Embedded Application Development

sT Embed Training

Ric Kolk
Altair Engineering

mailto:rkolk@altair.com

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 2

Topics:
* Software Installation . Clock Speed, timers, interrupts
* Software Installation Video . ADC
* Source & Debug Models . Configuration
+ sTE Real Time Operating System (RTOS) * SOCx Setup
« F28069M LaunchPad . Extern Functions, Read, and Write
« LED Blink . Chip Temperature Example
« Fixed frequency . 5 Wire Encoder
+ User set variable frequency . Configuration
* Measure Blink ON time « Encoder Test Model Example
e Hello World LED Blink Video . Order of Execution
* Hostto Target Communication . Chip Temperature on the F28069M
+ Displaying CPU Usage « Motor Position Control on the F28069M

* Monitor Buffer
. Waveform Capture & Real Time Results
. Oscilloscope Display

* Fixed Point Arithmetic
. CPU Utilization Example

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 3

Software Installation

Software installation consists of the following two steps:

Step 1: Install the “code composer” software from Texas Instruments available at the following
link:

http://processors.wiki.ti.com/index.php/Download CCS#Code Composer_Studio Version 6 Do

wnloads
Select the "Off-line Install* and install with all recommended options. After
completing, verify the installation by going to the Start menu and confirming
you see the following (right)

Step 2: Install “solid Thinking Embed” software available at the following link:

http://www.vissim.com

Confirm VisSim/Embedded has been installed correctly;

NOTE: The following link contains information on the Texas Instrument
Launchpad
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchx|-f28069m.html

.. Pace Controls

.. PDF Merge

.. Realterm

'/ Samsung Printers
| Screencast-0-Matic
" Skype

| Startup

| Texas Instruments

. CC5UniFlash 310

.. Code Composer Studic 6,01
% Code Composer Studio 6.0.1 Reli
¥ Code Composer Studio 6.0.1
&4 Uninstall Code Composer Studic

. TlEmulators

Devices and Printe

Default Programs

Help and Support

solidThinking’

http://processors.wiki.ti.com/index.php/Download_CCS
http://processors.wiki.ti.com/index.php/Download_CCS
http://www.vissim.com/
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 4

Source & Debug Models for Embedded Control

Automatic C-Code Generation,
Compilation, linking, and downloading

Two types of Embedded Models: Source & Debug

Source Model: A “.vsm”model that is CodeGen’d, Compiled, and
Downloaded to the target. The Source model executes on the Target with Source VisSim
model Generated

no communication to the Host PC. out file
& RTOS

The Target Update time is controlled by the sTE“Time Step” value Plant

(“System/System Properties/Range” menu)

L o Host Target
Debug Model: A “.vsm”model, part of which is executed on the Target and

communicates, in real time, with the remaining part of the Debug model,
residing on the Host PC.

Automatic C-Code Generation,
. A « Compilation, linking, and downloading
The Debug Model part residing on the Host contains a “Target Interface

Block” whose inputs and outputs communicate with the Target through the
Interactive Data Exchange.

Target Interface _ VisSim
Generated

The Target Update time is controlled either by “Time Step” or as a parameter fferel

. “ Int ti .out file
in the “Target Interface Block”. y = o4 Daa & RTOS &

Exchange Debug Plant

Debug Model
Normally the Debug Model name is the Source Model name appended with “— - f;?er:zlcm:gglrrl]r;g e
d” (for debug), ex; the source model myModel.vsm would have a debug model - Plots
named myModel-d.vsm
Host Target

EMBED solidThinking'

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 5

When & How to use Source & Debug Models
Without Interactive Data Exchange: ‘ ONLY a Source Model is needed:

1. Create the target algorithm as a Source Model
SHITEE 2. CodeGen, Compile, and Download the Source Model to the

model Auto Target.

)
enerated 3. The Target will begin executing the Source Model immediately.
.out file Plant
RTOS A
Host Target
With Interactive Data Exchange: ‘ BOTH a Source Model and a Debug Model are needed:

 active 1. Create the target algorithm as a compound block in a Source Model. Add Input and Output
Data pins to the compound block to send and receive data from the Host to the Target

Target Interface gt 2n3% 2. CodeGen and Compile the Source Model to create an executable (.out) file
eftoct eneralc i — 3. Create a Debug Model consisting of a “Target Interface” block configured to read the
.out file . - « » :
i RTOS & Plant executable (.out) file from step 2. Onceconfigured, the “Target Interface” block will have
g |n?eractive gainsg E’fobc“ki p the same input and output pins defined in Step 1. You can connect these with “signal
- Plots producers” and “signal consumers” to sendcommands to the target or plot or display
Host Target data from the target. Click “Go” in the Debug Model to initiate target execution.

No Interactive Data Exchange: Use Source Model ONLY

Interactive Data Exchange: Use both a Source Model and a
Debug Model

EMBED solidThinking'

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 6

Real Time Operating System (RTOS)

An Operating System (OS) is software that manages a computer's memory, application processes, communication,
1/0, and all software and hardware residing on the computer. A Real-Time Operating System (RTOS) is an OS that
services real time application process data as it occurs with minimal buffering delays.

Terminology & Key Features:
» Process: A computer program that is executed as one or more threads.
» Task: Future promise to perform a process.
» Thread: Smallest sequence of programmed instructions that can be managed by an RTOS. Tasks are
executed as one or more threads.
» Thread Switching Latency: Time required for the RTOS to switch executions between threads.
« Jitter: the variability in time required by the RTOS to accept and complete tasks.
* Hard vs. Soft RTOS: A hard RTOS has less jitter than a soft RTOS.
* Hard RTOS: Accepts and completes an application's task deterministically in time.
+ Soft RTOS: Accepts and completes an application's task with variability in time.
* Interrupts: An event signal, from hardware or software, that requires immediate attention.
* Interrupt Latency: Time required for the RTOS to act on an interrupt.

Solid Thinking EMBED RTOS Features:
* Main-Timer 2 control thread runs at rate as set in diagram “System Properties...”
« Unlimited number of preemptable (high jitter) background threads — (option in Compound block)
« Efficient device drivers for on-chip peripherals
« Handle interrupts directly in STE (option in Compound block)
« Interrupt based soft queued I/O for serial, SPI and 12C
« Instrument individual subsystems for CPU usage

EMBED solidThinking'

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Solid Thinking EMBED RTOS Motor Control Setup

Typical Motor Control Model — Thread Architecture:

Background tasks are Time critical control
captured in 100Hz block operations are captured in an
interrupt driven block

Compound Neme Compound Name

- [Motor Control 1 -

[100H2]
asks|

Type Ciri+ENTER to enter a new lne

Type Cii+ENTER to enter a new line
Protection Appearance

Protection Appearance

[[Ilocked [|ReadOnly [UseBimap Selsct Image [TLocked [ReadOnly [7]Use Btmap
Password: [ClsetCoor [[-] Password [Csetcoor [(-)
[[] Hide in Display Mode [Do net Snap to Grid Locally [7] Hide in Display Mode [] Do not Snap to Grid Locally

[Creats Dialog from contained Dislog Constants

[Creats Dialog from contained Dislog Constarts
Create buttons for contained compound dialogs

Creae buttons for contained compound dialogs
[] Enabled Execution Enabled Execution
Flash Function to RAM [Copy Fiash Function to RAM
e Step: 0o Local Time Step: 6.666666566666672-005

Codegen as Backaround Thread

e on Intemupt e on Intemupt ADCINT13
[[]Use Local Bounds: ~ Stat: [0 Use Local Bounds: Stan: |0
End: |0 End: [0
Retain State

Betain State:
Use Implicit Solver: [Setup Solver. Use Implict Solver: [Setup Solver
Contained Block Count 523

Contained Compuiational Blocks:

Contained Block Court: 146
Contained Computational Blocks

Help

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 8

F28069M — LaunchPad Develop Kit

USB connection (used for JTAG
communications and power)

LED’s (red and blue)

All three microswitches must be set in the
upward facing direction

Unless otherwise noted, all examples in this
presentation will use the Texas Instrument C2000
F28069M LaunchPad Development Kit (TI Part
Number: LAUNCHXL-F28069M) shown below:
http://www.ti.com/ww/en/launchpad/launchpads-
¢2000-launchxI-f28069m.html

Reset Button

Quadrature Encoder Input (2 channels)

EMBED solidThinking’

http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 9

LED Blink Example

The LED Blink model created in this example is a Source model with no interactive

data exchange.

One model is created in this example
Source Model: “BlinkLED.vsm”
Debug Model: Not Needed

Step 1. Source Model Creation “BlinkLED.vsm”.

n Analyze Blocks State Charts Digital Power Motion Diagrams [Embedded | Tools Window Help

From the “Embedded/Piccolo” menu, selectand L+~ *¥ XY
place an “F28x Config...” block in the model. e [P mca=rn|

rer.

Configure the “F28x Config ...” block as shown ==
to the right, make sure the “CPU = F28069M” D
and the JTAG connection = “T1XDS100v2USB”, I

other settings may be left at their default values
. Multiple: of Ciystal Frea
(rlght) HSPCLK: 80 MHz2
A

20 MHz

TIXDS100v2 USE

Click “OK” and the “F28x Properties” block will {

i

Iook Ilke (bEIOW)- EFWM Interrupt Event.
F28x Config: F28069M@80MHz CorolCkProscals [1 <

T XDS100v2 USE QS LEI‘;Z:’\;Mo'de [

VisSin/ECD for F280 va0 Build 3002

Deffine

Examples

F280¢

Lco

Pic32

Piccolo

T132-bit Digital Motor Control Blocks
TIMtorare

AD 4
DMA Config
DMA Enable
Sim »
Analog Comparator DAC

AOIn

AI0 Out

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

LED Blink — Diagram Construction

From the “Embedded/Piccolo” menu, select and place a “Digital Output
for F280x” block in the model. (right)

NOTE: The F28069M board has two LED’s accessed through the
following channel and port information;

Red LED = Channel 34, Port B

Blue LED = Channel 39, Port B

NOTE: Port A has 32 bits, so channel 34 is on Port B

Right click on the “F28069M-ADCResult0” block to expose the
parameters, configure the block for output to the Red LED by setting the
“Type = Digital:” and select “Channel: 34 GPIO0” and “Port: A”. The
“Title” entry can be left blank and all other settings may be left at their
default values (right) Click “OK”.

Attach a “square wave” to the digital output channel. Set the
“Frequency”to 0.5 Hz. The completed “BlinkLED.vsm” model is shown
to the right.

Set the Target update time under the menu “System/System
Properties/Range” to the desired value, we will select
“Time Step” = .0001 sec

#{ F28069M-ADCRESULTO |

F28069M Output Cl\ai_

I—Tll\a'

Channet |34 | GRIDO

Tope
) Analog

@ Digtl Offet D Bitwidh 1

Part: A

[ok | [cence | [Hep

F28x Config: F28069M@80MHz
T XDS100v2 USB

F28069M-GPI034

10

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 11

LED Blink — CodeGen & Target Execution

Step 2. Code Generation - Lasso all the blocks in
“BlinkLED.vsm” model and then;

Step 2a. Click “Tools/Code Gen”

Step 2b. Configure the Code Generation Properties

(right) as shown.
Target is the Launchpad microprocessor family,
F280X

Step 2c. Click “CodeGen”, “Compile...”
In this step the “.out” (executable) file is created. You'll see the
compile progress in a DOS window that requires you to “Press
any key to continue...”

Step 2d. A Download to 280X window will
appear, click “Download”. This loads the
“.out”file to the target. The Target will begin
executing immediately.

Caa) [

In two steps you have generated
code to blink the LED’s on the
Target

View source model in VisSim

EMBED solidThinking’

VisSimEmbeddedTrainingModels/HelloWorld.vsm
BlinkLED.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 12

Host to Target Communication Example

This example illustrates interactive data exchange which allows the user to control the
red LED blink frequency on the Target using a “slider” block on the Host.

Two models are created in this example R 1 P o (@]
Source Model: “BlinkL EDwithControlledFrequency.vsm” o ey o e
Debug Model: “BlinkLEDwithControlledFrequency-d.vsm” ' » 12ru—u—u—m
P -[]—
Step 1: Source Model “BlinkLEDwithControlledFrequency.vsm”. i _{:EU : : - !
Add and configure the “F28x Config ...” block. A square wave » Time (sec)
generator model is created using a “slider” block to control the
frequency. The “slider “ output is multiplied by “wt”, passed through a o e ngﬂsgm@SUMﬂ
“‘relay” and then limited to lie between 0 and 1 which creates the
square wave.
[Z5i>
The “slider” controls the desired blink frequency, in Hz, and is ink Freauency. iz
configured to provide frequencies between 1 and 10 Hz by setting the F28x Config F28069M@B0MHz
Lower Bound = 1 and Upper Bound = 10.

The square wave signal is connected to a “Digital Output” block configured to light the red
LED (channel 34). Define the Target calculations in a compound block “Target
Calculations”.

E—__‘1 [Target Calculations |
|

Blink Frequency, Hz

View source model in VisSim

EMBED solidThinking’

VisSimEmbeddedTrainingModels/BlinkLEDwithControlledFrequency.vsm
BlinkLEDwithControlledFrequency.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 13

Host to Target Communication Example— Code Generation

Set the Target update time under the menu “System/System Properties/Range” to the desired value, we will select;
“Time Step” =.0001 sec

Step 2. Code Generation - Lasso the “Target Calculations” compound block and
Code Generation Properties

then;
) I Resutt File: Blink LEDwithControlled Frequency.c
Step 2a. Click “Tools/Code Gen” S C\VisSimS0'eg
Step 2b. Configure the Code Generation Properties (right) as shown. Make S [F280 2
sure the “Include VisSim Communication..” option is checked. _
. « y) y o« . Subtarget (set in target config): F28065M
Step 2c. Click "CodeGen”, “Compile...”, "Quit Optimization Level: 0 - [¥] Check for Performance: Issues
This step will create the “.out” file named as the “Result File” with the extension “.out” and place the '
file in the “R_esu" D_Ir" which defau“_s t? “C:\VISSITTIQO\CQH' Include VisSim Communication Interface (provides interactive debug)
Step 2d. At this point you are finished with the Embed Maps in Code 7] Add Stack Check Cods

“BlinkLEDwithControlledFrequency.vsm” source model, make sure it is saved.] Callfrom Foreign RTOS/User App On-Chip RAM Orly
[Include Block Nesting as Comment [Target FLASH

Stack size: 128 Heap size: 64

Periodic Function Name: cgMain

[Cuit] [CodeGen] [\.ﬁew...] [Compile...] [Download...

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 14

Host to Target Communication Example— Execution

Step 3. Debug Model - Create the debug model by renaming the source model to “BlinkLEDwithControlledFrequency-

d.vsm’,

Edit the Debug model and delete or disconnect the “Target Calculations” compound
block. Inits place, add a “Target Interface” block from the
(“Embedded/Picollo/Target Interface”) menu. The “Target Interface” block will have
the same input and output pins as specified in the “Target Calculations” compound
block in the source model. Connect the “slider” to the input pin of the “Target
Interface” block.

Configure the “Target Interface” block:
“Target Execution file” = “.out” file created in Step 2c.
“Sample Rate (Hz)” = desired value (it defaults to 1/’Time Step” value specified in

the source model.
“Keep Target Running” = checked to keep target running after
VisSim has been stopped.

Click “Go”, and, after a brief handshake, the Target will begin executing blinking
the red LED at the frequency specified by the “slider”.

View debug model in VisSim

F28x Config: F28069M@80MHz
T XDS100v2 USB

3.16 1BlinkLEDwithControlledFrequency.out |

Blink Frequency, Hz

Target Execution File:
C:\WisSm3Mhco\B inkLED withControlledFrequency.out [.. |

Block Title:

Blink LE DwithControlledFrequenc: VR B v~

Target Frequency [MHz]
80

C tors:
Sample Rate [z} 10000 -
Inputs: 1
Keep Target Running
[Shaw CPU Utilization
[Syme Target to This Block
Embedded T arget Support Wersion
WisSim/ECD for F280 30 Build 33

Outputs: 0

EMBED solidThinking’

VisSimEmbeddedTrainingModels/BlinkLEDwithControlledFrequency-d.vsm
BlinkLEDwithControlledFrequency-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 15

Compound Blocks and CodeGen

If you select the “Include VisSim Communication Interface” then VisSim will generate code ONLY for the selected compound block.

Code Generation Propert

Result File MoritorBiufferControlledFrequency SinWave d.c])

Result Dir C:\VisSimS0cg

Targst: [FZEDX .I

Subtarget (set in target config): F28063M

Optimization Level 0 - [Check for Performance lssues
1. If a Single Compound bIOCk iS nOt SeleCted, the “InCIUde < Include VisSimommunication Inteface (provides interactive debug)
VisSim Communication Interface” option will be greyed out. oo o e o o Sk e e
VisSim will generate code for the entire model. L e s e e B [Terget FLASH

Stack size 128 Heapsize: 64

Periodic Function Name cgMain

I Cuit I [Code Gen] [Wiew.] [Compile..] [Dovmload]

Code Generation Properti

Result File [MonitorBufferControlledFrequency SinWave])

Result Dir: C\VisSim30hcg
Target: IFZBDX vl
Subtarget (set in target config): F28065M

2. If one compound block is selected and the “Include VisSim L Dl e e
Communlcatlon Interface IS CheCked! VISSIm WI” generate < [¥] Include VisSim Fommuriication Interface (provides interactive debug)

code for the selected compound block. Erber er€in Code [C] Ad Stack Check Code
[Call from Foreign RTOS/User App On-Chip RAM Only
[]include Block Nesting as Comment [] Target FLASH
Stack size 128 Heap size: 64
Periodic Function Mame cgMain
I Quit I [Cede Gen l [Wiew. l [Compile.. l [Download =

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 16

Target Update Time

The Target code is executed at the “Time Step” value specified in the Source model used to produce the C Code. After compilation the
Target “Sample Rate (Hz)” value specified in the “Target Interface” block in the Debug model will default to 1/°Time Step” value specified for
the C Code generation, however, it can be modified.

Three ways to control the Target Update Time:
--- 1. “Time Step” in “System/System Properties...”
sets the update time of the Target from the Source
model.

Host
Code

Target

Code 2. “Sample Rate (Hz)” in “Target Interface” may be

used to change the Target update rate during
execution of the Debug model.

3. “Local Time Step”in Compound block properties.
(NOTE: The compound block rate setting holds for
all compounds, EXCEPT the topmost one that is
selected for “Include Communication Interface”)

JTAG interface updates at
approximately 100Hz. This limits
the real time execution of the Host

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 17

Host To/From Target Communication Example

This example illustrates bi-directional
interactive data exchange between the Host
and Target. A “slider” block is used to
control the red LED blink frequency and a
“plot” block is used to display the LED
“OnTime” both on the Host.

Two models are created in this example
Source Model:
“BlinkLEDwithControlledFrequencyAndOnTi
meCalculation.vsm”

Debug Model:
“BlinkLEDwithControlledFrequencyAndOnTi
meCalculation-d.vsm”

Step 1: Source Model
“BlinkLEDwithControlledFrequencyAndOnTi
meCalculation.vsm” .

Add and configure the “F28x Config ...”
block. Add the square wave generator from
the previous example. Add the “OnTime”
calculation using a reset integrator (below)

View source model in VisSim

T XDS100v2 USHE

F28x Config: F28068M@B0MHz

[2pi>
|
Blink Frequency, Hz

= | e}

F28069M-GPIO34

-LEDSignal M crossDetect
Cross Point=0.5

by

¥ szH
Sample/Hold the Timer

when the Pulse turns OFF
1/5

Reset Timer to 0
and start timing
when Pulse turns ON

EMBED solidThinking’

VisSimEmbeddedTrainingModels/BlinkLEDwithControlledFrequencyAndOnTimeCalculation.vsm
BlinkLEDwithControlledFrequencyAndOnTimeCalculation.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 18

Host To/From Target Communication Example- Codegen

The Target calc_ulations are captured in a compound block named F i Conig F280GON@EONF
“TargetCalculations” (right). TI XDS100v2 USB
1 Tan culations —
Set the Target update time under the menu “System/System i =lpet [e
ink Frequency, Hz 0

Properties/Range” to the desired value, we will select;
“Time Step” = .0001 sec

YYVY YVY

Time (sec)

OnTime, sec

Code Generation Properties

Step 2. Code Generation - Lasso the “Target Calculations” compound block and then; Resit Fle: LEDwihCortrldFrsavency ndOnTeCaiodsior s [
Result Dir: C:\MisSim90hcg

Step 2a. Click “Tools/Code Gen” Taget: [F280K ™

Step 2b. Configure the Code Generation Properties (right) as shown. Make e e L

sure the “Include VisSim Communication..” option is checked. gt 0~ 1 CreckforPefomance es

Step 2c. Click “CodeGen”, “Compile...” , “Quit” e e s e e e
This step will create the “.out” file named as the “Result File” with the extension “.out” and place the file in DCa":mvaaf;;gnn IS{TZSfUSerN)p Oncmz e — ¢
the “Result !Dir” wh.ich defaults to “(?:\\./isSimQO\c.g”. [include Black Nesting as Commert [Target FL}.\..SH '

Step 2d. At this point you are finished with the Shes Heap size: G4

“BlinkLEDwithControlledFrequencyAndOnTime Calculation.vsm” source model,
make sure it is saved.

Periodic Function Name: cgMain

[Quit] [CodeGen] [\d’lew..l [Comp\le...] [Download...

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 19

Host To/From Target Communication Example- Execution

Step 3. Debug Model - Create the debug model by renaming the source model to
“BlinkLEDwithControlledFrequencyAndOnTimeCalculation-d.vsm”

Edit the Debug model and delete or disconnect the “Target Calculations” compound F280X Tamﬂmu
block. In its place, add a “Target Interface” block from the (“Embedded/Picollo/Target T et Bemefan [

Interface”) menu. The “Target Interface” block will have the same input and output LEDwithCortralledFrequencyinddnTimeCalculation, out E
pins as specified in the “Target Calculations” compound block in the source model. Black Title:

Connect the “slider” to the input pin of the “Target Interface” block and the “plot” to the BlirkLEDwithControledFrequene 1208t Board 0~
output pln TargBetDFrequency [MHz]
Configure the “_Target Interface’j block: . S 000 Eonne.ctnrs:
“Target Execution file” = “.out” file created in Step 2c. Keep Target Runing Inputs: 1
“Sample Rate (Hz)” = desired value (it defaults to 1/"Time Step” value specified in the 7] Show CPU Utiizatian Qutputs: 1

source model. [T Sync Target to This Block

“Keep Target Running” = checked to for faster startup time Embedded T arget Support Yersion

WigSim/ECD for F2806 +30 Build 33

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Host To/From Target Communication Example- Results

F28x Config: F28069M@80MHz
T XDS100v2 USB
1 BlinkLEDwithControlledFrequencyAndOnTimeCalculation.out | !
ADPUusaget

Blink Frequency, Hz

Click “Go”, and, after a brief
handshake, the Target will begin
executing blinking the red LED at
the frequency specified by the
“slider”.

Setting the “slider” block at a 5 Hz frequency value, the “plot” block (right)
displays the measured “:0OnTime” of 0.1 seconds +/- .01 seconds. The variation
is due to the “Sample Rate (Hz)” setting being used.

The variation can be

20

a]
20
18

Plot

[= =]

.
a0 60 70 80 90
Time (sec)

L
40 100

reduced by increasing the
“Sample Rate (Hz)”. Setting
the “Sample Rate (Hz)” =
1000 Hz in the “Target
Interface” block reduces the
“:OnTime” error to +/- 0.01
seconds (below).

1 BlinkLEDwithControlledFraquencyAndOnTimePlot out !

HEPUusage|

|
Blink Frequency, Hz

View debug model in VisSim

vv*w Yy v v v Y v ¥

& Plot

(==

I
0 10

. L
50 60
Time (sec)

L L
20 40

solidThinking

VisSimEmbeddedTrainingModels/BlinkLEDwithControlledFrequencyAndOnTimeCalculation-d.vsm
BlinkLEDwithControlledFrequencyAndOnTimeCalculation-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 21

Displaying the CPU Usage of the Target Application

F280X Target Interface P

Checking the “Show CPU Usage” option in the “Target Interface” block adds an output pin to the Target Exsoution il
“Target Interface” block entitled “%CPUusage. This output provides a dynamic value for the LEDuithCoriralledFrequencpandiinT imeCalcuiztion oui| B

Target CPU utilization in percent . Block Tie:

BlinkLE DiwithControlledFrequenc, [laroetExards oo~

Target Frequency [MHz)
a0

The BlinkLEDwithControlledFrequencyAndOnTimeCalculation-
d.vsm model (from the previous example) is modified to plot the S Connectors:
“%CPU usage” at three “Sample Rate (Hz)” values; 100 Hz, 1000 Inputs: 1

T Feep Taraat Running 0 e
Hz, and 10000 Hz. “ . ! pte:
— G

arget to This Block

Embedded T arget Support Yersion
WisSim/ECD for F2806 30 Build 25

F28x Config: F28063M@80MHz
T XDS100v2 USB

- . . 1
[5] I —
F—’{lB|IHKLEDWIThCEIHUEI”EdF[EqLIEHEyAﬂdOﬂTImECE|CLI|EI\EII’1 out CPUusage T —— = 'E@ — = ; =
[] ANCE _E
Blink Frequency, Hz » 100] —Sample Rate = 100 Hz -D
——Sample Rate = 1000 Hz ————————
80~ ——Sample Rate = 10000 Hz
£ B0
s
o
@
[FRT
20~

As expected, as the “Sample Rate (Hz)” value is
increased, the “%CPUutilization” value also
increases (right).

0

Y v v v ¥

Time (sec)

View debug model in VisSim

EMBED solidThinking’

VisSimEmbeddedTrainingModels/BlinkLEDwithControlledFrequencyAndOnTimeCalculationCPUutilization-d.vsm
BlinkLEDwithControlledFrequencyAndOnTimeCalculation-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 22

Target to Host High Speed Communication - Monitor Buffer

The JTAG interface between the Host PC and the Target communicates data at approximately 100 Hz. The JTAG communication rate is
often very slow compared with the execution rate of the Target (often in the KHz range).

The “Monitor Buffer Read” and “Monitor Buffer Write” blocks provide a mechanism for a Debug model to buffer a large volume of data
acquired on the Target at the Target “Sample Rate (Hz)”, transmit the data periodically over the slower JTAG interface from the Target to the
Host, and then make the buffer contents available as a vector of data at regular intervals on the Host application.

The following figure illustrates the buffer mechanism to capture, transmit, and display a buffer of 1001 elements using Buffer ID 0. The Target
Update Rate = 10,000 Hz, and the Host “Time Step” = 0.01 seconds. The Target “Monitor Buffer Write” is triggered at 0.01 second intervals.

F28069NM Trig| : P g (1615 F28069N1
Monitor Buffer Read 0Buiter et [= @ signal Monitor Buffer Write 0

0

Monitor Buffer Read Propertis Monitor Buffer Write Proy

Buifer Size [words) | 10071 Buffer ID

[Ql] [Cancel] [Help]

b AcArhrh A i

Semples || ok | [Concel | [Ren |

|
|
|
|
|
|
0 g I Buffer Size [words) 1001 Buffer ID -_
|
|
|
|

HOST TARGET

Sequence of Operation:

1. “Monitor Buffer Write 0” “trig” input outputs a pulse every 0.01 seconds

2. “Monitor Buffer Write 0” begins recording a new “buffer” of data when two conditions are met: (1) “trig” = 1 and (2) “buffer” is
empty. NOTE: recording continues uninterrupted until the “buffer” is full.

3. When “buffer” is full; “Monitor Buffer Read 0” “Trig” output produces a “1” pulse and the “buffer” is emptied into the “plot” block and
“buffer” is cleared and ready to accept new data.

4. Steps 2 and 3 are repeated.

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 23

Monitor Buffer — Waveform Capture & Real Time Check

This example illustrates the use of the “Monitor Buffer” to (1) record a Target waveform and (2) record elapsed time on the Target.

Two models are created in this example
Source Model: “MonitorBufferTriggerAndTimeCheck.vsm”
Debug Model: “MonitorBufferTriggerAndTimeCheck-d.vsm”

Step 1: Source Model “MonitorBufferTriggerAndTimeCheck.vsm” - Add and configure the “F28x Config ...” block. “Time Step” is set to
0.0001 seconds. A compound block named “Target Calculations” is created with the following contents;

Blink Blue LED at 2Hz

F28069M-GPI1039 LED

Monitor Buffer 0: (for waveform capture)
Buffer size = 100 elements
ID=0

mgnstl F28069M i
<P{signal__Monitor Buffer Write 0 Input Signal = 200 Hz sawtooth
Trig Input: a 1-pulse is produced when sawtooth amplitude decreases
sanToot (1x/cycle)

F26069M-Manitor Buffer 1 Empty isEmety

= vrial 16.18) F28069M
-n Msianal__Manitor Buffer Write 1 F—

Monitor Buffer 1: (for Target time record)

Buffer size = 250 elements

ID=1

Input Signal = unit ramp (amplitude = time)

Trig Input: “Monitor Buffer 1 Empty” which is set to 1-pulse
when “Monitor Buffer 1” has been read and emptied by the
Host

View source model in VisSim

solidThinking’

VisSimEmbeddedTrainingModels/MonitorBufferTriggerAndTimeCheck.vsm
MonitorBufferTriggerAndTimeCheck.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 24

Monitor Buffer — Waveform Capture & Real Time Check

Step 2. Code Generation - Lasso the “Target Calculations” compound block and then; Code Ganeration Properics

Result File: ManitorBuffer TriagerAnd TimeCheck o

Step 2a. Click “Tools/Code Gen”

Result Dir: C:\VisSim30hcg

Step 2b. Configure the Code Generation Properties (right) as shown. Make Target (F200x 7
sure the “Include VisSim Communication..” option is checked. Subtarget fset i terget corfigl: F28083M
Step 2C . CI'Ck “ CodeGen ” , “COmplle ; _” , “Quit” Optimization Level 0 - [¥] Check for Pefomance Issues
This step will create the “.out” file named as the “Result File” with the extension “.out” and place the file in R G T R (e T et)
the “Result Dir” which defaults to “C:\VisSim90\cg”. Embed Maps in Code 7] Add Stack Check Code
Step 2d. At this point you are finished with the [[] Call from Forsign RTOS/ser Aon On-Chip RAM Only
“BlinkL EDwithControlledFrequencyAndOnTimeCalculation.vsm” source model, et fesledmesComet 1 Tema A
- ack size: leap size:
make sure it is saved.
Periodic Function Name: cgMain
Step _3. Debug Model - Cr_eate the debug model by_renaming the source_model to (Ga] [oomgen] [ven.] [Comie.] [owioeds
“MonitorBufferTriggerAndTimeCheck-d.vsm”and edit as shown below (“Time Step” oo ioi ot.n.enncecein.).ee.:
=0.01 sec)
“Monitor Buffer Read 1”
“Monitor Buffer Read 0” outputs a vector of ;2;’5;”[;&92 Egﬁ’sw@“"mz outputs the first element
100 elements beginning when the sawtooth of the 250 element data
first decreases in amplitude. Vector is buffer.

[MonitorBufferExample.out >=CPUusage g

Target time (y axis) vs
Host real time (x axis) to

recorded at 0.0001 sec intervals.

F280653M Tiig

Monitor Buffer Read 0Buttsr K] Plot = (== &1 Plot [= == confirm real time
20 » o .
15k) F28065M Trig| _’ e 20 P Operatlon.
R Monitor Buffer Read 1 Butfer & 10 %
10 E
I I E //
B sb B 5 0 Z
ol | —~
010 30 50 70 90 t T 0 e a0
| time, sec
» T5ec

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 25

Monitor Buffer — Waveform Capture & Real Time Results

Click “Go”, and, after a brief handshake, the Target will begin executing blinking the blue LED at the 2Hz rate.

F28x Config- F28069M@80MHz
T XDS100v2 USE

[MonitorBufferE xample_out 5CPU usage—

793

F28069M Trig

Manitor Buffer Read 0Butter B Plot [= @
20
R
16
R
10
L
ool L
0 2 4 6 8 10
R milliseconds

Waveform Capture: 100 points of the
Sawtooth waveform are buffered at
alOKHz rate on the Target. The buffer
is displayed on the Host at a rate of
100Hz (1/.01 seconds). Each refresh
of the buffer contains 10 milliseconds
of Target data.

View debug model in VisSim

(1) index
F28069M Tiig
Manitor Buffer Read 1 Buffer

v_ ¥

YV VvVvY

ElETES

0 [

10 15 20 25
Host Time, sec

Real Time Results: The Target
elapsed time is calculated at
al0OKHz rate, 250 values are
buffered and transmitted to the
Host. Even though the Host is
executing at 100Hz, Target elapsed
time buffer is updated every 25
msec (because the Buffer Size is
set to 250 elements updated at
10KHz equivalent to a .1msec
update time).

Since the slope of “Target Time,
sec” vs “Host Time, sec” =1 AND
since the Host is being forced to
run in real time, the Target is
therefore executing at a true 10KHz
rate.

solidThinking’

VisSimEmbeddedTrainingModels/MonitorBufferTriggerAndTimeCheck-d.vsm
MonitorBufferTriggerAndTimeCheck-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 26

Monitor Buffer — Oscilloscope Display

This example illustrates the use of the “Monitor Buffer” to produce an Oscilloscope display of a sin wave signal generated on the Target.
The Oscilloscope is triggered at a negative to positive zero crossing of the sin wave.

Two models are created in this example
Source Model: “MonitorBufferControlledFrequencySinWave.vsm”
Debug Model: “MonitorBufferControlledFrequencySinWave-d.vsm”

Step 1: Source Model “MonitorBufferControlledFrequencySinWavevsm” - Add and configure the “F28x Config ...” block. “Time Step” is
set to 0.0001 seconds. A compound block named “Target Calculations” is created with the following contents;

F28069M-GPI034

‘, M Talie.16) F28063M D
= | gignal __Monitor Buffer Write 1

Monitor Buffer Write Properti

Buffer Size [words) 200 Bulfer ID

“Freq” is an “crossDetect” followed by a

external input that “limit” set with [0 — 1] bounds CET o e
will be defined creates a trigger pulse at

using a “slider” each negative to positive zero

block on the Host. crossing of the sin wave.

View source model in VisSim

EMBED solidThinking’

VisSimEmbeddedTrainingModels/MonitorBufferControlledFrequencySinWave.vsm
MonitorBufferControlledFrequencySinWave.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 27

Monitor Buffer — Oscilloscope Results

Step 2. Code Generation - Lasso the “Target Calculations” compound block and then; P
GV 5o ContolecFrequency Siave R SR
Step 2a. Click “Tools/Code Gen” ResitDr ClisSm30leg
Step 2b. Configure the Code Generation Properties (right) as shown. Make f:a"m I[Fz:f"‘m p——)
“ 9 . . ubtarge in target corfig):
sure the “Include VisSim Communication..” option is checked. e O
Step 2C - CIICk ¢ COdeGen 7 ’ “Compile' . '” H “QUit” [¥] Include Vis Sim Communication Interface (provides interactive debug)
This step will create the “.out” file named as the “Result File” with the extension “.out” and place the file Embed Maps in Code] Add Stack Check Code
in the “Result Dir” which defaults to “C:\VisSim90\cg”.] Call from Freign RTOS/User Aop On-Chip RAM Only
Step 2d. At this point you are finished with the e ol s G HEM_HDGT:”“‘ a
“BlinkL EDwithControlledFrequencyAndOnTimeCalculation.vsm” source model, e Pt e e
make sure it is saved.
[Quit] [CodeGen] [Wiew...] [Compi\e] [Download]

Step 3. Debug

Model - Create the P25 Gy PISOESNIGRONT:

debug model by “slider” defines sin wave -

. frequency (Hz), bounds =
renaming the [100 — 1000] Hz. \g T P e B 3]
source model to '

“MonitorBufferCont I —
Monitor Buffer Read 1Butter 5 Plat = (===

rolledFrequencySin 2
Wave-d.vsm” and : /\/\/
edit as shown AL
below (“Time Step” 5 R

0 2 4 6 8 10 12 14 16 18 20
= 0001 SeC) milliseconds

X-axis: Based on 200 samples at .0001 sec.
intervals = 20msec

¥ vV VY V¥

View debug model in VisSim

EMBED solidThinking’

VisSimEmbeddedTrainingModels/MonitorBufferControlledFrequencySinWave-d.vsm
MonitorBufferControlledFrequencySinWave-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 28

Fixed Point Arithmetic

Fixed point arithmetic uses significantly less CPU time than floating point arithmetic on a CPU that does not have an
Floating Point Unit (FPU), and for this reason it is widely used in embedded systems where performance is more
important than precision.

Why you might not want an FPU:

+ Adds more gates to the part = increased cost, increased physical size
* Increased energy consumption (bad for battery powered applications)
* Increases interrupt latency due to save/restore of FPU register set.

The VisSim fixed point block library (“Blocks/Fixed Point”), contains block functions for fixed point operations.

This library contains one “const” signal producer block. The
“const” block properties are defined as;

Fixed Point Const Elock Properti
Fiadix Pairt [bits); Wward Size (bits): Where:

Representable Rangs: -16.000..15.875 Const: constant value in decimal form.

Radix Point (bits): Location of the radix point in the binary
number (# of bits from the left, or the integer part)

[T Auto scale bt Vel Sioer | Uiz Word Size (bits): Length of the binary number (bits)

[V]wam on overflow MaxVal Seen: 15.3

Const: 19.3

[Cancel] [

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 29

Fixed Point Arithmetic - Terminology

Precision is the smallest difference between two consecutive binary values, is determined by the least significant (rightmost) bit.

For example, if a fixed point “const” block were configured as:
Radix Point = 2
WordSize = 16

Then, the number of bits to the right of the radix point = 14, the number of bits to the left = 2, and the precision = 2*-14

And the notation used is 2.16

When converting a decimal (floating point) value to a fixed point equivalent, precision determines how accurate the resultis. sTE uses
truncation if the magnitude of the binary equivalent is less than the original decimal value.

Many of the Texas Instruments blocks use 1.16 format which has a range between -1 to .99997 and the precision = 3.0518e-005

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Clock, Clock Ticks, Timers, & Interrupts
In embedded electronics a clock is what controls how fast the CPU cycles. The CPU speed is measured in Hz.
The time required for a CPU cycle (or a clock cycle time) is 1/CPU speed, in units of seconds.

For example, an 80MHz CPU speed would have a clock cycle time = 1/80e6 = 1.25e-8 seconds = .0125
microseconds.

One complete clock is defined as a clock tick.

A Timer keeps track of how many clock ticks occur without having to write specific code to keep track of time.

A Timer needs to be initialized and enabled. It will then proceed to count the clock ticks to a predefined value and then
start over. You can set the Timer to generate events at multiple times along the way to its end value; these events
could be an interrupt when it hits a certain number of clock ticks, or it can toggle, set, or clear a specialized pin.

By default, a CPU operates at the manufacturer’s clock frequency, however, overclocking can be used to increase the

CPU speed. Overclocking will use more power and generate more heat but will improve the speed performance of
the CPU.

30

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 31

F28069 LaunchPad Clock Speed

The F28069 chip can be setup (using the Embedded/Piccolo/F28 Config... block) to run at its manufacturer's CPU
Speed (80MHz) or it can be overclocked.

To set the CPU in overclock mode, the “Multiple of Crystal Freq” (below right) is selected to be 9x instead of the
normal 8x value (to produce the 90MHz rate overclock CPU speed).

CPLU: F2a063

F28063 -

[¥]Enable Interactive Peripheral Mode

CPU Speed [MHz): an

Clock Source: Internal Dscillator 1 =

Multiple of Crystal Freg; 9 -

HSPCLE: | 1/5%SCLE 80 MHz
LSPCLE: | 4/5YSCLE + 20 MHz

JTAG connection:

[T1xD5 10042 UsE -

Control Clle Sre: 32 bit timer 2 -
EPwM Intemupt Event: CTR=0 -
Control Clk Prescals:

Chl Clk Count Made: [:]

DLLASRD Wersion:

WisSim/ECD for F2806 30 Build 39

[0K] [Eancel]

manufacturer's CPU
Speed = 80MHz

"] Enable Interactive Peripheral Mode

CPU Speed [MHz]: a0

Clock Source. Overclocked CPU Speed =
90MHz

Multiple of Crystal Freg;:

HSPCLE: | 1/S¥SCLE - 90 MHz
LSPCLE: |4/5vSCLE 22 5 MHz

JTAG connection:
[T1#Ds100v2USB
Control Clk Sre: 32 bit tirmer 2

EPwWM Interrupt Event: CTR =0
Control Clk Prescals:
Chrl Clk. Count Mode:

DLLAAD Wersion:

WigSim/ECD for F280x +30 Build 39

[Ok] [Eancel]

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 32

F28069 — Analog to Digital Conversion (ADC)

The Analog Digital Converter (ADC) block (“Embedded/Piccolo/Digital/Analog Input for F280x”) converts an analog
(voltage) signal to a digital signal. A PWM signal is used to periodically trigger the ADC to begin its measurement and
conversion.

An ADC accepts a voltage input signal and produces a digital F28069 Input Channel
output value:

Precision: The number of unique values, example, a 12 bit
ADC has 4096 unique values :
Range: The maximum and minimum input voltages, example 0 6 Analog

to 3.3volts © Digtal Offset: [0 Bitwiidth: [7
Resolution: The smallest detectable input signal change,
example 3.3volts/4096 = .81millivolts

Port: |4

[Cancel]

Channel 5 (ADCRESULTS) is selected for the
ADC output

The ADC Configuration block is used to associate the ADC with a PWM generated Start Of
Conversion (SOC) signal.

solidThinking

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

F28069 — ADC Configuration

The ADC unit must be configured to start conversions as
SOCx pulses are received from the PWM unit. The “ADC
F28069 Properties” (“Embedded/Piccolo/ADC Config...”)
is shown to the right. The ADC block is using ch5
(ADCRESULTS5)

There are 16 result registers; ADCRESULTO through
ADCRESULT15. Each result register is connected to a
“Src” pin. At the right, ADCRESULTO is shown
connected to pin 0, ADCRESULT1 is connected to pin 1,

“Trigger” is the source of the trigger value for the ADC.
For this entry we have set the trigger to “ePWM1-SOCA”
(which will be explained next)

“Sample Clks” is the settling time required for the ADC t
converge to a stable value in terms of “ticks”. This is
normally set to a value between 7 and 11*. 16 was
chosen here.

\

33

SYSCLK: 80 Mhz
SDCCLK SYSCLKA(1 <] B0Hhe |
Trigger Setup
Sic Trigger Sample Clks
ADCRESULTD Al | |ePwM1-S0CA « || 7 -
[] Dual Sample
ADCRESULT A1 - || ePwh1-S0Ca ~||7 hd
A2 | | Timer 2 |7 A
ADCRESULTZ,] Dual Sample
ADCRESULTS: A3 ¥ || Timer 2 |7 hd
—ANCRESLITs (84 = | e~ <
I D k(e ()
ADC] 3 1 }"hnm 1 id " |
ADCRESULT?: +|[Ting2Z= ~|[7 ~ L BreiEemps
ADCR| (=11 - 2 ~||7 -
s 7] Dual S ample:
/ CRESLILTS: B1 Timer 2 |7 -
ADCRESULTIO: |B2 ~ || Timer 2 =7 -
[] Dual 5 ample
ADCRESULTT x| [Timer 2 |7 hd
ADCR 12 |B4 x| |Timer 2 |7 i
[] Dual S ample
ESULT13: |BS x| [Timer 2 hal |2 hd
ADCRESULT14: BB > | | Times 2 |7 - 7 Dual Sample
ADCRESULT1S: | BY | | Timer 2 ~||7 -

To sync ADC measurements to the ePWM unit, you must send a SOCXx (start of conversion) pulse
from the ePWM unit to the ADC and also configure the ADC unit to use the SOCx pulse as the ADC
Sample Trigger. The Piccolo parts allow each PWM unit to send a SOC pulse to each ADC channel.

* Tl does not allow “Sample Clks” values < 7.

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 34

F28069 — ADC SOCx Setup

Example of ePWM setup to produce SOCA PWM Configuration:

280x ePWM Propertie

0.5@fx1.16 %0ty Cycle A[116)

F28068-EPWM1AEPWH 18 | M Uri Pt s s
%Dty Cyele E{L1E) T
Rate Sealing: Count Made:
Timer Period: 5000 SkHz [] Change Period Dynamically
50% duty cycIe is fine to use (We are only [TBCTR=TBPHS on SYNC pule TEPHS [phase): |0

. Change Phase Dynamicaly EPWHSYNG pine | G106
using 1 PWM, (EPWMA)
9 : epunisco EPuoCD
CMPA Load Or: | CTR = Zero ~| CMPBLoadOn: | CTR =Zero -
|| o Erertifier THPA THFE

up down up down P GPID Pin

z
i
sruns

Only EPWMA is being used

Deadband.
No deadband is needed e [Ef‘d 4
Input Select: Db, in = Py, DBE in = Fiwihia
Rising Edge Delay (0-1023) |0 Falling Edge Delay (0-1023;: |0
SOCA is set to repeat each time the PWMA Send Start ADE Donversion Pulse A [SICA) n_-
counter reaches a fU” period " Send Start ADC Conversion Pulse B (50CB) A -

Fault Handing

EPWwA output on Fault:
thi
EPWME output on Fault:

[Add Enable Pin [0 value forces Fault)

External TZx Fault Source: []1 [C]2 []3 [C14 [[]5 [[]6 []DCA [C]DCE
Autoreset TZx Fault Source: []1 [7]2 []3 [[]4 [0]5 [[]6 [[pca [C1DCB

Before we apply the ADC, we need to understand Tz [srmz <) 7zz [GRoe -] 123 [GRmie <
how “functions” are called from VisSim 2| 2) = | z) 775 2|

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 35

Extern Function Block

The Extern Function block (Embedded/Picollo/Extern - .

Function) lets you call an external function. For

example, the Extern Function is configured to call the C Function Name: | EENEEDY

function EALLOW (nght) Usze '$n'" to reference pin n: i.e. fool$1.$2]

Input Finz: Do not declare function

Fieturt Walue Type

The configuration parameters are described below:

Function name: Specifies the function call. You can [P il
specify arguments to the function that reference the input

pins. The pins are referenced using $ notation. For Radis Point: | 4 Wiord Size: | 16

example, Foo($1,$2). [Cancel | [

[ata Type: <1E-bit hardware register:

Do not declare function: Prevents the code generator
from creating a declaration for the function. This is useful
if the function is already declared in the header file.

Return Value Type: Specifies the data type of the variable. If you choose hardware register, VisSim
Embedded will only create a reference in the code and not an external declaration. The remaining
data types are described in the block help file.

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 36

Expression Block

Solid Thinking EMBED recognizes C expressions for
numeric data using the “expression” block located in the

“Blocks” menu. Using this block, you are able to include cos(51 p —
common math and transformations functions from the “C i ?pht = =]
math.h numerics library” like acos, asin, atan2, cos, cosh, : '
exp, fabs, log, log10, pow, sin, sinh, sqrt, tan, tanh, ... in »
your model. I 5 !

B 0 5 10

N . . Ti
The following link presents the functions in the common > me (sec)
math and transformations in the “C math.h numerics
library”,
mod($1.52) Y Deet (= [B]=]

http://www.cplusplus.com/reference/cmath/ 2

>

1=

The following example demonstrates the use of the “fmod” P /V
and “cos” functions; ﬁ Ug 5 10

> Time (sec)

solidThinking’

http://www.cplusplus.com/reference/cmath/
VisSimEmbeddedTrainingModels/ExpressionsFromMathh.vsm
ExpressionsFromMathh.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 37

Extern Read & Extern Write Blocks

The Extern Read block (Embedded/Picollo/Extern Read) lets you read
an external variable from another C code module into the diagram. If, for
the Data Type, you choose hardware register, you can enter a hardware Extenal Hame: IR

peripheral register name and the block output will produce the value of Daata Type: (1B bit haware regisens
that register when compiled.

External Reference Read Properties

Radix Paint. | 0 word Size: |0

Declare this vanable
[Define this wariable

The Extern Read block only allows built-in C data types. This means, for
example, that you would specify the unsigned short data type in the
Extern Read block to match a uint16 user-defined data type.

The Extern Write block (Embedded/Picollo/Extern Write) lets you write a
value to an external variable in another C code module. If, for the Data
Type, you choose hardware register, you can enter a hardware

External Mamne:

peripheral register name and the block input will be written to that register | P T#= | 1B bi hardnae register

when Compiled. Radix Paint. | 0 Word Size: |0
Declare this vanable

The Extern Write block only allows built-in C data types. This means, for [] Define this variable

example, that you would specify the unsigned short data type in the

Extern Write block to match a uintl6 user-defined data type. | [caea] |

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 38

Configuring the ADC Control Register & Execution Order

ADCCTL1 is a control register that lets you configure the ADC unit, the bits are defined as follows:
0:
0:
0:

/I bit 15
/I bit 14
/I bit 13
/I bit 12-8
/I bit 7
/I bit 6
I bit 5
/l bit 4
/I bit 3
Il bit 2
/I 'bit 1
/' bit 0

eeoeroeorRrkk

O's:

RESET, ADC software reset, 0=no effect, 1=resets the ADC
ADCENABLE, ADC enable, O=disabled, 1=enabled
ADCBSY, ADC busy, read-only

ADCBSYCHN, ADC busy channel, read-only
ADCPWDN, ADC power down, O=powered down, 1=powered up
ADCBGPWD, ADC bandgap power down, 0=powered down, 1=powered up
ADCREFPWD, ADC reference power down, O=powered down, 1=powered up
reserved
ADCREFSEL, ADC reference select, O=internal, 1=external
INTPULSEPOS, INT pulse generation, O=start of conversion, 1=end of conversion
VREFLOCONYV, VREFLO convert, 0=VREFLO not connected, 1=VREFLO connected to B5
TEMPCONYV, 1=temp sensor connected to ADCINA5

EALLOW is a function that allows writing to configuration registers.
EDIS is a function to disable writing to the configuration registers.

To configure the ADC to read the chip temperature on ADCINA, the following
sequence of instructions is executed

EALLOW

ADCCTL1 bit 0 =1 (bit 0 =TEMPCONV, setting bit 0 =1 causes temp sensor connected to ADCINAS)

EDIS

The equivalent VisSim block diagram is implemented using the “extern function”,
“extern write”, and “extern read” block previously discussed

OR with 0x1 sets bit 0 to 1 and
leaves the remaining bits
unchanged

extern void EALLOW
extern int ADCCTLA
extern void EDIS

extern int ADCCTL1
1\
[0t |

Execution Order: VisSim will execute in
“top down” order so the vertical placement
of the blocks is critical

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 39

Order of Execution

sTE will execute in “top down” order based on the vertical placement of blocks

[extern void EALLOW |

- Order of execution
%@: or gxtern int ADCCTLA

extern void EDIS

In situations where the top down ordering is not adequate, STE provides an “execOrder” block (“Blocks/Signal Consumers”)

WE
=
Py :i execOrder
- =
W2 =2 i
[w3 <]

View this example in VisSim

solidThinking’

VisSimEmbeddedTrainingModels/OrderOfExecutionExample.vsm
OrderOfExecutionExample.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 40

Chip Temperature Example

This example illustrates the use of the “ADC” and “PWM?” to measure the chip temperature of the microcontroller chip on the F28069M
Launchpad board.

Two models are created in this example
Source Model: “ChipTempOnF28069M.vsm”
Debug Model: “ChipTempOnF28069M-d.vsm”

Step 1: Source Model “ChipTempOnF28069M.vsm” - Add and configure the “F28x Config ...” block. “Time Step” is set to 0.005 seconds.
A compound block named “Target Calculations” is created with the following contents;

p—
Configure the ADC Control Register
ShrstPass 1"“ eS| First Pass — -2 ECE e
Logic

o

Blink Red LED at 1Hz F28089M-GPID3
Red LED Heartbeat Configure the ePWMA for SOCA

0S@ 118 |—Lo{Tmy Gy ALTE]
[05@RiTE] : ey ool i P ZB0BSM-EPWI AR IS

TI7.28@fx12.16

|

[+ 1 state 1Hz Low Pass Butterworth |

[(F28065M-ADCRESULTS
Read

ADC5 Linear Scaling to get degC

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 41

Chip Temperature Example — Setup’s
ADC Setup

F28069M Input Chann

PWM SOCA Setup

I Title:

Channel § ADCRESULTS Piadhd Urit: [Use High Res Timer
Type Time Base:
Analog Rate Scaling Count Mode
Timer Perod: 8000 BkH. i i
© Digtal Offzet; [0 Bitwidth [1 et e B 7] Change Pericd Dynamicaly
. [T1 TBCTR=TEPHS on SYHCI pulse TBPHS [phase]: |0
o Change Phase Dynamically EPWEYNE pire [GRIOE

Co) (o] (i) EPuENICD EFUMSNCD i Unned
CMP& Load Orr: CMPB Load On

: ; Action Quifier:
ADC Configuration Setup OiRa O
ra up d ok

GFIO P

EPWHME:
SYSCLK: 80 Mhz
Desband
aDCCLE SYSCUO/(T <] 80Mke Delay Mode: [Disabled h
TiEaz Seop Polarity: Mo Inversion
St Trigger Sample Clks Input Select Db in = P, DBE in = P/t

ADCRESULTD A0 | [ePwi150CA ~

SDCRESULTT |41 «| [sPwmisoca = B Dusl Sample Rising Edge Dielay (0-1023): [0 Faling Edge Dielay (01023 D
ADCRESULTZ A2 | [1imer2 - ElDselsampie

ADCAESULTS: |43 i) i hd Send Start ADC Corvversion Pulse A (SOCA) CTR =PRD -
ADCRESULTS: |Ad | [Timer2 -)

ADCRESILTS A6 | [ePwi1 5008 ~ [7] Dual Sample Send Start ADC Corweersion Pulze B [SOCB]. CTA =PRD -
ADCRESULTE: |46 ~|[Timer2 - e Fault Handing

ual Sample

ADCRESULTZ: A7 i |2, hd E P4 output on fault: High impedance - TN
ADCRESULTS: [BO | [Timer2 ~
ADCRESULTSZ: |B1 - T::::z - 7/ Dual Sample EPWwME output o Fault: High impedance -

ADCRESULTID: |B2 | [1imer2 - R [Axdd Enable Fin [0 valus forces Fault)

ual Sample
ADCRESULTTT: |B3 ~ || Timer 2 - Erternal T2« Fault Source: [T]1 [C]2 []3 [C14 [7]5 []6 [C]DCa [C]DCE
ADCRESULTIZ |84 | | ims hd 7] Dual Sample Autoreset TZx Faul Souce: []1 [F]2 F3 [F4 15 Fle Floca [Floce
ADCRESULTI3: | BS > || Timer 2 -
- - 121 [GRID12 ~| 722 [GRIO13 «| 7123 [GRID14 «
ADCRESULT14: |BE Timer 2 [P Dual Sample (J [J [J
ADCRESULTIS: |B7 v [Timer2 - Tz4: | -] Tzm [<] Tz -
View Source Model in VisSim] Corce

solidThinking’

VisSimEmbeddedTrainingModels/ChipTempOnF28069M.vsm
ChipTempOnF28069M.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 42

Chip Temperature — CodeGen & Execution

Step 2. Code Generation - Lasso the “Target Calculations” compound block and then;

Code Generation Propertit

Result File:)
Step 2a. Click “Tools/Code Gen” Resst D C\VeSimd0icg
Step 2b. Configure the Code Generation Properties (right) as shown. Make sure the “Include T [F280 7]

F28063M
Check for Performance lssues

Subtarget (set in target config):
Optimization Level: 4 =

VisSim Communication..” option is checked.
Step 2c. Click “CodeGen”, “Compile...” , “Quit”

Include VisSim Communication Interface (provides interactive debug)

This step will create the “.out” file named as the “Result File” with the extension “.out” and place the file in the “Result Dir” Embed Maps in Code [F] Add Stack Check Code
which defaults to “C:\VisSim90\cg”. [Cal from Foreign RTOS/User App OnChip RAM Only
[Include Block Nesting as Comment [] Target FLASH

Step 2d. At this point you are finished with the “ChipTempOnF28069M.vsm” source model,
make sure it is saved.

Stack size: 128 Heap size: 128

Periodic Function Name cgMain
- [[out | [codeGen| [View.. | [Compie..]| [Downlozd...
Step 3. Debug Model - S =
Ag this medel is running, place your finger on the large chip in the center
Create the debug mOdeI F25x Config. F28069N @30z area of the F28069M board and observe the drop in temperature on the
. . Iots.
by renaming the source TALEVEe s ’
model to .
“ChipTempOn F28069M- chip_temp_on_F28069.out T[deQC]—H convert |—>| celsius == fahrenheit I—P S
” . - ROPU usage 5| Temperature (degF) = @
d.vsm an_d edit as shown Ly = * o0
below (“Time Step” = P e
P 116
0.005 sec) o el
I+ M2
B 1 2 . s 10
R Time (sec)

View Debug Model in VisSim

EMBED solidThinking’

VisSimEmbeddedTrainingModels/ChipTempOnF28069M-d.vsm
ChipTempOnF28069M-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 43

Encoder

The F28069M LaunchPad board has inputs for two quadrature encoders. Quadrature encoders measure rotational
angles by counting discrete “ticks”.

Typically, an encoder will have between 256 to 4000 ticks per revolution.

There are two types of encoders:

* Incremental: Although this type of encoder begins counting “ticks” at power up, it's information is not accurate until
an “index pulse” occurs. The “index pulse” occurs 1x/revolution. When used for motor control, incremental
encoders must be rotated initially in “open loop” mode until the “index pulse” is sensed.

+ Absolute: This type of encoder begins counting “ticks” at power up and provides accurate angle data immediately.

Encoders have 5 electrical connections: +5v, ground, A, B, index pulse

The A and B outputs consist of discrete values, 1 or 0, and are out of phase by 90 degrees, this allows the direction of
rotation to be determined:

A_]

B_I.

I I I
Phase 182936411 3293841142143 ¥4 11

I 1 I T
I I I I I
U I 1 I
1 1 1 I

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 44

Encoder

The F28069M LaunchPad board has
encoder peripherals that manage the
encoder count value and reset the count
value each time an “index pulse” occurs.

The F28069M LaunchPad encoder
connections are shown below:

Note: the rectangular pin (viewed from bottom
of LaunchPad board) is always pin 1

Encoder 1
Encoder 2 Connection (pin 1is
Connection leftmost pin)

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 45

Encoder — Startup

An incremental encoder begins counting “ticks” at power up, it's information is not accurate until an “index pulse” occurs. The “index
pulse” occurs 1x/revolution. When used for motor control, incremental encoders must be rotated initially in “open loop” mode until the

“index pulse” is sensed.
A VisSim model to detect the “index pulse” is presented below, In this model, the “index pulse” is named “EncoderindexHasOccured”

When bit 2 of QEPSTS = 1, the “EncoderlndexHasOccured”
discrete is set to 1 and remains there.

and I H EncoderIindexHasOccured
0x0

[éxtern long QEPSTSD convert

External Reference ad Eies : QEPSTS |S the
— quadrature encoder
status register

External Name:

Data Type: <32-bit hardware registers -

Radix Point. | 01 Wword Size: | [

Declare this variable
[] Define this variable

[0K] [LCancel] [Help

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 46

Encoder — Test Model

The following model is used on an 8 pole PMSM. It detects the “Index pulse” and measures the electrical and
mechanical angles. “Time Step” = .0001 sec.

F28x Config: F28069M@90MHz
TI XDS100v2 USB

Encoder Test

[extern long QEPSTS1 | convert

Encoder Testieeh Ange— Y) &ime- [= (&[]
I 2
R ol
=
1+ 5 s [4000 |—*{ QEPticksPerRevolution |—
= 0 .05 1 [= :AngleMech
L Time (sec) . =
QEPoffset 2l 1y, > QepBased [¥1/ OF PricksPerRevoluton@hxd.32 [*4@he.16 — [-AngeFlect —
F28069M0P050N11(32.32] + .
dir(16.18)—
eQrP1 Revs(16.16)— P QepRaw | = “Index Pulse”

_ “AngleElectricalNormalized” =
=116 merge —>{ convert |——>{ :AngleFlectricaNormalzed |— 1 ormalized (0-1 = 0-360 degrees)

1={ :AngleElect | b electrical angle

.9999@fx1.16

“AngleMechanicalNormalized” =

merge —>{ convert —>{ :AngleMechanicalNormalzed |— normalized (0-1 = 0-360 degrees)
mechanical angle

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. a7

Encoder — Tl Peripheral Block & Results

The eQEP Properties are Manually turning the PMSM motor shaft produces the
presented below: following time history results
eQEP Properties |
F28x Config: F28069M@90MH
| | cnas s o] Encoder Test
it E
ElectAngle] i 3607 —
Court Mads: | Quadiature [GCK = iClk, Dt =DIR) ~ | Encoder Testihnge|—b] 3605] Angles [= &)=
3 400| —Electrical Angle
Paosition Counter Fleset on: index event - -le] N 300l—— ikal Angle
M ax Position [32 bit hex): (FFFFFFFF ool
Strobe Effect on Position Counter ¥ g
p 1001
[ND Action v]
x ot
[} Inc/Dec Fev Count ot Index Pulse » 100 ! ! 1 1
[Swap &/B channels [reverses count direction) 0 5 m‘r\me (SEC1)5 20 25
[] Gate Index Pulse *

[T Invert QEPA input [Irvert QEPE input
[Invert Index Pulse [T Irveert Strobe

[] &ngle Difset Pin
Muiz Pin Aszignments

& [GPO20 ~| B [GRIDZ1]
Indes: [GF'ID23 v] Strobe: [Unused ']

ak | [LCancel] ’ Help]

View Source Model in VisSim View Debug Model in VisSim

EMBED solidThinking’

VisSimEmbeddedTrainingModels/EncoderRead.vsm
EncoderRead.vsm
VisSimEmbeddedTrainingModels/EncoderRead-d.vsm
EncoderRead-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 48

Motor Position Control Example

This example illustrates the use of the “ADC”, “PWM”, and encoder to control the position (angle) of a PMSM motor.

Teknic M-2310P-LN-

04K Low voltage 24V, 3A |
servo motor with power supply
encoder

http://www.ti.com/tool/l

vservomtr

solidThinking’

http://www.ti.com/tool/lvservomtr
http://www.ti.com/tool/lvservomtr

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 49

Motor Position Control Example

TI BOOSTXL-
DRV8301
http://www.ti.com/too
I/boostx|-drv8301

TI LAUNCHXL-F28069M

NOTE: J1 and J2 MUST
be disconnected as the
board is receiving power
from the 24V power supply
and not the USB

solidThinking’

http://www.ti.com/tool/boostxl-drv8301
http://www.ti.com/tool/boostxl-drv8301
http://www.ti.com/tool/boostxl-drv8301
http://www.ti.com/tool/boostxl-drv8301

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 50

Motor Position Control Example

Two models are created in this example
Source Model: “Motor Position Control - LaunchPadDRV8301-pmsm-28069M.vsm”
Debug Model: “Motor Position Control - LaunchPadDRV8301-pmsm-28069M-d.vsm”

Step 1: Source Model “Motor Position Control - LaunchPadDRV8301-pmsm-28069M.vsm” - Add and configure the
“F28x Config ...” block. “Time Step” is set to 0.0001 seconds. A compound block named “PMSM Control” is created

with the following contents;
Step 2. Code Generation - Lasso the “Target Calculations” compound block and then;

Step 2a. Click “Tools/Code Gen”

Step 2b. Configure the Code Generation Properties (right) as shown. Make
sure the “Include VisSim Communication..” option is checked.

Step 2c. Click “CodeGen”, “Compile...”, “Quit”

This step will create the “.out” file named as the “Result File” with the extension “.out” and place the file in
the “Result Dir” which defaults to “C:\VisSim90\cg”.

Step 2d. At this point you are finished with the “Motor Position Control -
LaunchPadDRV8301-pmsm-28069M.vsm.vsm” source model, make sure it is
saved.

View Source Model in VisSim

solidThinking’

VisSimEmbeddedTrainingModels/Motor Position Control - LaunchPadDRV8301-pmsm-28069M.vsm
Motor Position Control - LaunchPadDRV8301-pmsm-28069M.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 51

Motor Position Control Example

Step 3. Debug Model - Create the debug model by renaming the source model to “MonitorBufferTriggerAndTimeCheck-

d.vsm” and edit as shown below (“Time Step” = 0.005 sec)
Set the “Sample Rate (Hz)” in the F280x Target Interface block to 20KHz.

Click “Go”, and, after a brief handshake, the Target will begin executing.

Setting the “slider” block to different position setpoint values will cause the motor to rotate until the
setpoint value is achieved.

View Debug Model in VisSim

EMBED solidThinking’

VisSimEmbeddedTrainingModels/Motor Position Control - LaunchPadDRV8301-pmsm-28069M-d.vsm
Motor Position Control - LaunchPadDRV8301-pmsm-28069M-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

End of Section

™

solidThinking

