ADVANCED PLACEMENT PHYSICS 1 TABLE OF INFORMATION & EQUATIONS

CONSTANTS AND CONVERSION FACTORS		
Proton mass, $m_p = 1.67 \ge 10^{-27} \ge 10^{-27}$ Neutron mass, $m_n = 1.67 \ge 10^{-27}$	Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$ Coulomb's law constant, $k = 1/4\pi\epsilon_0 = 9.0 \times 10^9$	
kg	$N \cdot m^2/C^2$	
Electron mass, $m_e = 9.11 \ge 10^{-31}$ kg	Universal gravitational constant, $G = 6.67 \times 10^{-11}$ m ³ /kg•s ²	
Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$	Acceleration due to gravity at Earth's surface, $g = 9.8$ m/s ²	

	meter, m	kelvin, K	watt, W	degree Celsius, °C
UNIT	kilogram, kg	hertz, Hz	coulomb, C	
SYMBOLS	second, s	newton, N	volt, V	
	ampere, A	joule, J	ohm, Ω	

PREFIXES			
Factor	Prefix	Symbol	
1012	tera	Т	
109	giga	G	
106	mega	М	
103	kilo	k	
10-2	centi	С	
10-3	milli	m	
10-6	micro	μ	
10-9	nano	n	
10-12	pico	р	

VALUES	OF TRI	GONOM	ETRIC	FUNCTI	ONS F	OR COM	MON ANGLES
θ	0°	30°	37°	45°	53°	60°	90°
sin <i>θ</i>	0	1/2	3/5	$\sqrt{2/2}$	4/5	$\sqrt{3/2}$	1
cosθ	1	$\sqrt{3/2}$	4/5	$\sqrt{2/2}$	3/5	1/2	0
tanθ	0	$\sqrt{3/3}$	3⁄4	1	4/3	$\sqrt{3}$	8

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. Assume air resistance is negligible unless otherwise stated.
- III. In all situations, positive work is defined as work done <u>on</u> a system.
- IV. The direction of current is conventional current: the direction in which positive charge would drift.
- V. Assume all batteries and meters are ideal unless otherwise stated.

	MECHANICS	
Equation	Usage	
$\overline{v_{avg}} = \frac{\Delta \vec{x}}{\Delta t}$	Calculate average velocity	
$\overline{v_{avg}} = \frac{\Delta \vec{x}}{\Delta t}$ $\overline{a_{avg}} = \frac{\Delta \vec{v}}{\Delta t}$ $\Sigma \vec{t} \overline{t_{net}}$	Calculate average acceleration Calculate acceleration	a = acceleration A =amplitude d = distance
$\vec{a} = \frac{\Sigma \vec{t}}{I} = \frac{\overrightarrow{t_{net}}}{I}$ $v_x = v_{x0} + a_x t$	Kinematic equations for describing linear	E = energy f = frequency
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	motion with constant acceleration in one and two dimensions.	<i>F</i> = force <i>I</i> = rotational inertia <i>K</i> =kinetic energy <i>k</i> = spring constant
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$		$L = \text{angular momentum} \\ \ell = \text{length}$
$\frac{x = A\cos(2\pi ft)}{\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2}$	Kinematic equations for describing angular motion with constant angular acceleration.	m = mass P = power p = momentum
$\omega = \omega_0 + \alpha t$		r = radius or separation T = period
$\omega^2 = \omega_0^2 + 2\alpha_r(\theta - \theta_0)$		<i>t</i> = time <i>U</i> = potential energy
$\frac{\omega^2 = \omega_0^2 + 2\alpha_x(\theta - \theta_0)}{\overline{g} = \frac{\overline{F_g}}{m}}$	Calculate gravitational force on an object with mass <i>m</i> in a gravitational field of strength <i>g</i> in the context of the effects of a net force on objects and systems.	V = volume v = speed W = work done on a system x = position
$\left \vec{F}_{f}\right \leq \mu \left \vec{F}_{n}\right $	Make claims about various contact forces between objects based on the	y = height $\alpha = angular acceleration$
$\left \vec{F_s}\right = k \left \vec{x}\right $	microscopic cause of these forces. Explain contact forces (tension, friction, normal, spring) as arising from interatomic electric forces and that they therefore have certain directions.	$\mu = \text{coefficient of friction}$ $\theta = \text{angle}$ $\rho = \text{density}$ $\tau = \text{torque}$ $\omega = \text{angular speed}$
$\overrightarrow{a} = \frac{\Sigma \overrightarrow{F}}{m} = \frac{\overrightarrow{F}_{net}}{m}$	If an object of interest interacts with several other objects, the net force is the vector sum of the individual forces.	
$\left F_{g}\right = G \frac{m_{1}m_{2}}{r^{2}}$	Use Newton's law of gravitation to calculate the gravitational force that two objects exert on each other and use that force in contexts other than orbital motion. Calculate gravitational force between	

ADVANCED PLACEMENT PHYSICS 1 EQUATIONS, EFFECTIVE 2015

		
	two objects and use that force in contexts	
	involving orbital motion.	
v^2	Calculate acceleration for situations where there is both a radial and	
$a_c = \frac{1}{r}$	tangential acceleration for an object moving in a circular path.	
$\frac{a_c = \frac{v^2}{r}}{K = \frac{1}{2}mv^2}$	Determine the change in kinetic energy of an object given the forces on the object and the displacement of the object.	
$\Delta E = W = F_{\parallel}d = Fdcos\theta$		
$\Delta E = W = F_{\parallel}d = Fdcos\theta$ $K = \frac{1}{2}I\omega^{2}$	Calculate the total energy of a system. Predict changes in the total energy of a system due to changes in position and speed of objects or frictional interactions within the system.	
$\Delta U_g = mg \Delta y$	System.	
$U_s = \frac{1}{2}kx^2$		
$U_g = -\frac{Gm_1m_2}{r}$		
$U_g = -\frac{Gm_1m_2}{r}$ $T = \frac{2\pi}{\omega} = \frac{1}{f}$	Calculate and/or describe potential energy, the internal energy of systems, and changes in kinetic energy and potential energy of a system.	
$T_p = 2\pi \sqrt{rac{l}{g}}$	Calculate power, defined as the rate of energy transfer into, out of, or within a system.	
$T_s = 2\pi \sqrt{\frac{m}{k}}$		
$P = \frac{\Delta E}{\Delta t}$		
$p = \frac{m}{V}$	Calculate momentum.	
$ec{p}=mec{v}$		
$\Delta \vec{p} = \vec{F} \Delta t$		
$\frac{\Delta p}{\tau = r_{\perp}F = rFsin\theta}$	Calculate torque	
$\frac{1}{L} = I\omega$	Use the torque exerted on an object to calculate angular momentum,	
	the magnitude of angular momentum, and change in angular	
$\Delta L = \tau \Delta t$	momentum.	
L = mvr		
$\mathbf{L} = \mathbf{H} \mathbf{V} \mathbf{V}$	I	

ELECTRICITY				
Equation	Usage			
$\left \vec{F}_{E}\right = k \left \frac{q_{1}q_{2}}{r^{2}}\right $ $I = \frac{\Delta q}{r^{2}}$	Calculate the magnitude of an electric field (Coulumb's Law) Calculate conservation of	A = area F = force I = current		
$\frac{\Gamma = \Delta t}{R = \frac{\rho \ell}{A}}$	electric charge Calculate resistivity of matter	ℓ = length P = power q = charge		
$I = \frac{\Delta V}{R}$ $R_s = \sum_i R_i$ $\frac{1}{R_p} = \sum_i \frac{1}{R_i}$	Describes the conservation of electric charge in electrical circuits (Kirchhoff's junction rule)	R = resistance r = separation t = time V = electric potential ρ = resistivity		
$\frac{K_p - \sum_i K_i}{P = I\Delta V}$	Describe conservation of energy in electrical circuits (Kirchoff's loop rule)			

ADVANCED PLACEMENT PHYSICS 1 EQUATIONS

WAVES				
Equation	Usage	<i>f</i> = frequency		
$\lambda = \frac{v}{f}$	Calculate the wavelength of a periodic wave	v = speed $\lambda =$ wavelength		

GEOMETRY AND TRIGONOMETRY				
Equation	Usage			
A = bh	Area of a rectangle			
$A = \frac{1}{2}bh$	Area of a triangle	<i>A</i> = area <i>C</i> = circumference		
$A = \pi r^2$	Area of a circle	V = volume		
$C = 2\pi r$	Circumference of a circle	S = surface area		
$V = \ell w h$	Volume of a rectangular solid	b = base		
$V = \pi r^2 \ell$	Volume of a cylinder	h = height		
$S = 2\pi r\ell + 2\pi r^2$	Surface area of a cylinder	$\ell = \text{length}$		
$V = 4\pi r^3$	Volume of a sphere	w = width		
$V = \frac{4}{3}\pi r^3$	Surface area of a sphere	r = radius		
$S = 4\pi r^2$		i iaulus		

Pythagorean theorem Calculate the value of the angles of a right triangle	$c^{2} = a^{2} + b^{2}$ $\sin\theta = \frac{a}{a}$	c a
	$\cos\theta = \frac{c}{b}$ $\tan\theta = \frac{a}{b}$	θ 90°