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the wave resistance (wr) problem – 1

consider the flow of a uniform stream of an ideal fluid with a free
surface incident upon a surface-piercing or fully-submerged body.
Decompose the velocity potential Φ in the form:

Φ = −Ux + ϕ

Figure 1: geometric configuration of the problem for a surface piercing
body.
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the disturbance potential ϕ must satisfy:

I the Laplace equation

I body-boundary condition (of kinematic character)
I a pair of conditions satisfied on the unknown free surface:

(i) kinematic condition: on the free surface the flow velocity must
be tangential and

(ii) dynamic condition: the pressure on the free surface must be
constant

I radiation condition ensuring existence and uniqueness: waves
radiated by the body are directed mainly downwards

I appealing to the theory of infinitesimal waves, the free-surface
conditions are linearized by neglecting higher-order terms
with respect to U and by applying the resulting equations on
the undisturbed free surface instead of the unknown free
surface



wr-problem: the Neumann-Kelvin problem – 3

the disturbance potential can be represented as:

ϕ(P) =

∫
{wetted surface: S}

µ(Q)G (P,Q)dS(Q) +

1

k

∫
{waterline: `}

µ(Q)G ∗(P,Q)n1(Q)τ2(Q)d`(Q)

where µ is the density of a single-layer distribution of the so-called
Neumann-Kelvin singularities G (P,Q):

4πG (P,Q) = r−1 − (r ′)−1 + G ∗(P,Q)

I r = ‖P−Q‖, r ′ = ‖P−Q′‖ with Q′ denoting the image of Q
with respect to the undisturbed free surface z = 0

I G ∗(P,Q) stands for the regular part, consisting of exponential
decaying and wavelike components



wr-problem: Boundary Integral Equation (BIE) – 4

since G(P,Q) satisfies

I the linearized condition on the undisturbed free surface and

I the conditions at infinity,

the Neumann-Kelvin problem is equivalently reformulated as a BIE
on the body boundary S , characterized by a weakly singular kernel

µ(P)

2
−
∫
S
µ(Q)

∂G (P,Q)

∂n(P)
dS(Q)

1

k

∫
`
µ(Q)

∂G ∗(P,Q)

∂n(P)
n1(Q)τ2(Q)d`(Q) = U · n(P), P,Q ∈ S .

k = g/U2 is the characteristic wavenumber, controlling the
wavelength of the transverse ship waves



wr-problem: T-splines – 5

I the basic object underlying T-spline technology 1 , 2 is the
T-mesh

1Sederberg, T. W., Zheng, J. and Song, X., 2003 Knot intervals and
multi-degree splines, Computer Aided Geometric Design, vol. 20, 455-468

2Sederberg, T. W., Zheng, J., Bakenov, A. and Nasri, A (2003) T-splines
and TNURCCs, ACM Transactions on Graphics , vol. 22, 477-484.
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I the basic object underlying T-spline technology 1 , 2 is the
T-mesh

I surfaces: a T-mesh is a polygonal mesh

I each element is a quadrilateral whose edges are permitted to
contain T-junctions

I a control point, PA ∈ R3 and a control weight, wA ∈ R+,
where the index A denotes a global control point number, is
assigned to every vertex in the T-mesh

I an extraordinary point is an interior vertex that is not a
T-junction and whose valence 6=4.

1Sederberg, T. W., Zheng, J. and Song, X., 2003 Knot intervals and
multi-degree splines, Computer Aided Geometric Design, vol. 20, 455-468

2Sederberg, T. W., Zheng, J., Bakenov, A. and Nasri, A (2003) T-splines
and TNURCCs, ACM Transactions on Graphics , vol. 22, 477-484.



wr-problem: T-splines – 6

Figure 2: an unstructured T-mesh: the single T-junction is denoted by a
hollow square – the two extraordinary points are denoted by hollow circles



wr-problem: T-spline based isogeometric BEM – 7

a T-spline basis for our geometry

we assume that the body-boundary is accurately represented as a
T-spline surface:

S =
ne⋃
e=1

Se , Se(ξ̃) =

ncp∑
i=1

diR
e
i (ξ̃), ξ̃ ∈ Ω̃e ,

where

I ncp is the number of control points or T-mesh vertices di in
the T-mesh
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a T-spline basis for our geometry

we assume that the body-boundary is accurately represented as a
T-spline surface:

S =
ne⋃
e=1

Se , Se(ξ̃) =

ncp∑
i=1

diR
e
i (ξ̃), ξ̃ ∈ Ω̃e ,

where

I ncp is the number of control points or T-mesh vertices di in
the T-mesh

I Re
i is the restriction of the rational T-spline basis function Ri

at Ω̃e

I ne is the number of elements



wr-problem: T-spline- & IGA- based BEM – 8

the isogeometric (IGA) concept

the unknown source-sink surface distribution µ is approximated
by the very same T-splines basis used for the body-boundary
representation, that is:

µ(P) =

ncp∑
i=1

µi R̃i (P), P ∈ S ,

where R̃i (P) ≡ Re
i (ξ̃(P)),P ∈ Se



wr-problem: T-spline- & IGA- based BEI – 9

T-spline based IGA-BEM

inserting the T-spline approximation of µ into the BIE, we get:

1

2

ncp∑
i=1

µi R̃i (P)−
ncp∑
i=1

µin(P) · ui (P) = U · n(P), P ∈ S ,

where

ui (P) =

∫
S
R̃i (Q)∇PG (P,Q)dS(Q) +

+k−1
∫
`
R̃i (Q)∇PG

∗(P,Q)n1(Q)τ2(Q)d`(Q)

are the so-called induced velocity factors
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I next we collocate the BIE by specifying ncp collocation points
Pj , j = 1, . . . , ncp, on S

I for smooth ship hulls, these points are choosen to be the
1-ring collocation points 3 for both the non-extraordinary and
extraordinary vertices of the T-mesh

I this definition of collocation points is a generalization of the
Greville abscissae for the cases of unstructured grids,
T-junctions and extraordinary points

we thus obtain the following linear system of equations with
respect to the unknown coefficients µi :

ncp∑
i=1

µi

[
R̃i (Pj)− 2n(Pj) · ui (Pj)

]
= 2U · n(Pj), j = 1, . . . , ncp.

3M. A. Scott, R. N. Simpson, J. A. Evans, S. Lipton, S. P. A. Bordas, T. J.
R. Hughes and T.W. Sederberg (2013) Isogeometric boundary element
analysis using unstructured T-splines, Computer Methods in Applied
Mechanics and Engineering, vol. 254, 197-221.
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I in the final linear sysyem, the integrals involved in the
calculation of the induced velocity factors are localized to
integrals over Bézier elements using the Bézier extraction
framework described in S

I since these singular integrals are defined in the Cauchy
Principal Value (CPV) sense, we employ the following
technique:

I we exclude an ε−neighborhood, with ε→ 0, around the
singularity at the collocation point Pj

I in order to maintain a uniform numerical scheme for the
calculation of the CPV integrals, we need to make sure that
the collocation point Pj lies in the interior of Bézier elements

I if this is not the case, we shift appropriately the corresponding
collocation point
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velocity error distribution for T-spline refinement

an analytical expression of the velocity on the surface of the
spheroid is available
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velocity error distribution for T-spline refinement
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wr: tests: prolate spheroid in infinite domain - 12

velocity error distribution for T-spline refinement

an analytical expression of the velocity on the surface of the
spheroid is available
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wr: tests: prolate spheroid in infinite domain - 13

velocity-error for NURBS refinement

an analytical expression of the velocity on the surface of the
spheroid is available
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wr: tests: prolate spheroid in infinite domain - 13

velocity-error for NURBS refinement

an analytical expression of the velocity on the surface of the
spheroid is available

Figure 4: DoF = 703
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wr: tests: prolate spheroid in infinite domain - 13

velocity-error for NURBS refinement

an analytical expression of the velocity on the surface of the
spheroid is available

Figure 4: DoF = 1587
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wr: tests: prolate spheroid infinite domain - 14

L2-error convergence: T-splines vs NURBS

I T-spline meshes are locally h-refined based on comparison
with the analytic solution

I NURBS results correspond to the unique NURBS refinement
of each of the T-spline meshes
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wr: tests: surface piercing ship-hull – 15

modeling via Rhinoceros T-spline plugin

I the T-spline hull is locally of polynomial degree three in both
directions with 79 control points

I since no extraordinary control points exist, a unique
conversion of the T-spline rep into a single NURBS patch is
feasible with 132 control points

Figure 5: DoF = 519



wr: tests: surface piercing ship-hull – 16

L2-error convergence: T-splines vs NURBS

we have constructed a “reference solution” of the problem by
inserting uniformly 9 knots in every knot interval of the original
NURBS representation and computed the IGA-BEM approximation
of µ for the resulting NURBS surface.

Figure 6: uniformly refined NURBS
mesh (left) and corresponding reference
solution (right)
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L2-error convergence: T-splines vs NURBS

we have constructed a “reference solution” of the problem by
inserting uniformly 9 knots in every knot interval of the original
NURBS representation and computed the IGA-BEM approximation
of µ for the resulting NURBS surface.
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Figure 6: T-spline based local refinement process, the corresponding NURBS
refinement and the refinement process resulting from inserting uniformly r
knots in each parametric interval of the original NURBS representation
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Équipe Projet INRIA Commune Européenne, 2016-20.
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