

Geometry related research and associated challenges

Presented by: Trevor Robinson

> School of Mechanical and Aerospace Engineering, Queen's University of Belfast

collaborators...

- Cecil Armstrong
- Dheeraj Agarwal
- Flavien Boussuge
- Jorge Camacho Casero
- Harry Fogg
- Benoit Lecallard
- Jonathan Makem

- Declan Nolan
- Dimitrios
 Papadimitrakis
- Liang Sun
- Sriharsha
 Sheshanarayana
- Chris Tierney
- •

Introduction

- Geometry related research
 - Simulation Intent
 - Generating efficient meshes using geometric reasoning
 - CAD features and parameterisation
- Issues that occur

Computer-Aided Design

- Objective: support the use of a feature based CAD system
 - e.g. Siemens NX, Catia V5 (MCAD systems)
- Parameters are those which control the features in the CAD model's feature tree
- All our approaches aim to keep the feature history intact throughout
 - For many this is the model's "design intent"

Simulation Intent

Simulation intent

Capturing high-level modelling and idealisation decisions to create a fitfor-purpose analyses

Cellular modelling

 Space divided into a non-manifold assembly of analysis "significant" cells **Challenges:** analyses R -Creating the non-manifold model of space ht -Keeping a non-manifold version of the model alongside the version in the CAD system ENGINE **Contact Interface** Solid-fluid interface

Virtual topology

- Defining the topology of an analysis model using operations on the topology of the original CAD model
 - No change in the underlying CAD model

<u>Challenges:</u> -How and where to store the virtual topology model -How to generate mesh in the presence of virtual topology

Equivalencing

 Capturing how different CAD and analysis models represent the same regions of space (cells in the cellular model)

Challenge:

-How to keep robust links between multiple models in different toolsets -How to update the links as the design changes

Simulation Intent

- So far we have:
 - Used the Parasolid kernel directly to compute all cells for a CAD model (solid and void)
 - Stored the cellular model in a relational database
 - Linked the NX CAD model to the Parasolid model
 - Used to database to implement and store virtual topology operations
 - Associated numerous analysis models with different combinations of cells

Generating efficient meshes using geometric reasoning

Geometric reasoning

- Match element shape to the geometry
- Decompose a model into:
 - Thin sheet regions
 - Long slender regions
 - Residual regions

<u>Challenges:</u> -Identifying the different region types in a CAD model -Defining the cells representing the different regions

(f)

Generating efficient meshes

Dimensional Reduction

- Shell elements & thickness
- Beam elements & attributes
- Tet elements/point mass plus attributes

Sweep meshing

- Hex or wedge elements which are much larger laterally than they are thick
- Hex or wedge elements which are much longer

-long their length

Challenges:

Dimensionally reducing thin-sheet and long slender regions
Automatically calculating attributes
Building contiguous meshes
Efficiently meshing residual regions

elements

- So far we can:
 - Identify thin sheets using face pairs
 - Identify long slender regions using topologically connected loops of "4 sided" wall faces
 - Identify residual regions which are sweep meshable

Quasi-axisymmetric models – dimensional reduction

- Automatically reduce to an axisymmetric model
- Calculate shape properties

Quasi-axisymmetric models – identifying repeated sectors

- Identify the minimum number of repeated sectors in the model
- Identify efficient meshing strategies for the repeated features

-Identifying the repeated features
-Identifying sweep meshable sectors
-Building compatible meshes on the repeated sectors

CAD features and parameterisation

Z X

Design velocity

 A measure of boundary movement caused by a parameter change Same face label **Challenges:** - We want to use different CAD systems and any feature type -Measuring shape change when: >Face labels change >New topological entities occur >Models with 1000s of parameters

Adjoint analysis

 Provides a prediction of the change in performance which occurs if the model boundary is moved

• Coupled design velocity and adjoint sensitivity can be used for optimisation

Updating the CAD model

 Can adjoint information be used to update the features in the CAD model if existing ones do not move it in the preferred manner

Challenges:

Automatically identifying where to add new features
 Automatically selecting which feature type to add
 Automatically adding the feature

New features in areas of highest sensitivity

What has been achieved?

- Developed CAD system independent geometrical and topological cellular representations
- Linked CAD and CAE models
 - manifold and non-manifold representations, geometry idealisations, parameters and boundary movement
- Reduced reliance on hard geometric decompositions

What is needed?

- Models with automatic parameterisation updating
- Robust automatic decomposition and meshing tools
- Analysis model updates linked to design changes
- Meshing in presence of virtual topology operations

Acknowledgements

- We would like to thank our many collaborators for there insights, interest and funding which has contributed to this work
- In particular:
 - Rolls-Royce, Airbus, ITI, EC-IODA ITN, GEMinIDS partners, (EC, EPSRC, InnovateUK)

ECCM – ECFD 2018

6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) ECCM 6

7th European Conference on Computational Fluid Dynamics ECFD 7

June 11- 15, 2018, Glasgow, UK

Minisymposia MS194

NEXT GENERATION DIGITAL MOCK-UPS FOR MULTI-PHYSICS SIMULATION

- FE pre-processing techniques
- CAD-CAE integration
- Assembly modelling