

Challenges in CAE Geometry

Henry Bucklow Product Manager International TechneGroup Ltd

Introduction

- ITI International TechneGroup Inc.
 - Focussed on critical role of geometry in engineering
 - Offices in Cincinnati, Tel Aviv, Cambridge
- ITI Cambridge, UK
 - Suppliers of CADfix: a tool for translation, repair, and transformation of CAD models for CAE
 - Nearly 40 years of developing CAE tools
 - 25+ years of research into 3D medial object

International TechneGroup

- The representation of the material domains to be simulated
 - Usually volumes
- The interface between design (CAD) and simulation (CAE)

- An obstacle!
- Challenge: to make CAE geometry invisible

Examples

- Boundary representations offer little help in traversing volume
 - Local thickness
 - Local aspect ratio
 - Opposite position
 - Interpolation

• Require some further "scaffolding" to reason about shape of domain

- Approach: tetrahedral mesh
 - Largely robust automatic tetrahedral meshing exists
 - Common scaffold for geometry reasoning
 - Estimates of thickness and aspect ratio
 - Interpolating field over volume
 - Solving PDEs

- Approach: octree
 - Robust octree generation straightforward
 - Common scaffold for mesh generation
 - Interpolating field over volume
 - Establishing topology for shrinkwrap style meshing

- Approach: medial axis
 - Robust 3D medial axis generation is hard but possible
 - Common scaffold for geometry reasoning
 - Thickness
 - Aspect ratio
 - Hex meshing
 - Midsurfacing
 - Feature detection

- Challenges:
 - Reasoning about interior of domain given only boundary information
 - Developing a scaffold that accurately answers questions about volume
 - Generating scaffold robustly

- CAD is typically too complex for efficient simulation
 - Excessive face topology
 - Too much detail

- Approach: B-rep feature removal
 - Holes
 - Protrusions
 - Fillets

- Approach: virtual topology
 - Treating a carpet of faces as a single face
 - Provide a single parameter space for the whole virtual face

- Approach: facets
 - Replace geometry with facetted model
 - Avoids issues with CAD b-rep
 - Curved facets allow more faithful & efficient representation

- Challenges
 - Maintaining connection back to CAD model
 - Automation
 - Robustness
 - Detecting & removing emergent features
 - Reporting changes in an understandable way
 - Building trust in process

- Solver requires boundary-fitted hex elements
 For reasons of speed & fidelity
- Domain must be partitioned into topologically hexahedral regions
 - Requires significant expertise to do well
 - Difficult to automate

• Approach: 3D medial axis

LayTracks3D: a new approach to meshing general solids using medial axis transform, Quadros, 2014.

• Approach: 3D medial axis (external)

• Approach: 3D frame field

Hex-dominant meshing approach based on frame field smoothness, P.-E. Bernard et al, 2014.

All-Hex Meshing using Singularity-Restricted Field, Yufei Li et al., 2012.

- Challenges:
 - Automation
 - Quality
 - Robustness
 - Scale
 - Managing compromises between geometric accuracy and mesh quality

Example: Midsurfacing

- Simulation of sheet metal parts can be accelerated by simulation with shell elements

 Improved speed & sometimes fidelity
- Domain must be reduced to midsurface representation
 - Difficult to fully automate

Example: Midsurfacing

• Approach: 3D medial axis

Example: Midsurfacing

- Challenges
 - Connection back to CAD from idealised model
 - Automation
 - Robustness
 - Scaling
 - Junctions
 - Handling areas poorly approximated by midsurface

Example: Outer mold line

- Simulation needs wetted skin (OML)
- Design is very complex and "dirty" with gaps & overlaps between parts
 - Not feasible to prepare with manual tools

Example: Outer mold line

- Approach: Shrinkwrapping
 - One-click method
 - Discard holes, gaps, features smaller than some $\boldsymbol{\epsilon}$
 - Topology established by octree or tet mesh

28

Example: Outer mold line

- Challenges
 - Building trust in automated process
 - Reporting where geometry was/wasn't respected
 - Leak detection: spotting when a shrinkwrap fails to suppress a hole & leaks inside
 - Unwanted "webs" between nearby parts
 - Maintaining sharp edges
 - Keeping edges for boundary conditions

Example: Corrosion

- Real parts experience damage & aging
- Point scan data can provide geometry of damaged parts
- How to integrate this data into analysis?

Photo: Doug Letterman

Example: Corrosion

- Approach: NURBS morphing
 - Find offsets between point scan & CAD model
 - Deform CAD model to fit point scan
 - Mesh & analyse deformed CAD model as usual

Example: Corrosion

- Challenges
 - Point cloud registration against CAD
 - Noise & artefacts in point cloud data
 - Constructing deformation vectors from point cloud
 - NURBS deformation with variable sample density
 - Changes which alter model topology

- Take an optimised model back to design
 - Optimised design typically consists of a modified mesh
 - Must be taken back to CAD to be useful downstream

- Approach: morphing
 - Apply mesh deformations to deform CAD model
 - Morph NURBS surfaces to fit deformation results

- Approach: back-to-CAD
 - Segment mesh & fit NURBS surfaces

- Challenges:
 - Automation
 - Maintaining connection to starting CAD
 - Taking discrete results to continuous CAD
 - Morphing with data of variable density
 - Segmenting non-smooth data for NURBS fitting
 - Fitting NURBS to non-smooth data

Conclusions

- CAE geometry is necessary
 - CAD is not suitable for simulation
 - CAD is not suitable for optimisation
- Bi-directional connection between CAD and CAE requires better CAE geometry
 - Automatic translations of CAD to CAE
 - Associativity between CAD and CAE geometry
 - Translation of optimal CAE geometry back to CAD
- Technologies already exist to help
 - Lots more work is needed

Thank you!

Please visit us at iti-global.com

