
Pulse Width Modulation

sT-Embed Training

Ric Kolk

Altair Engineering

rkolk@altair.com

mailto:rkolk@altair.com

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 2

Topics:

2

• PWM & Duty Cycle

• ePWM Block – Modules

• Time Base

• Action Qualifier

• Deadband

• Event Time

• Solenoid Modeling, Simulation, Transfer Function Approximation, Processor in the Loop (PIL) Simulation (requires F28069M board to be attached)

• Motor Modeling, Dynamics, Time Constant

• Using the eCap block to record PWM Carrier Period and Frequency (Example requires the F28069M board to be attached)

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 3

PWM Basic Terminology

3

The “ePWM” block (“Embedded/F280x”) produces two PWM signals (PWMA and PWMB). These control signals are

always opposite each other; when one is high (On), the other is low (Off):

Tpwm tOn

Tpwm = Carrier Period(sec)

Duty Cycle =
tOn

Tpwm

Fpwm = Carrier Frequency, Hz =
1

Tpwm

Three Important PWM Features:

On value

On value

Off value

Off value

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 4

PWM Generation

4

In an embedded application, the target processor produces pulses from a Time Based Clock (TBCLK). The Time Based Clock can run at

the CPU speed or a fraction of it. Pulses produced by the TBCLK are counted as they occur forming a staircase signal whose count value

at any time is monitored by a Time Based Counter (TBCTR). When the TBCTR reaches a preset value named the Time Base Period

(TBPRD), the counter resets itself to 0 and the staircase signal repeats. PWM signals are produced based when the TBCTR equals a

Compare (CMP) value.

time

time

PWM

On value

Off value

TBCTR
(counts)

CMP value

5

4

3

2

1

0

Time Based Clock (TBCLK), (sec)
TBPRD value

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 5

PWM Count Mode, Period, and Frequency

5

Most target processors support three Count Modes; Up Count, Down Count, and Up/Down Count:

Up

Count

Mode:

Down

Count

Mode:

Up/Down

Count

Mode:

Tpwm is the PWM

Carrier Period (sec),

Fpwm is the PWM

Carrier Frequency

(Hz).

Tpwm is approx.

twice the value for

the Up/Down

Count Mode

compared with

the Up or Down

Count Modes

Each step occurs at

a clock tick.

Timer Period is

the number of

steps in one

Carrier Period

Tpwm = (TBPRD + 1) * TBCLK

Tpwm = 2*TBPRD* TBCLK

Tpwm = (TBPRD + 1) * TBCLK

Fpwm = 1/Tpwm

Fpwm = 1/Tpwm

Fpwm = 1/Tpwm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 6

PWM Resolution

6

The resolution, n, of a PWM generator is equal to the number of Time Based pulses present in the PWM period

expressed as a number of bits.

Resolution expressed as a number of bits:

Number of Time Base pulses per PWM period =

𝑛 = 𝑙𝑜𝑔2

𝑇𝑝𝑤𝑚

𝑇𝐵𝐶𝐿𝐾

𝑇𝑝𝑤𝑚

𝑇𝐵𝐶𝐿𝐾

For example, a 20kHz PWM signal is to be generated using an 80MHz CPU. The Time Based Clock

(TBCLK) is set to 1/80Mhz and the resolution is calculated as:

𝑇𝑝𝑤𝑚

𝑇𝐵𝐶𝐿𝐾
=

1
20𝑘

1
80𝑀

= 4000

𝑛 = 𝑙𝑜𝑔2 4000 = 11.96 = 12 bits

The High Resolution Timer option, if available on your hardware, decreases the TBCLK to a value of

150e-12 seconds. This is particularly useful if your application requires a high PWM frequency

(NOTE: 250kHz and greater is considered to be a high PWM frequency).

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 7

DCB

DCA

sTE ePWM Block

7

The sTE ePWM block (below) is a two channel device. It has two Duty Cycle (DC) inputs and produces two PWM output signals and two

Start of Conversion (SOC) signals. The channels are referred to as “A” and “B”. The DC inputs are fractions in 1.16 format. The PWM

and SOC signals are sent directly to hardware pins. They are accessible to your sTE model using an “Extern Read” statement.

SOC

A

PWM

B

PWM

A

SOC

B

Action Qualifier

Module

Deadband

Module
Time Based

Module

Event Time

Module

The ePWM block consists of four key Modules; (1) Time Based, (2) Action Qualifier, (3) Deadband,

and (4) Event Timer. Each Module is described in this document.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 8

sTE PWM Block – Module Properties

8

The sTE ePWM block (“Embedded/Piccolo/ePWM”) property window is used to configure the PWM Modules.

Time Base Module: Define the type of

count and Period

Action Qualifier Module: Define when

the PWM cycles and the PWM output Pin

Deadband Module: Define deadband

to prevent “shoot-through” and polarity

PWM Output Registers

Event Time Module: Define the SOC

signals SOC Outputs

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 9

sTE ePWM – Basic Time Base Module Configuration:

9

User select: Set the

TBPRD = # clock

ticks per PWM

period.

sTE calculates the PWM Carrier frequency

(Fpwm) based on the Timer Period, Count Mode,

and Rate Scaling.

3 Count

Modes:

Sets the TBCLK = k/CPU clock speed

(Hz), where k is selected from the

dropdown menu. Note: “None” means

k=1.

The basic “Time Base” Module features of the ePWM (“Embedded/F280x”) block are located in the “Time Base” frame of the ePWM

properties window.

Explained on the

next slide

Sets the TBCLK = 150e-12 seconds (approximately) for high

frequency PWM applications (typically > 250kHz)

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 10

Change Period Dynamically Option

10

Based on the ON and OFF times selected, the PWM Period is calculated as 500nsec and the PWM Carrier Frequency is

calculated as 1/500nsec = 2MHz.

In some situations it is not possible to create the desired PWM Carrier Frequency from the integer “Timer Period”. Suppose we wanted to

create a PWM signal with a minimum 25nsec ON time and 475nsec OFF time. The “Count Mode” is set to “Up/Down”. The CPU Speed is

90MHz and the TBCLK = 1/90MHz.

Since the “Timer Period” MUST be an integer value, it is not

possible to achieve the desired 2MHz PWM Carrier Frequency.

(Here the best we can do is set “Timer Period” = 2 to achieve

2.04545MHz)

To solve this problem, select the “Change Period Dynamically” option which adds a “Period(1,16)” input pin to the PWM block. This

pin accepts a user defined “Fractional Period Multiplier” constant that is calculated as follows:

After some experimentation adjusting the “Timer Period” value, we

select a value of 200 which produces a PWM Carrier Frequency of

225kHz. Since 225k/2M = .1125 is a rational fraction between 0 and

1, we will use this “Timer Period” value and a “Fractional Period

Multiplier” set to .1125 to achieve the 2MHz PWM Carrier Frequency.

Experiment with the “Timer Period” value until you obtain a value that produces a PWM Carrier Frequency, F, such that F/2MHz is a

rational fraction between 0 and 1 (Note: 2MHz is the desired PWM Carrier Frequency). The “Fractional Period Multiplier” is set to this

rational fraction.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 11

PWM Frequency Selection Issues:

11

Interference with Mechanical System Frequency: Generally dominant mechanical frequencies are in the 200Hz or less range. PWM

frequency should be selected at least 10x the dominant mechanical frequency. This is normally not a limiting factor.

Power Loss: In a motor, torque is proportional to the average current. Consider a motor with a torque constant k driven by a constant

current source, 𝐼𝑐𝑜𝑛𝑠𝑡 and by a PWM current source that ranges from 0 to 𝐼𝑝𝑒𝑎𝑘 and has a Duty Cycle, DC. To achieve the same

torque, the following is true:

The PWM driven motor requires

more current than the constant

current motor to develop the

same torque.

𝑇 = 𝑘 × 𝐼𝑐𝑜𝑛𝑠𝑡 = 𝑘 × 𝐷𝐶 × 𝐼𝑝𝑒𝑎𝑘

𝑃 = (𝐼𝑝𝑒𝑎𝑘 × 𝐷𝐶)2× 𝑅

Heat: In a motor winding there is always a small resistance, R. As current is passed through the winding resistance, 𝐼𝑅𝑀𝑆
2 𝑅 watts of

energy is transferred from electrical to heat energy. For a PWM current signal with a period, T, on-time, tOn, Duty Cycle, DC, and
ranging from 0 to 𝐼𝑝𝑒𝑎𝑘 , the 𝐼𝑅𝑀𝑆 value is calculated as:

𝐼𝑝𝑒𝑎𝑘 =
1

𝐷𝐶
× 𝐼𝑐𝑜𝑛𝑠𝑡

𝐼𝑅𝑀𝑆 =
1

𝑇
 𝐼𝑝𝑒𝑎𝑘

2 𝑑𝜏
𝑡𝑂𝑛

0

→ 𝑖𝑅𝑀𝑆2 =
1

𝑇
𝐼𝑝𝑒𝑎𝑘
2 𝑡

0

𝑡𝑂𝑛
= 𝐼𝑝𝑒𝑎𝑘

2 𝑡𝑂𝑛

𝑇
→ 𝐼𝑅𝑀𝑆 = 𝐼𝑝𝑒𝑎𝑘

𝑡𝑂𝑛

𝑇

𝐼𝑅𝑀𝑆 = 𝐼𝑝𝑒𝑎𝑘𝐷𝐶

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 12

PWM Frequency Selection Issues:

12

For a 0 to 𝐼𝑝𝑒𝑎𝑘 PWM signal, power loss through a resistor, R, is calculated as: 𝑃 = 𝐼𝑝𝑒𝑎𝑘
2 × 𝐷𝐶 × 𝑅

𝑃 = (𝐼𝑝𝑒𝑎𝑘 × 𝐷𝐶)2× 𝑅 For a constant current signal of value DC × 𝐼𝑝𝑒𝑎𝑘, power loss through R is:

As DC decreases, more and more power is lost through the

resistance to heat when using a PWM signal compared to a

constant signal of the same average value.

Switching Losses: An ideal switch is either fully on or off which means it never dissipates any power. Real switches don’t switch

instantaneously, they have a transition time during which they dissipate power. The transition time is usually fixed per edge. For

example, using a switch that requires a 1 microsecond transition time in a 25kHz PWM (40 microsecond period) means that the transition

time is 1/40 of the total. If the PWM frequency were increased to 250kHz (4 microseconds), this ratio would increase to ¼ which would

significantly and adversely affect performance.

Vibration and Noise: An electric motor uses wire coils to produce magnetic force. Every length of wire in the motor undergoes lateral

movement proportional to the current being passed through it. When the current is cycled, i.e. a PWM signal, the movement becomes a

regular vibration audible to the human ear. Since the range of human hearing is generally considered to be 20Hz to 20kHz, PWM

frequency is often selected to be 20kHz or greater to eliminate audible noise being produced.

Resolution: Normally a resolution of 10 bits (1/1024 = .001) is adequate. Based on your CPU speed and PWM period, confirm your

resolution is adequate. If not consider using the “High Resolution Timer”, adjusting the PWM period, overclocking, or moving to a faster

CPU.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 13

Advanced Time Base Module Configuration:

13

TBPHS: is a count offset value (to

produce a phase shift)

TBCTR = TBPHS on SYNC1 pulse: When

checked, the TBPHS count offset value is

added to TBCTR when a SYNC1 pulse

occurs.

Change Phase Dynamically: Adds an input

pin to the PWM block which accepts a

fractional value that is multiplied by the

“Timer Period” and assigned to “TBPHS”.

The advanced “Time Base” Module features of the ePWM (“Embedded/F280x”) block are located in the “Time Base” frame of the

ePWM properties window

Specify the condition when to load the CMPA

and CMPB values. Choices are [Zero, Period,

Period or Zero, and Immediate]. Normally “Zero”

is selected.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 14

Advanced Time Base Module Configuration - Synchronization:

14

The operation of PWM modules can be synchronized to operate as a single system when needed using hardware pins

named EPWMSYNCI (input) and EPWMSYNCO (output).

There are 4 selectable synchronizing actions that can be applied to the

EPWMSYNCO output signal:

EPWMSYNCI: This sets EPWMSYNCO = EPWMSYNCI

TBCTR = zero: This sets EPWMSYNCO = 1 when the TBCTR (time based

 counter) = 0

TBCTR = CMPB: This sets EPWMSYNCO = 1 when the TBCTR = CMPB

None: This sets EPWMSYNCO =0 always

…

Input pin
Output pin

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 15

sTE PWM – Time Base Setup Example 1

15

Example 1:

Setup the PWM to produce a 10kHz carrier frequency with “Count Mode” set to “Up. The CPU Speed is 80MHz.

Step 1: Experiment with “Timer Period” until 10kHz Carrier Frequency is

obtained.

NOTE: CPU Speed = Timer Period * Carrier Frequency

NOTE: there are 8000 discrete levels of duty cycle in this configuration

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 16

sTE PWM – Time Base Setup Example 2 (1/3)

16

Based on the ON and OFF times provided, the Carrier Period is calculated as 500nsec OR equivalently, the Carrier Frequency is

2MHz.

Example 2:

Setup the PWM to produce a 25nsec ON and 475nsec OFF signal with “Count Mode” set to “Up/Down”. The CPU Speed is 90MHz.

“Timer Period” MUST be an integer

value, we cannot achieve the desired

2MHz Carrier Frequency.
 To solve this problem, use the “Change Period Dynamically” option

which allows you to define a “Fractional Period Multiplier” and send

to the “ePWM” block through the “Period” input pin.

Operation:
Carrier Frequency

Fractional Period Multiplier
 New Carrier Frequency

=
New Timer Period = Timer Period ∗ Fractional Period Multiplier

Setting the “Fractional Period Multiplier” = .1125, these settings

become:

New Carrier Frequency = 225kHz/.1125 = 2MHz

New Timer Period = 200 * .1125 = 22.5

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 17

sTE PWM – Time Base Setup Example 2 (2/3)

17

sTE model using the F28069M LaunchPad running at 90MHz. PWM setup for a Carrier Frequency = 2MHz using Up/Down Counter.

Source Model:

PWM Setup:

Source Model

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
ePWM28069 TI RK.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 18

sTE PWM – Time Base Setup Example 2 (3/3)

18

Debug Model:

Debug Model

Plot x-Range Calculation:

200 points are recorded in the buffer.

PWM frequency = 2MHz = 500nsec

Fractional Period Multiplier = .1125

xMax = 200 * 500e-9 * .1125 = 1.125e-5 seconds

Simulation Setup:

TimeStep = .01 seconds

End = 20 seconds
Sample Rate = 225kHz

NOTE: the actual sample rate is 225kHz/.1125 =

2MHz

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
ePWM28069 TI RK-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 19

PWM Events & Actions

19

time

TBCTR
(counts)

CMP value

5

4

3

2

1

0

TBPRD value

Zero (Z)

Event:

TBCTR = 0 Up Event:

TBCTR = CMP while increasing

Period (P) Event:

TBCTR = TBPRD

Down Event:

TBCTR = CMP while decreasing

At each Event, any of four Actions can be performed. These actions provide a means to define the PWM edges:

X = Do Nothing

0 = Force the PWM value to 0 (Off Value)

1 = Force the PWM value to 1 (On Value)

T = Toggle the PWM value

 if the PWM value = 1, Toggle will set it = 0 and if the PWM value = 0, Toggle will set it = 1

The Duty Cycle input value is converted to a

CMP value.

As the TBCTR pulse counter increments from 0

to TBPRD, it passes through the CMP value.

Similarly, when the TBCTR is reset to 0, it also

passes through the CMP value. These four

Events, Z, Up, Down, and Period are shown

(right):

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 20

sTE ePWM – Action Qualifier Module

20

The “Action Qualifier” Module features (Events, Actions, and PWMA and PWMB output pins) are configured “Action Qualifier” frame of

the ePWM properties window.

User select: Action dropdown:

X = Do Nothing

0 = Force PWM output to 0

1 = Force PWM output to 1

T = Toggle PWM output

Events:

Z = When TBCTR = 0

up = When TBCTR = CMP while increasing

down = When TBCTR = CMP while decreasing

P = When TBCTR = TBPRD

Output Pin numbers

assigned to PWMA and

PWMB.

PWMA Action,

Event, & Pin

Settings

PWMB Action,

Event, & Pin

Settings

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 21

PWM Examples

21

Count Mode

Example

1

Count Mode Count Mode

Example

2

Example

3

CMP

value

TBCTR

PWM time

time

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 22

PWM Deadband
An H bridge is an electronic circuit consisting of 4 switches. One use of an H bridge is to provide bidirectional rotation

control of a DC motor.

When switches S1 and S4 are closed (and S2 and S3

are open) a positive voltage is applied across the

motor (M) causing it to rotate in one direction. Closing

S3 and S2 and opening S1 and S4 reverses the

voltage polarity across the motor causing it to operate

in the reverse direction.

S1

S2

S3

S4

+

Vd

c

-

M

The four switches are controlled by a complimentary

pair of PWM signals, PWMA and PWMB. PWMA

controls S1 and S4 and PWMB controls S2 and S3. An

ideal pair of PWM control signals is shown to the right:

Closed PWM

A

PWM

B

Closed

Open

Open

Ideal switches require 0 time to switch

between states (Open and Closed). If

the switches are ideal, two current flow

patterns are possible:

S1

S2

S3

S4

S1

S2

S3

S4

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 23

PWM Deadband – Shoot Through

23

PWMA commanded

S1 and S4 to Open

but due to their longer

switch “turn Off” times,

they remain closed

while S3 (commanded

by PWMB) closes

because of it’s shorter

“turn On” time*.

Real switches (Thyristors, FET’s, …) do not behave in an ideal manner. They have a finite “turn On” and “turn Off” switch transition time

which, in general, are not equal. When these switches are used in an H bridge under PWM control, these transition times can cause a

catastrophic failure of the switches called “Shoot Through”. For example, a thyristor application may have a “turn On” = .2 milliseconds

and “turn Off” = 2.8 milliseconds.

In the following sequence of switch conditions, PWMA transitions from ON (Closed) to OFF (Open) and PWMB from OFF to ON. The

sequence uses non-ideal switches, each with a “turn Off” time > “turn On” time.

Closed PWM

A

PWM

B
Open

Closed PWM

A

PWM

B
Open

Closed

PWM

A

PWM

B

Open

S1

S2

S3

S4

S1

S2

S3

S4

S1

S2

S3

S4

PWM signal generators have a feature called “Deadband” which provides a method for independently adding delay to the PWMA and

PWMB edges (both rising and falling edges) to accommodate switch transition times and prevent a Shoot Through situation from

occurring.
* S2 was excluded in this explanation for clarity, it too could be in a closed state.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 24

PWM

B

PWM

A

DbB

DbA

PWM

B

PWM

A

sTE ePWM – Deadband Module

24

The “Deadband” Module allows delays to be added to rising and/or falling edges of the PWM signals.

The input signals to the “Deadband” module are the PWMA and PWMB output signals from the “Action Qualifier” module. Internally, the

“Deadband” module creates the signals “DbA” and “DbB” for channel A and B based on the “Input Select” settings. The “Delay Mode” and

“Polarity” settings are then applied to the “DbA” and “DbB” signals to produce the PWMA and PWMB output signals (below):

Action Qualifier

Module

Deadband Module

Input Select Delay Mode

And Polarity

The “Deadband” Module of the ePWM

(“Embedded/F280x”) block is located in the

"Deadband" frame of the ePWM properties

window.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 25

sTE ePWM – Deadband Module

25

• Off

• Deadband is applied to PWMA rising edge

• Deadband is applied to PWMB falling edge

• Deadband is applied to PWMA rising edge and

 PWMB falling edge

Delay Mode: Specifies the

PWM Deadband mode to be

used for Deadband

operations, there are four

options:

• Off

• Invert rising edge delay on PWMA

• Invert falling edge delay on PWMB

• Invert rising edge delay on PWMA and invert

falling

 edge delay on PWMB

Polarity: The polarity control

allows you to specify whether the

rising-edge delayed signal and/or

the falling-edge delayed signal is

to be inverted before being sent

out of the Deadband module.

There are four options

• PWMA In is the source for both falling-edge and rising-edge

delay. This is the default mode.

• PWMA In is the source for falling-edge delay, PWMB In is the

source for rising-edge delay.

• PWMA In is the source for rising edge delay, PWMB In is the

source for falling-edge delay.

• PWMB In is the source for both falling-edge and rising-edge

delay.

Input Select: Specifies the PWM source signals to be used for ChA and ChB deadband operations. These signals are named “DbA” and

“DbB”. Four configuration options are available

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 26

sTE ePWM – Deadband Module Examples

26

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 27

sTE ePWM – Deadband Module Examples

27

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 28

sT-Embed ePWM – Event Time Module

28

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 29

sT-Embed ePWM – Fault Handling

29

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 30

PWM Example – Solenoid Control

30

Solenoid Model (Top Level):

Solenoid Model (Details):

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 31

PWM Example – Solenoid Simulated Response

31

Solenoid Model Simulation Response:

Vin = 5 volts applied at 0.2 seconds

fLoad = 10 Newtons applied at 0.5 seconds and removed at 0.7 seconds

Simulation Update Time = 1e-5 seconds

Solenoid Model

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
SolenoidModel.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 32

PWM Example – Solenoid PWM Generator

32

PWM Model (Top Level):

PWM Model (Details):

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 33

PWM Example – Solenoid PWM Generator Simulation

33

PWM Model Simulation Results:

PWM Carrier Frequency = 10kHz

Duty Cycle Slider swept from .8 to .15 during the .002 second simulation

Simulation Update Time = 1e-5 seconds

PWM Generator Model

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
PWMControl.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 34

PWM Example – Solenoid w/PWM Control Simulation

34

Solenoid w/PWM Control Simulation Results:

PWM Carrier Frequency = 10kHz

Duty Cycle Slider swept randomly between 0 and 1 during the 10 second simulation

Simulation Update Time = 1e-5 seconds

Solenoid Model with PWM Control

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
SolenoidWithPWMControl.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 35

PWM Example – Solenoid Approximate Transfer Function

35

Solenoid Approximate Fixed Point Transfer Function

Vin = 5 volts

Fload = 0 Newtons

Simulation Update Time = 1e-5 seconds

Solenoid Approximate Transfer Function Model

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
SolenoidTransferFunction.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 36

PWM Example – Solenoid PIL – Source Model

36

PIL Source Model (Top Level):

Simulation Update Time = 1e-5 seconds

PIL Source Model (Details):

PWM Driving Solenoid TF Source Model

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
PWMDrivingSolenoidTF.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 37

PWM Example – Solenoid PIL PWM Configuration

37

PWM Configuration

Carrier Frequency = 10kHz

GPIO0 = PWM 1A output

GPIO1 = PWM 1B output

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 38

PWM Example – Solenoid PIL – Debug Model

38

PIL Debug Model (Top Level):

Simulation Update Time = .01 seconds

PWM Driving Solenoid TF Debug Model

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
PWMDrivingSolenoidTF-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 39

PWM Example – Solenoid PIL – Debug Model

39

PIL Debug Model (Details):

Simulation Update Time = .01 seconds

PWM Driving Solenoid TF Source Model

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
PWMDrivingSolenoidTF.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 40

PWM Example – Motor Control

40

It is important to understand how the PWM Carrier Period (and Frequency) is selected.

To do this we will create a basic motor model, identify its fundamental time constant, and then select

the PWM Carrier Period short enough to produce an acceptable level of motor velocity fluctuation.

Basic Motor Model: Where:

The equivalent motor block diagram becomes:

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 41

Motor Dynamics – Electrical Time Constant

41

Using the following example values;

The Electrical Time Constant is calculated as:

To calculate the Mechanical Time Constant, the following simplifications are applied;

Tload = 0 (no load torque)

Motor friction, B = 0

And the electrical dynamics are replaced by their dc-value;

Applying these assumptions, the motor model block diagram simplifies to:

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 42

Motor Dynamics – Mechanical Time Constant

42

The closed loop transfer function of the simplified motor model is calculated as:

And the Mechanical Time Constant is calculated as:

In successful applications, the Mechanical Time Constant should be the fundamental (or dominant)

time constant, typically 100 to 1000 times slower than the electrical time constant.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 43

PWM Carrier Period & Frequency

43

The PWM Carrier Period, Tpwm, and Frequency, Fpwm, is calculated to produce an acceptable

value of motor velocity fluctuation.

As an example, assume that a 0.05% velocity fluctuation is the goal.

If the initial motor velocity, w(0) = 1, and the dominant time constant of the motor = mechanical time

constant is 0.2 seconds,

Then the problem is that of solving the mechanical

time constant for the Tpwm (PWM Carrier Period):

Fpwm = 1/Tpwm = 10KHz.

The typical range for the PWM Carrier Frequency is 10KHz <= Fpwm <= 40KHz. Using frequencies

less than 10KHz result in unacceptable motor velocity ripple and values greater than 40KHz tend to

increase the transistor switching frequency (in the H Bridge) to a level that causes them to heat up

and prematurely fail.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 44

Motor Speed Response to PWM

44

This example illustrates the response of a motor transfer function model to a PWM signal

implemented on the F28069M LaunchPad target. Values from the previous “Motor Dynamics”

example are used.
The motor model is defined as a unity gain first order transfer

function with a mechanical dominant time constant = .2 seconds

(right)

The PWM Carrier Frequency is set to 10KHz. Using the following settings:

F28x Properties: CPU Speed

(MHz) = 80MHz

ePWM Properties:

Rate Scaling = 1/2

Count Mode = up/down

Timer Period = 2000

Since the PWM Carrier Frequency is 10KHz, the target model update frequency is selected to

be 20 times faster (200KHz), this is equivalent to a target update time = 1/200KHz = 5e-6 sec.

PWM Carrier Frequency

if counting “up” and TBCTRB goes thru

CMPB, set EPWMB = 1

if counting “down” and TBCTRB goes

thru CBMPB, set EPWMB = 0

if counting “up” and TBCTRA goes thru

CMPA, set EPWMA = 0

if counting “down” and TBCTRA goes

thru CMPA, set EPWMA = 1

Rising and Falling edge deadbands

(time delays) normally set to the same

value (units are ticks)

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 45

Motor Speed Response – Motor Model

45

The motor model transfer function is converted to a fixed point discrete

transfer function, format 4.32, using an update time = 5e-6 sec (right)

Format 4.32, same as the transfer function

The motor model transfer function receives the PWMA signal from

GPIO0 (below) NOTE: PWMB is not used in this example.

Monitor Buffers are used to record 100 elements of PWM data (into Monitor Buffer 0) and Motor

speed (into Monitor Buffer 1) – (below):

The trigger signal “:trig” is pulsed every time a PWM cycle begins (10KHz)

View source model in sT-Embed

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
MotorRippleDueToPWMCarrierFrequency.vsm
MotorRippleDueToPWMCarrierFrequency.vsm
MotorRippleDueToPWMCarrierFrequency.vsm
MotorRippleDueToPWMCarrierFrequency.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 46

Motor Speed Response – Source Model

46

The completed Source model becomes

(right):

Format 1.16 required as the duty cycle command value for the ePWM block

C Code is generated for “ePWM” and compiled into “MotorRippleDueToPWMCarrierFrequency.out”

by applying the “Code Gen…” option under the “Tools” menu.

The source model is captured in a

compound block named “ePWM” (below):

The Debug model is created from the

Source model by replacing the “ePWM”

compound block with a “TargetInterface”

block configured to read the “.out” file

produced by the Source model. The

“TargetInterface” is configured to

execute at a “Sample Rate (Hz):” =

200KHz rate (right):

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 47

Motor Speed Response – Debug Model

47

The sT-Embed Debug model, which includes the “TargetInterface” block, is configured to execute at a

0.01 second update time allowing the JTAG interface adequate time to transfer the Monitor Buffer

contents.

The competed Debug model and results showing the PWM signal and the motor speed buffers are

presented below:

Fixed Point motor model

transfer function % CPU

utilization.

NOTE: this model would not

execute at the 200KHz rate if

Fixed Point were NOT used.

NOTE: Debug model settings: dt = 0.01

seconds, "End(sec)" = 25; "Run in Real Time"

checked, "Auto Restart" checked, and "Retain

State" checked. View debug model in sT-Embed

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency-d.vsm
MotorRippleDueToPWMCarrierFrequency-d.vsm
Models and Videos - Section 3/MotorRippleDueToPWMCarrierFrequency-d.vsm
Models and Videos - Section 3/MotorRippleDueToPWMCarrierFrequency-d.vsm
Models and Videos - Section 3/MotorRippleDueToPWMCarrierFrequency-d.vsm
Models and Videos - Section 3/MotorRippleDueToPWMCarrierFrequency-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 48

Motor Speed Response – Speed Jitter Results

48

The Debug model was allowed to restart several times with the “MotorSpeed*” fixed at .795 to

determine if the Motor Speed Jitter was within the +/- 0.0005 unit limits (below, right)

Motor Speed response to PWM is within

the +/- 0.0005 unit limits
View debug model in sT-Embed

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency-d.vsm
MotorRippleDueToPWMCarrierFrequency-d.vsm
MotorRippleDueToPWMCarrierFrequency-d.vsm
MotorRippleDueToPWMCarrierFrequency-d.vsm
MotorRippleDueToPWMCarrierFrequency-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 49

Record ePWM timing using eCap Block (1/5)

49

The “eCap” block (Embedded/Piccolo/eCap) provides the ability to record the “on” and “off” times of

PWM signals. Let’s create a sT-Embed model that outputs a PWM signal on GPIO0 and an “eCap”

block that records the “on” time and “period” of the PWM signal for display.

The following model is constructed. We have also included a “Monitor Buffer” to display the PWM

waveform in a “plot” block

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 50

Record ePWM timing using eCap Block (2/5)

50

The “PWM” and “eCap” blocks are configured as follows:

PWM output (channel A) set to GPIO0

eCap input

set to

GPIO5

Event 1

Triggers here &

timer is rest Event 2

Triggers here

Record the

first 2

events

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 51

Record ePWM timing using eCap Block (3/5)

51

The “eCap” block is configured to output the values of the first 2 events. The following figure

illustrates how the event values are calculated.

Event 1

Triggers here &

timer is rest

Event 2

Triggers here

time

Timer count

Period

On time

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 52

Record ePWM timing using eCap Block (4/5)

52

For the “eCap” block to operate, we need to jumper the pins that correspond to GPIO0 and GPIO5.

The pin definitions for the F28069M LaunchPad are presented below.

The jumper is positioned as

show to the right connecting

pins 35 (GPIO5) and 40

(GPIO0)

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 53

Record ePWM timing using eCap Block (5/5)

53

Results are shown below:

View source model in sT-Embed

View debug model in sT-Embed

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
RKCAPePWMwidth280x.vsm
RKCAPePWMwidth280x.vsm
RKCAPePWMwidth280x.vsm
RKCAPePWMwidth280x.vsm
VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
RKCAPePWMwidth280x-d.vsm
RKCAPePWMwidth280x-d.vsm
RKCAPePWMwidth280x-d.vsm
RKCAPePWMwidth280x-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 54

Record ePWM timing using eCap Block (4/5)

54

For the “eCap” block to operate, we need to jumper the pins that correspond to GPIO0 and GPIO5.

The pin definitions for the F28069M LaunchPad are presented below.

The jumper is positioned as

show to the right connecting

pins 35 (GPIO5) and 40

(GPIO0)

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 55

Pin Out definitions for F28069 ControlStick

55

Using the PWM and “eCap”

settings from the previous

example, the jumper settings for

the F28069 ControlStick

positioned as show to the right

connecting pins 15 (GPIO5) and

17 (GPIO0)

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

End of Section

56

