ADVANCED PLACEMENT PHYSICS 2 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS			
Proton mass, $m_p = 1.67 \ge 10^{-27} \text{ kg}$	Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$		
Neutron mass, $m_n = 1.67 \ge 10^{-27} \text{ kg}$	1 electron volt, 1 eV = 1.60×10^{-19} J		
Electron mass, $m_e = 9.11 \ge 10^{-31} \text{ kg}$	Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$		
Avogadro's number, $N_0 = 6.02 \ x \ 10^{23} \text{mol}^{-1}$	Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$		
Universal gas constant, $R = 8.31 \text{ J/(mol} \cdot \text{K})$			
Boltzmann's constant, $k_B = 1.38 \times 10^{-23}$ J/K	Acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$		
1 unified atomic mass unit, $1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV}/c^2$			
Planck's constant, $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$ $hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^{3} \text{ eV} \cdot \text{nm}$			
Vacuum permittivity, $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)$			
Coulomb's law constant, $k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{N} \cdot \text{m}^2/\text{C}^2$			
Vacuum permeability, $\mu_0 = 4\pi \times 10^{-7} \text{ (T} \cdot \text{m})/\text{A}$			
Magnetic constant, $k' = \frac{\mu_0}{4\pi} = 1 \times 10^{-7} (T \cdot m)/A$			
1 atmosphere pressure, 1 atm = $1.0 \times 10^5 \frac{\text{N}}{\text{m}^2} = 1.0 \times 10^5 \text{ Pa}$			

	meter, m	mole, mol	watt, W	farad, F
	kilogram, kg	hertz, Hz	coulomb, C	tesla, T
UNIT SYMBOLS	second, s	newton, N	volt, V	degree Celsius, °C
	ampere, A	pascal, Pa	ohm, Ω	electron volt, eV
	kelvin, K	joule,	henry, H	

PREFIXES		
Factor	Prefix	Symbol
1012	tera	Т
109	giga	G
106	mega	М
10 ³	kilo	k
10-2	centi	С
10-3	milli	m
10-6	micro	μ
10-9	nano	n
10-12	pico	р

VA	VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES						
θ	0°	30°	37°	45°	53°	60°	90°
sinθ	0	1/2	3/5	$\sqrt{2/2}$	4/5	$\sqrt{3/2}$	1
cosθ	1	$\sqrt{3/2}$	4/5	$\sqrt{2/2}$	3/5	1/2	0
tan <i>θ</i>	0	$\sqrt{3/3}$	3⁄4	1	4/3	$\sqrt{3}$	8

	MECHANICS	
Equation	Usage	
$v_x = v_{x0} + a_x t$	Kinematic relationships for an object accelerating uniformly in one	
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	dimension. Can be applied in both <i>x</i> and <i>y</i> directions.	a = acceleration
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$		A = amplitude d = distance
$\overrightarrow{a} = \frac{\Sigma \overrightarrow{F}}{m} = \frac{\overrightarrow{F}_{net}}{m}$	Force exerted on an object due to the interaction of that object with another object.	E = energy F = force f = frequency
$\vec{a} = \frac{\Sigma \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$		<i>I</i> = rotational inertia <i>K</i> =kinetic energy <i>k</i> = spring constant
$\vec{p} = m\vec{v}$	Defines momentum for a single object moving with some velocity.	L = angular momentum $\ell = $ length
$\Delta \vec{p} = \vec{F} \Delta t$	Average change in momentum or impulse	<i>m</i> = mass <i>P</i> =power <i>p</i> = momentum
$\left \vec{F}_{f}\right \leq \mu \left \vec{F}_{n}\right $	The relationship for the frictional force acting on an object on a rough surface.	r = radius or separation T = period
$ F_S = k \vec{x} $	Static friction	t = time
$ \vec{F_S} = k \vec{x} $ $U_s = \frac{1}{2}kx^2$ $K = \frac{1}{2}mv^2$	Elastic/spring potential energy	U = potential energy v = speed
$K = \frac{1}{2}mv^2$	The definition of kinetic energy.	W = work done on a system x = position
$\Delta E = W = F_{\parallel}d = Fd\cos\theta$	Energy transfer	y = height
$\Delta E = W = F_{\parallel}d = Fdcos\theta$ $P = \frac{\Delta E}{\Delta t}$	Power is defined as the rate of energy	α = angular acceleration
Δt	transfer into, out of, or within a system.	$\mu = \text{coefficient of friction}$
$\Delta U_g = mg\Delta y$ v^2	Gravitational potential energy	$\theta = angle$
$a_c = \frac{v^2}{r}$	Centripetal acceleration	$\tau = torque$
$\frac{r}{\vec{\tau} = r_{\perp}F = rF\sin\theta}$	Angular velocity	$\omega = angular speed$
	The definition of torque. Calculate the center of mass for a	
$x_{cm} = \frac{\sum_{i} x_i}{\sum m_i}$	nonuniform solid that can be	
$\sum m_i$	considered as a collection of regular	
	masses or for a system of masses.	
$K = \frac{1}{2}I\omega^2$	Kinetic energy in a rotating object.	
$K = \frac{1}{2}I\omega^2$ $\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$	The angular kinematic relationships for objects experiencing a uniform angular	
$\omega = \omega_0 + \alpha t$	acceleration.	
$x = A\cos(\omega t)$	A simple wave can be described by an	
$= Acos(2\pi ft)$	equation involving one sine or cosine	
	function involving the wavelength,	
	amplitude, and frequency of the wave.	
$L = I\omega$	Angular momentum	

ADVANCED PLACEMENT PHYSICS 2 EQUATIONS

$\Delta L = \tau \Delta t$		
$T = \frac{2\pi}{\omega} = \frac{1}{f}$	The period of simple harmonic motion (SHM) is related to the angular frequency.	
$T_s = 2\pi \sqrt{\frac{m}{k}}$	The period of a system oscillating in simple harmonic motion (SHM), or its equivalent for a pendulum or physical	
$T_p = 2\pi \sqrt{\frac{l}{g}}$	pendulum, and this can be shown to be true experimentally from a plot of the appropriate data.	
$\left \vec{F}_{g}\right = G \frac{m_1 m_2}{r^2}$	The magnitude of the gravitational force between two masses can be determined by using Newton's universal law of gravitation.	
$\vec{g} = \frac{\vec{F}_g}{m}$	Gravitational force	
$U_g = -\frac{Gm_1m_2}{r}$	The gravitational potential energy of the using the relationship between the conse energy.	

ELECTRICITY AND MAGNETISM				
Equation	Usage			
$ \vec{F}_E = \frac{1}{4\pi\varepsilon_0} \left \frac{q_1 q_2}{r^2} \right $ $\vec{E} = \frac{\vec{F}_E}{r^2}$	Coulomb's Law; gives the magnitude of electromagnetic force between two point charges. The definition of electric field.	A = area B = magnetic field C = capacitance d = distance E = electric field $\mathcal{E} = \text{emf}$		
$ \vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{ q }{r^2}$ $\Delta U_E = q\Delta V$ $E = \frac{Q}{\varepsilon_0 A}$ $ \vec{E} = \left \frac{\Delta V}{\Delta r}\right $	Gives the magnitude of the electric field at a distance from the center of a source object of electric charge.Changes in a system's internal structure can result in changes in internal energy.Calculate magnitude of an electric field between two oppositely charged parallel plates with uniformly distributed electric charge.The average value of the electric field in a region	$F = \text{force}$ $I = \text{current}$ $\ell = \text{length}$ $P = \text{power}$ $Q = \text{charge}$ $q = \text{point charge}$ $R = \text{resistance}$ $r = \text{separation}$ $t = \text{time}$ $U = \text{potential or stored energy}$ $V = \text{electric potential}$ $v = \text{speed}$ $\kappa = \text{dielectric constant}$ $\rho = \text{resistivity}$ $\theta = \text{angle}$ $\Phi = \text{flux}$		

7	
$B = \frac{\mu_0}{2\pi r} \frac{I}{r}$ $\vec{F}_M = q\vec{v} \times \vec{B}$	Magnitude of a magnetic field
$\vec{F}_M = q\vec{v} \times \vec{B}$	The magnetic force of interaction between a moving charged particle and a uniform magnetic field.
$\left \vec{F}_{M}\right = \left q\vec{v}\right \left \sin\theta\right \left \vec{B}\right $	The magnetic force depends on the angle between the velocity and the magnetic field vectors.
$\vec{F}_M = I\vec{\ell} \times \vec{B}$	A magnetic force results from the interaction of a moving charged object or a magnet with other moving charged objects or another magnet.
$\left \vec{F}_{M}\right = \left I\vec{\ell}\right \sin\theta \left \vec{B}\right $	The force exerted on a moving charged object is perpendicular to both the magnetic field and the velocity of the charge and is described by a right-hand rule.
$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$ $\Phi_B = \vec{B} \cdot \vec{A}$	Isolines
$\Phi_B = \vec{B} \cdot \vec{A}$	Changing magnetic flux
$\Phi_B = \left \vec{B} \right \cos \theta \left \vec{A} \right $	
$\varepsilon = B\ell v$	
$arepsilon = -rac{\Delta \Phi_B}{\Delta t}$	
$\Delta V = \frac{Q}{C}$	Calculates the energy stored in a capacitor.
$C = \frac{\kappa \varepsilon_0 A}{d}$	Calculates the capacitance of a parallel-plate capacitor with a dielectric material inserted between the plates.
$C_p = \sum_i C_i$	Can be used to determine the equivalent capacitance of capacitors arranged in parallel.
$\varepsilon = -\frac{\Delta \Phi_B}{\Delta t}$ $\Delta V = \frac{Q}{C}$ $C = \frac{\kappa \varepsilon_0 A}{d}$ $C_p = \sum_i C_i$ $\frac{1}{C_s} = \sum_i \frac{1}{C_i}$ $I = \frac{\Delta Q}{\Delta t}$	Can be used to determine the equivalent capacitance of capacitors arranged in series.
$I = \frac{\Delta Q}{\Delta t}$	An electrical current is a movement of charge through a conductor.
$U_C = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2$	The energy stored in a capacitor. The electrical potential energy stored in a capacitor.
$R = \frac{\rho \ell}{A}$	The definition of resistance in terms of the properties of the conductor.
$I = \frac{\Delta V}{R}$	Ohm's Law
$U_{C} = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^{2}$ $R = \frac{\rho\ell}{A}$ $I = \frac{\Delta V}{R}$ $R_{S} = \sum_{i}R_{i}$	The rule for equivalent resistance for resistors arranged in series.
$\frac{1}{R_p} = \sum_{i=1}^{l} \frac{1}{R_i}$	The rule for equivalent resistance for resistors arranged in parallel.
$P = I\Delta V$	The definition of power or the rate of heat loss through a resistor.

FLUID PHYSICS AND THERMAL MECHANICES		
EQUATION	USAGE	
$\rho = \frac{m}{V}$	Calculate density	

E		
$P = \frac{F}{r}$	Calculate force	A = area
		<i>F</i> = force
		h = depth
$P = P_0 + \rho g h$	Calculate absolute pressure	<i>k</i> = thermal conductivity
		K = kinetic energy
$F_h = \rho g h$	Calculate contact force	<i>L</i> = thickness
2		m = mass
$A_1 v_1 = A_2 v_2$	Continuity equation (used to	<i>n</i> = number of moles
	describe conservation of mass	<i>N</i> = number of molecules
	flow rate in fluids)	P = pressure
1 -	Bernoulli's equation (describes	Q = energy transferred to a
$P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2$	the conservation of energy in	system by heating
<u> </u>	fluid flow)	T = temperature
$= P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$		t = time
Δ	Calculate pressure	• ••••••
		<i>U</i> = internal energy <i>V</i> = volume
Ο ΚΑΛΤ	Thormal conductivity is the	
$\frac{Q}{\Delta t} = \frac{kA\Delta T}{L}$	Thermal conductivity is the	v = speed
Δt L	measure of a material's ability	<i>W</i> = work done on a system
	to transfer thermal energy.	y = height
$PV = nRT - Nk_BT$	The ideal gas law	ρ = density
		1
$K = \frac{3}{2}k_BT$	Calculate the average kinetic	
$\kappa = \frac{1}{2} \kappa_B r$	energy of a system	
$W = -P\Delta V$	Defines the work done on a	
	system.	
$\Delta W = Q + W$	Change in internal energy of a	1
v	system involves the possible	
	transfer of energy through	
	work and/or heat.	
	work allu/or fieat.	

	WAVES AND OPTICS	
EQUATION	USAGE	<i>d</i> = separation
$\lambda = \frac{v}{f}$	Wavelength	<i>f</i> = frequency or focal length <i>h</i> = height
$n = \frac{c}{v}$	Refraction	<i>L</i> = distance <i>M</i> = magnification
$n_1 \sin \theta_1 = n_2 \sin \theta_2$	Snell's Law	m = an integer
$\frac{1}{s_i} + \frac{1}{s_0} = \frac{1}{f}$ $ M = \left \frac{h_i}{h_o}\right = \frac{s_i}{s_o}$	Law of reflection	n = index of refraction s = distance v = speed $\lambda = \text{wavelength}$
$\Delta L = m\lambda$ $d\sin\theta = m\lambda$	Diffraction	$\theta = angle$

MODERN PHYSICS		
EQUATION	USAGE	<i>E</i> = energy

E = hf	Energy of a photon	<i>F</i> = frequency
$K_{max} = hf - \phi$	Photoelectric effect	K = kinetic energy
$\lambda = \frac{h}{p}$	Wavelength of a particle	m = mass p = momentum
$E = mc^2$	Equation derived from the theory of special relativity.	$\lambda = wavelength$ $\phi = work function$

GEOMETRY AND TRIGONOMETRY			
Equation	Usage		
A = bh	Area of a rectangle	A = area	
$A = \frac{1}{2}bh$	Area of a triangle	<i>C</i> = circumference <i>V</i> = volume	
$A = \pi r^2$	Area of a circle	V = volume S = surface area b = base h = height	
$C = 2\pi r$	Circumference of a circle		
$V = \ell w h$	Volume of a rectangular solid		
$V = \pi r^2 \ell$	Volume of a cylinder	$\ell = \text{length}$	
$S = 2\pi r\ell + 2\pi r^2$	Surface area of a cylinder	w = width	
$V = \frac{4}{3}\pi r^3$ $S = 4\pi r^2$	Volume of a sphere Surface area of a sphere	r = radius	
Pythagorean theorem			
Calculate the value of the	$c^2 = a^2 + b^2$	1	
angles of a right triangle	$\sin\theta = \frac{a}{c}$	c a	
	$\cos\theta = \frac{b}{c}$	$\theta 90^{\circ}_{\Box}$	
	$\tan\theta = \frac{\ddot{a}}{b}$	b	

The following assumptions are used in this exam.

- I. The frame of reference of any problem is inertial unless otherwise stated.
- II. The direction of current is the direction in which positive charges would drift.
- III. The electric potential is zero at an infinite distance from an isolated point charge.
- IV. All batteries and meters are ideal unless otherwise stated.
- V. Edge effects for the electric field of a parallel plate capacitor are negligible unless otherwise stated.