlsruhe, Germany) and

Cy5-D-Ms (Jackson ImmunoResearch, Suffolk, UK) in 1% BSA/

PBS for 2 hours. After three washes in PBS (5 min each), nuclei

were stained by adding 0.5 mM DAPI (Sigma, Schnelldorf,

Germany) for 1 min. After the final washing steps the tissue was

coverslip-mounted with ProLong Gold Antifade mounting

medium (Invitrogen/Molecular Probes, Darmstadt, Germany).

Double anti-Ab staining of all sections for Ab plaque

quantification was performed in a single staining procedure to

ensure best possible comparability.

Microscopy
Fluorescence microscopy for Acapella 2.0 analysis was per-

formed as reported previously by Willuweit et al. [31]. Briefly,

digital micrographs were acquired using a BX51 microscope

(Olympus, Hamburg, Germany) with a ColorView II charge-

coupled display (CCD) camera (Soft Imaging System, Olympus,

Münster, Germany). The micrographs of horizontal mouse brain

sections were recorded through a 26objective followed by a 0.56
TV adaptor.

Entire-view high-resolution MosaiX pictures of horizontal

mouse brain sections were created with an AxioImager Z.1

microscope (Carl Zeiss Microimaging, Munich, Germany) on a

Zeiss CAN-Bus motor stage (Merzhäuser, Germany) using a 206/

0.5 M27 EC Plan-Neofluar Zeiss lens and Zeiss filter sets no. 49

(DAPI), no. 38 (HE Green Fluorescent Protein), no. 43 (HE

DsRed), no. 47 (HE Cyan Fluorescent Protein) and no. 50 (Cy5).

Micrographs were acquired with an AxioCam MRm Rev. 3.0

(Carl Zeiss Microimaging, Munich, Germany) camera. Data

acquisition was controlled with AxioVision 4.8.1 and conversion of

very large tiled MosaiX images to single 16-bit grayscale TIFF files

per channel was performed with AxioVision 4.8.2 SE64.

Histological quantification of relative Ab plaque burden
and plaque size distribution

Image analysis was performed basically as described in our

recent study [31] with a few modifications. Digital images were

evaluated with AcapellaTM 2.0 data analysis software (PerkinEl-

mer, Hamburg, Germany) using an updated plaque quantification

script for specific and sensitive recognition of individual plaques

and for quantitative assessment of relative plaque load.

Ab plaque burden was quantified using two different fluorescent

modalities: Thioflavin S-stained sections were analyzed using the

single channel method reported previously [31]. Double anti-Ab40

and anti-Ab42 immunostained sections were analyzed using two

channels simultaneously after skew correction.

Regions of interest (neocortex, thalamus and cerebellum) were

defined by manual segmentation in accordance with the

anatomical delineations given by Paxinos and Franklin [68] using

Adobe Photoshop CS5 Extended for Mac (Adobe Systems Inc.,

San Jose, CA, USA).

For the Ab40 channel, observations of smallest plaques were

excluded in order to control for mouse-on-mouse non-specificity of

the primary antibody. The validity and reliability of this approach

was successfully tested against the anti-Ab42 and Thioflavin S

channels.
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All sections contained major portions of the neocortex and

cerebellum. The thalamus could be delineated in the majority of

these sections. Measurements provided total plaque area per

defined regional area (relative total plaque burden) and counts for

individual plaque sizes (plaque size distribution).

Right-left comparisons were performed with thirteen animals of

the study collective (tg-old (3), tgtg-young (3), ctl-young (3) and ctl-

old (4)) and the data showed no differences.

Hence, 643 cortical and 411 thalamical regions were measured

on horizontal Thioflavin S stained sections (Table 1). Analogously,

158 cortical and 106 thalamical regions were measured on nearby

or neighboring horizontal anti-Ab40/42 stained sections.

To visualize plaque size distribution in neocortex and thalamus

among the study groups with Ab deposits, measured plaque areas

were considered as circles and categorized according to their radii.

To analyze the differences between groups and regions, we

histogrammed the individual plaque sizes for each transgenic

group and region, estimated Epanechnikov kernel density

functions and performed two-sample Kolmogorov-Smirnov tests

to test whether the two underlying one-dimensional probability

distributions differ.

Ab protein quantification with ELISA
Differential extraction of soluble and insoluble Abx–40 and Abx–

42 in human and mouse brain (Table 1) was performed as

described in detail previously [68] with slight modifications.

Briefly, brain homogenates were centrifuged at 53000 rpm for

30 min at 4uC. Supernatant and pellets were stored at 280uC.

Pellets were resuspended in the same volume of 70% formic acid,

kept on ice for 30 min and centrifuged likewise. Resulting

supernatants were neutralized with 19 volumes of 1 M Tris

pH = 11.3. Ab peptides were quantified in supernatants of both

extractions using commercially available ELISA kits (EZBRAIN40

(G2-10 clone) and EZBRAIN42 (G2-13 clone), Merck Millipore,

Schwalbach, Germany). Results are expressed as picogram Ab per

microgram tissue wet weight.

Combined multi-modal experiment
To gain a large spectrum of information across the various

modalities from a single animal, a combined multi-modal in vivo,

ex vivo and in vitro experiment with co-administration of [11C]PiB

and [3H]PiB was performed for four animals of the young study

group (2 tgtg-young and 2 ctl-young) (Figure 6, Table 4)).

After each animal had gone through a CT scan in the docked

PET/CT system, a cocktail of [11C]PiB and [3H]PiB was injected

and a PET image taken over 30 min. Then, the radioactivity of

the whole animal was measured in a Capintec dose calibrator, the

animal killed by decapitation, the whole brain taken out and blood

drawn for biodistribution and radioactivity measurement. One

half of the brain was dissected for regional brain biodistribution

(olfactory system, telencephalon, cerebellum and remaining brain

structures (diencephalon, midbrain)) and deep-frozen immediately

after gamma counting for later ELISA analysis of soluble and

insoluble Abx–40 and Abx–42. The other half was frozen on dry ice

and rapidly cut on a cryostat for dual-isotope digital autoradiog-

raphy (started around 1 hour p.i.) with subsequent automated

separation of isotope signals, and for later histological processing

for microscopy and histological Ab plaque quantification with

Thiofavin S, anti-Ab40 and anti-Ab42. Injected doses of [11C]PiB

in these two subgroups was higher than in the rest of the study

collective (see Table 1) to retain a sufficient signal for [11C]PiB

autoradiography while specific activities were remaining on the

common clinical routine level.

Radioligand saturation binding assay with [3H]PiB
Linearity of [3H]PiB binding was confirmed using the huAD-C

sample for a range of tracer (0.2 mM to 80 mM) and target (20 to

2000 mg/ml) concentrations and tracer incubation times (1 h to

9 h)). Test-retest studies with the biological tissue (huAD-C)

revealed robustness of the method with high reliability (Figure S9).

All brain homogenates were diluted in PBE buffer (10 mM

dibasic sodium phosphate, 1 mM EDTA, 10% EtOH) [74] to a

final concentration of 1000 mg/ml. Synthetic human Ab1–40 fibrils

(EZBioLab, Carmel, IN, USA) were prepared as described by

Lockhart et al. (0.5 mg/ml, pH 7.4, 200 rpm at 37uC for 48 h)

and were used as positive control at a final concentration of

10 mg/ml (Figure S8).

The fixed concentration of brain homogenate was titrated

against twelve concentrations of [3H]PiB (0.2 nM to 48 nM,

specific activity 3.15 GBq/mmol, Quotient Bioresearch, Fordham,

UK) for 3 h at 21uC on a flat shaker at 240 rpm (IKA-Werke,

Staufen, Germany). Nonspecific binding was determined in the

presence of 3 mM unlabeled PiB (ABX, Radeberg, Germany)

including 1 h preincubation. Each tissue sample was deployed on

two 96-well cell culture plates (Greiner Bio-One, Frickenhausen,

Germany) to a final reaction volume of 280 ml per well using 8-

channel electronic pipettes (Mettler Toledo, Giessen, Germany)

giving 24 octuples of data points per sample.

The bound and free fractions were seperated by vacuum

filtration through 0.3% polyethyleneimine-pretreated [75] GF/B

glass filtermats (GE Healthcare/Whatman, Dassel, Germany)

using a semi-automated Harvester 96 Mach II M (Tomtec,

Hamden, CT, USA). A constant automated 5-cycle pulse-wash

program (optimized for flow rate and volume) guaranteed stable

harvesting with 1.2 ml PBE washing per well at 2 psi.

Filters were cut and incubated in Aquasafe300plus scintillator

(Zinsser Analytic, Frankfurt, Germany) for 36 h before counting in

a Wallac WinSpectral 1414 liquid scintillation counter (PerkinEl-

mer, Rodgau, Germany). Free tracer (octuples of all twelve

[3H]PiB concentrations) and background were measured in every

experiment.

The specific binding signal under these assay conditions was

between 56% (human) and 91% (synthetic protein). Data were

analyzed using GraphPad Prism version 5.0 d for Mac (GraphPad

Software, La Jolla, CA, USA) to estimate the apparent dissociation

constant (Kd), the maximal number of binding sites (Bmax) and the

in vitro binding potential (BP) using the one-site and two-site

global analysis models.

To facilitate comparison among the in vitro [3H]PiB binding

data and to provide a measure for comparison with in vivo PET

data, we converted our results to in vitro binding potential (BP)

[76,77] similar to Klunk et al [33]. Bmax was converted from

femtomoles of [3H]PiB per milligram of brain to nanomolar units

assuming that one gram of brain equals one milliliter of brain

volume (i.e. 1 fmol/mg = 1 pmol/g;1 pmol/ml (of brain) = 1 n-

mol/l = 1 nM). Division by Kd in nanomolar units directly results

in BP.

Statistical analysis
For statistical analysis and graphical output, all data tables were

transformed from Microsoft Excel for Mac 2011 to Stata format

with Stat/Transfer 10 (Circle Systems, Seattle, WA, USA) for

analysis in Stata/IC 11.2 for Mac (Stata Corp., College Station,

TX, USA) if not noted otherwise.

Two-sided t-tests with unequal variances were used to test for

differences between groups. Significance level was set to 5% if not

specified otherwise.
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All reported correlations are pair-wise Pearson correlation

coefficients (r).

Supporting Information

Figure S1 [11C]PiB PET binding potential maps for
mouse brain. PET binding potential maps for [11C]PiB in

Alzheimer mouse brains and healthy control brain showing

individual data from the complete orthogonal PET/MR image

data (BPND, MRTM2) corresponding to Figure 2. (A) 23 month

old female hemizygous APP/PS1 mouse, (B) 9 month old female

homozygous APP/PS1 mouse, (C) 21 month old female

homozygous APP/PS1 mouse, (D) 23 month old female

C57BL/6J control mouse. PET color look-up-table is UCLA

(Pmod). Arrowheads (gray) indicate slice positions. The shown

coordinates are identical to those shown in Figure 1. For

horizontal slices (corresponding to Paxinos mouse brain atlas)

they are Bregma 21.90 mm, for coronal Bregma 20.10 mm and

for sagittal 0.65 mm lateral (right side).

(TIF)

Figure S2 [11C]PiB/[18F]FDG sequential PET in healthy
control. For reliable image co-registration (Figure S3) and

evaluation of extracerebral tracer uptake (Figure 3), several

transgenic and control animals were additionally injected with

[18F]FDG immediately after their [11C]PiB scan via the other

lateral tail vein and without moving the animals. Shown, here, are

the orthogonal views (A) at the same locations as in the other

figures and the horizontal views (B) from top to bottom (1 mm

apart) of an animal from the ctl-old study group which was

scanned for 120 min with [11C]PiB (60 min) (red) and [18F]FDG

(60 min) (green) without being moved in the scanner and which

received an MR scan, the same day. The [18F]FDG image was co-

registered to the MR scan and the resulting transformation matrix

applied to the [11C]PiB image. The static 30 min frames of the last

halves of each scan are shown in combination without any manual

co-registration among these datasets. Co-localization (yellow) shows

that, in this animal, the harderian glands have the largest

contribution to unspecific [11C]PiB uptake in the eye cavities.

Arrowheads (gray) in (A) indicate slice positions. The coordinates

for horizontal slices (corresponding to Paxinos mouse brain atlas)

are Bregma 21.90 mm, for coronal Bregma 20.10 mm and for

sagittal 0.65 mm lateral (right side).

(TIF)

Figure S3 Mouse brain PET/MRI image co-registra-
tion. Principle of manual co-registration process as applied for all

PET data of this study. Proximity of frontal cortex to extracerebral

regions with high unspecific [11C]PiB retention as shown in

Figure 3 requires precise co-registration for reliable PET analyses.

Three co-registered image modalities are shown in each panel:

PET template of early (1–4 min) radiotracer entrance (red), MRI

template (gray) and cranial CT (green). CTs and MRIs are co-

registered to Paxinos space along all axes. Top row (A): horizontal

views from top to bottom (1.0 mm apart). Middle row (B): coronal

views from nose to back of head (2.1 mm apart). Bottom row (C):

sagittal views from median to left (1.4 mm apart).

(TIF)

Figure S4 Volume-of-interest definition. Volumes-of-inter-

est (VOI) were defined on horizontal sections of mouse brain MRI

template in Paxinos atlas space. Defined paired and non-paired

neuroanatomical and cranial structures are cortex (neocortex

(magenta) and hippocampus (red)), thalamus (orange), olfactory bulb

(lavender), cerebellum (yellow), eyebulbs (bright green), harderian

glands (dark green), nasal sinuses (light blue). The same region

definition was used for autoradiographs and microscopic sections.

(TIF)

Figure S5 PET test-retest results. Three mice from the tgtg-

old study group were scanned twice with the same PET imaging

protocol. Scans were about one week apart. Time activity curves

show dynamic neocortical (red) and cerebellar (blue) uptake during

first (dark) and second (light) scan. Peak of cerebellar [11C]PiB

uptake was taken as maximum for each scan. Middle panel shows

how the injection during the retest scan was slower than during the

test scan while the specific uptake tail of the curves approach each

other. One retest scan (C) was for 30 min while all other scans

were of 60 min duration. Binding potential values (BPND) as

estimated with MRTM2 are noted in each panel for test/retest

scans.

(TIF)

Figure S6 Time-activity curve averages per group.
Averaged neocortical (red) and cerebellar (blue) time-activity curves

(TACs) for the major study groups. The behavior of individual

TACs as shown in Figures 1 is also reflected in the groupwise

behavior. Peak of cerebellar [11C]PiB uptake was taken as

maximum for each animal. Vertical bars depict one standard

deviation from group average. (A) tg-old, (B) tgtg-young, (C) tgtg-

old and (D) ctl-old.

(TIF)

Figure S7 Thioflavin S and Ab40/42 antibodies for
histological quantification of Ab plaques. Ab plaque

burden was analyzed on histological sections stained with

Thioflavin S and double immunofluorescence against Ab40 and

Ab42 by applying a semi-automatic imaging algorithm. All

animals were analyzed in PET, before. Scatter plot matrix

showing individual relative plaque areas (%) for neocortex of the

transgenic study groups in all three staining modalities including

the compound signal of the Ab40/42 antibodies. The results show

how plaque area quantification with Thioflavin S tightly correlates

to the specific antibodies. Hence, it was used representatively in

Figure 7. Pairwise correlation coefficients (r) for each pair of

modalities are noted in each panel. The study groups in the scatter

matrix are identified by color: tg-old (orange), tgtg-young (yellow)

and tgtg-old (red).

(TIF)

Figure S8 Radioligand binding assay for synthetic Ab40
fibrils. Positive synthetic protein control for radioligand

saturation binding assay with [3H]PiB to human and mouse brain

tissue. (A) Total and nonspecific binding data octuples for synthetic

Ab1–40 fibrils. Solid curves show nonlinear fits with two-site model.

Dashed lines describe 95% confidence bands around the fit. (B)

Specific binding curve for [3H]PiB to Ab1–40 fibrils as a result from

total and nonspecific as shown in (A). (C) Scatchard graph created

with data shown in (B). Each data point is derived from the mean

value of the original data octuples. (D) Semilogarithmic represen-

tation of the specific binding data as seen in (B) to show infliction

points. Therefore, more appropriate estimates are yielded by

fitting the global two binding sites model. Bmax, Kd and BP values

for the low- and high-affinity binding sites of this dataset are noted

at the bottom.

(TIF)

Figure S9 Binding assay test-retest results. [3H]PiB

binding to the severely affected human AD tissue sample

(huAD-C) was repeated twice to test robustness of the method

for biological material. Solid curves show nonlinear regression fits

with single binding site model. Dashed lines describe 95%
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confidence bands around the fit. Binding data yielded from the

single site model are noted in the panel for each experimental run.

(TIF)

Figure S10 Cross-validation of PET with other modal-
ities. Summary of the major experimental results for the study

collective as a scatter matrix. Correlation of in vivo [11C]PiB PET

binding potential for mouse neocortex with relative neocortical

[3H]PiB uptake in autoradiography, with relative neocortical Ab
plaque burden as stained by Thioflavin S and with insoluble Abx–

40 and Abx–42 protein levels in forebrain (left column) as presented in

Figure 7. Remaining scatter plots show robustness, consistency

and validity of the cross-validation. Neocortex was used as the

primary target region except for ELISA (Abx–40 and Abx–42

protein levels) where the whole forebrain was used according to

previous protocols. Data across the modalities was acquired from

tissue of the same animals (as shown in Table 1). Individual

animals are identified by their unique number code within their

study group. The coloring of study groups in the scatter plots

shows how each group is fully separated from each other. Color

code: tg-old (orange), tgtg-young (yellow), tgtg-old (red) and ctl-old

(blue). Pairwise correlation coefficients (r) for each pair of modalities

are noted in each scatter plot. Histological quantification with

Thioflavin S is used representatively for all histological quantifi-

cation results because of its tight correlation with anti-Ab40/42 as

described in Figure S7. Here, the animals presented in Figures 1

and 2 are coded with #5 (tg-old), #5 (tgtg-young), #1 (tg-old) and

#1 (ctl-old).

(TIF)

Table S1 Robustness of PET results. PET results shown as

averages for the major study groups with neocortex as target

region and cerebellum as reference region. Results were tested for

differences between groups corresponding to the staging of Ab
load in these groups (i.e. p-value for difference to group below).

Here, significance level is set to 1%. Names of study groups

correspond to Table 1.

(PDF)
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