
Control and Optimization

sT-Embed Training

Ric Kolk

Altair Engineering

rkolk@altair.com

1

mailto:rkolk@altair.com

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 2

Topics:

2

• Basic Classical Controllers

• Proportional Integral (PI)

• Proportional Derivative (PD)

• Proportional Integral Derivative (PID)

• Using sT-Embed Optimize to tune a PID controller

• Controller Function Blocks

• Merge & Crossdetect Blocks

• Discrete Reset Integrator

• Countdown Timer with Underflow Protection

• Pulse Counter

• Binary Signal Conditioning

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Proportional Integral (PI), Proportional Derivative
(PD), and Proportional Integral Derivative (PID)

Controllers

3

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 4

Controllers are systems designed to modify and maintain a systems (Plant) performance when subjected to

unmeasurable disturbances.

Control System = Controller + Plant

Controllers - Basics

4

Basic Control System Block Diagram & Signal Terminologies

Performance is generally concerned with:

• Accuracy: How well the Controller maintains Y=Y* with D present.

• Transient: How well the Controller shapes the trajectory of Y as changes are made in Y* with D present.

Three Basic type of Controllers:

• Proportional – Integral (PI) Controller is used to achieve Accuracy Performance

•. Proportional – Derivative (PD) Controller is used to achieve Transient Performance

• Proportional – Integral – Derivative (PID) Controller is used to achieve Both

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 5

PI controllers regulate a plant output, “y”, to a constant setpoint value, “y*” with disturbances present.

Proportional – Integral (PI) Controller

5

dy = y* - y

 = Error signal

Ki = Integral Gain

Kp = Proportional Gain

K = Loop Gain

PI Controller Tuning:

Step 1. Ki=0.1; Kp = 1; K = 1

Step 2. Apply PI controller to plant, adjust K for acceptable

response

Typical Performance Metric: Maintain “dy” to remain within predefined limits for any disturbance input in steady state,

maintain “u” to remain within predefined limits.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 6

PD controllers shape the transient behavior of a plant output, “y”, as the setpoint is varied and with disturbances

present.

Proportional – Derivative (PD) Controller

6

PD Controller Tuning:

Step 1. Kd=a value; Kp = 0; K = 1

Step 2. Apply PD controller to plant, adjust Kd and K for acceptable

transient response, then add Kp gain for accuracy

Typical Performance Metric: Control the “Percent Overshoot” and “Time Constant” to remain within predefined ranges,

maintain “u” to remain within predefined limits.

dy = y* - y

 = Error signal

Kp = Proportional Gain

K = Loop Gain

Kd = Derivative Gain

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 7

PID controllers regulate the plant output, y, at a setpoint value, y*, and shape the transient behavior of the plant output

as the setpoint is varied and with disturbances present.

Proportional-Integral-Derivative (PID) Controller

7

dy = y* - y

 = Error signal

Kp = Proportional Gain

K = Loop Gain

PID Controller Tuning:

Step 1. Kd=0; Kp = 1; Ki = .1; K = 1

Step 2. Apply PID controller to plant, adjust Kd and K for

acceptable response

Typical Performance Metrics: Maintain “dy” to remain within predefined limits for any disturbance input in steady state,

maintain “u” to remain within predefined limits, control the “Percent Overshoot” and “Time Constant” to remain within

predefined ranges.

Kd = Derivative Gain

Ki = Integral Gain

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 8

This example presents an automobile model and the design and simulation of a PI speed controller.

Automobile PI Speed Control (1/3)

8

Disturbance Signal

Control Signal
Controlled Signal

PI Control - Plant Model

VisSimEmbeddedTrainingModels/Auto Model.vsm
Auto Model.vsm
Auto Model.vsm
Auto Model.vsm
Auto Model.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 9

Performance Requirements: At y* = 60 mph, maintain car speed within +/- 3 mph, limit throttle % open to < 10%

variation, Incline disturbance (worst case): +/- 1 degree/20 seconds, maximum 5degrees.

Control System = PI Controller + Plant Model

.

Automobile PI Speed Control (2/3)

9

Setpoint Signal Controlled Signal
Error Signal Control Signal

Disturbance Signal

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 10

Performance Requirements & Responses:

Automobile PI Speed Control (3/3)

10

Speed is maintained within +/- 3

mph at 60 mph setpoint

Throttle variations are < 10%

.

Incline disturbance ranges

from + to - .05deg/sec

.

Automobile PI Speed Control System

VisSimEmbeddedTrainingModels/Auto Model with PI Control.vsm
Auto Model with PI Control.vsm
VisSim Embedded Training Models/Auto Model with PI Control.vsm
VisSim Embedded Training Models/Auto Model with PI Control.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 11

The PI Speed Control developed in the previous example is to be programmed on an embedded processor. Prior to

this, a discrete version of the PI controller is developed and its performance is compared with the PI Speed Control.

The Discrete PI shall be executed 1000x/sec and shall meet the same performance requirements.

Control System = PI Controller + Plant Model

.

Discrete Automobile PI Speed Control (1/3)

11

2. Apply “Convert s->z” to get discrete

transfer function

1. Rewrite as a transfer function

“Blocks/Linear System/transferFunction”

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 12

The continuous and discrete PI Speed Control are modeled “side by side”:

Discrete Automobile PI Speed Control (2/3)

12

Discrete Automobile PI Speed Control System

VisSimEmbeddedTrainingModels/Auto Model with PI Control Continuous and Discrete.vsm
Auto Model with PI Control Continuous and Discrete.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 13

The continuous and discrete PI Speed Control are simulated with “Step Time” = .001 and “End” = 2000.

Discrete Automobile PI Speed Control (3/3)

13

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 14

This example Illustrates the design and implementation of a PD controller. The structure has a damping coefficient, B,

that varies between 0 - .04 randomly.

Plant Model with Damping Gain, B, modeled as a sinusoidal variation:

Structure PD Damping Control (1/3)

14

Damping Gain, B

Plant Model Unit Step Response:

Structure Damping - Plant Model

VisSimEmbeddedTrainingModels/Structure Model Step Response.vsm
Structure Model Step Response.vsm
Structure Model Step Response.vsm
Structure Model Step Response.vsm
Structure Model Step Response.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 15

Performance Requirements: Step response percent overshoot <= 3%, time constant <= 1.5 sec, control signal to

remain within +/- 1, Damping disturbance (worst case): B = 0 to 0.04 varying at .05rad/sec.

.

Structure PD Damping Control (2/3)

15

% Overshoot Requirement not met

Structure Damping - Requirements Modeling

VisSimEmbeddedTrainingModels/Structure Model Performance.vsm
Structure Model Performance.vsm
Structure Model Performance.vsm
Structure Model Performance.vsm
Structure Model Performance.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 16

Performance Requirements and Responses:

Structure PD Damping Control (3/3)

16

% Overshoot Requirement and

Time Constant Requirements met

Control Signal Requirements met Structure Damping PD Control System

VisSimEmbeddedTrainingModels/Structure Model with PD Control.vsm
Structure Model with PD Control.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Using the sT-Embed Optimizer to tune a PID
controller

17

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 18

This example Illustrates the design and implementation of a PID controller using the sT-Embed Optimization feature.

The Plant model is represented by the transfer function:

Performance Requirements: Unit step response has 0-steady state error for time >= 3 seconds from application of the

input signal, the output achieves 80% of its final steady state value at time = 1.5 seconds from application of the input

signal, and the Control System is stable.

Solution: A PID controller is applied with the gains [ki, kp, kd] evaluated by minimizing a quadratic cost function based

on the requirements. The Control System block diagram, with signal labels, is;

System PID Control Design using Optimization (1/3)

18

Plant model

PID Controller

Open Loop Plant Step Response

VisSimEmbeddedTrainingModels/pid controller plant step response.vsm
pid controller plant step response.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 19

The cost function to be minimized is defined as a block diagram using signals from the Control System and the

requirement information.

System PID Control Design using Optimization (2/3)

19

Error Signal

Masking Signal = “step”

configured with a “Time

Delay (sec)” = 3 seconds.

“sampleHold” value of the controlled

signal, y, at time = 1.5 seconds

Scaling gains to equalize the

weighting of the two terms

Quadratic to smooth

the search surface

Integrated to improve error sensitivity

sT-Embed “cost” block

(“Blocks/Optimization”)

The unknown parameters are the PID gains; [ki, kp, kd]. They

are specified using “parameterUnknown” blocks

(“Blocks/Optimization”) and with the initial “guess” values (right).

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 20

The “Perform Optimization” option is selected in the “Blocks/Optimization”

menu. The “Method” and other values are left at their defaults.

System PID Control Design using Optimization (3/3)

20

Results:

PID Controller Adjustment using Optimization

VisSimEmbeddedTrainingModels/pid controller optimization example.vsm
pid controller optimization example.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Controller Function Blocks

21

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 22

merge and crossDetect Blocks

22

The “merge” block (“Blocks/nonlinear”) provides the “if-then-else” function. If the Boolean “b” input is true (1), then the

output is set to the “t” input, otherwise the output is set to the “f” input.

The “crossDetect” block (“Blocks/nonlinear”) produces a +1 pulse when a signal passes through a “cross point” from

below to above and a -1 pulse when a signal passes through a “cross point” from above to below. In the example below,

the cross point = 0

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 23

The “pulseTrain” block is used to produce pulses with a

constant “Time Between Pulses”.

The “crossDetect” block (“Blocks/Nonlinear”) may be used

to produce pulse train signals with variable time between

pulses. The behavior of the “crossDetect” block,

configured with its “Cross Point” = 0.25, is illustrated in the

following block diagram.

CrossDetect, Limit, and ABS Blocks

23

“crossDetect” produces a high positive pulse

when the signal transitions from less than the

“Cross Point” to greater than the “Cross Point”

.

“crossDetect” produces a high negative pulse

when the signal transitions from greater than

the “Cross Point” to less than the “Cross Point”

.

Cross-Detect Example

VisSimEmbeddedTrainingModels/crossdetect example.vsm
crossdetect example.vsm
crossdetect example.vsm
crossdetect example.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 24

CrossDetect, Limit, and ABS Blocks

24

To retain only the negative pulse and convert it to a positive

pulse, the “limit” block (“Blocks/Nonlinear”) configured with

“Lower Bound” = -1 and “Upper Bound” = 0 and the “abs”

block (“Blocks/Arithmetic”) may be used

.

Similarly, to retain only the positive pulse

the “limit” block configured with “Lower

Bound” = 0and “Upper Bound” = 1 may be

used

Cross-Detect Example

VisSimEmbeddedTrainingModels/crossdetect example.vsm
crossdetect example.vsm
crossdetect example.vsm
crossdetect example.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 25

Discrete Integrator with Reset

25

A discrete integrator with reset to a specified initial condition can be created by adding the “merge” block to the discrete

integrator previously described.

A digital integrator compound block with Pin labels could be created as:

Discrete Reset Integrator Example

VisSimEmbeddedTrainingModels/crossdetect example.vsm
DiscreteResetIntegrator.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 26

CountDown Timer with Underflow Protection

26

The “CountDown” Timer outputs the remaining time to reach 0 seconds from an “InitialTime”. It begins counting down

when a positive pulse is applied to the “Reset” input. Although the “CountDown” Timer output, “TimeToGo”, is limited to a

lower bound of 0, the raw timer signal, “TimerValue” will continue counting down below 0. If unchecked, this can cause

an underflow problem. To prevent this, underflow protection logic is added.

Underflow Protection: When the “TimerValue” decreases to less than "MinUnderflowTime", the timer is reset to 0.5*

"MinUnderflowTime". In this example, "MinUnderflowTime" is set to -10, so once the “TimerValue” reaches -10, it will rest

to -5 and continually count down from -5 to -10.

Count Down Timer Example

VisSimEmbeddedTrainingModels/crossdetect example.vsm
CountDownTimer.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 27

The “merge” block (“Blocks/Nonlinear”) is used to model “IF THEN ELSE” logic. The block has

three inputs; “b” = boolean, “t” = true, “f” = false, and one output. When the boolean “b” input is

1, the output is set to the true “t” input and when the boolean “b” input is not 1, the output is set

to the false “f” input.

.

Pulse Counter

27

In the following example block diagram, the “unitDelay” block is used to count the number of pulses produced by a

“pulseTrain” block configured with “Time Between Pulses” set to 0.1 seconds and “Time Delay (sec)” set to the global

variable “TimeDelay”. When the count reaches 12, the “merge” block is used to reset the “unitDelay” initial condition

to 0.

The “pulse count output” is taken upstream of the

“unitDelay” to avoid a delay in the count value.

.

The “TimeDelay” value is

applied to both the “step” and

“pulseTrain” blocks for correct

initial condition counter

response..

The “pulse count output” is reset to “0” on each

13th pulse and then counts up to 12 pulses.

.

Pulse Counter Example

VisSimEmbeddedTrainingModels/pulse counter example.vsm
pulse counter example.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 28

When using binary signals in a control algorithm it is sometimes necessary to detect rising and falling edge times. Edge

times are calculated using unit delays and backward differencing to produce a positive pulse for a rising edge and a

negative pulse for a falling edge.

When using the pulses to Sample/Hold, it is sometimes necessary to ensure the pulse occurs before the binary signal

state has changed. The following model accepts a raw binary input signal and outputs a 2x1 vector with element 1 =

binary signal value (0 or 1) delayed by 1DT and element 2 = edge pulse (+1 for rising edge, -1 for falling edge).

Binary Signal Conditioning

28

Binary value = 0 when S/H on rising edge is applied

.

Binary Signal Conditioning Example

Binary value = 1 when S/H on falling edge is applied

.

VisSimEmbeddedTrainingModels/pulse counter example.vsm
BinarySignalConditioning.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

End of Section

29

