Fixed Point Arithmetic and Filters

sT-Embed Training

Ric Kolk
Altair Engineering

mailto:rkolk@altair.com

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 2

» Fixed Point BlockSet

 Fixed Point Fundaments Video

« Configuring a Fixed Point Block, “const” example
 Displaying Overflow Messages

» Using the Autoscale Feature

+ Autoscale Video

« Code Generation, commenting, in line functions

* %CPU Utilization Example — discrete filter

+ Discrete fixed point filter %CPU Comparison Video

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 3

Fixed Point Blockset

e === . The 33 element solid Thinking EMBED fixed point blockset
] = : (“Blocks/ Fixed Point”) is used to design and simulate
. performance of fixed point algorithms prior to codegen and
S execution on an embedded platform.
IS Fixed Point Block Features:
X » Automatic radix point scaling
e « Overflow alerts
e * High & Low levels to determine optimal radix point settings
e » Master control for all fixed point blocks

» Fixed Point Code Generation Features:
Highly efficient code using in-line shifts
» Automatic commenting to enhance readability

sampleHold
sqrt

Fixed Point Menu

transferFunction (filier)

unitDelay

X

Fixed Point Fundamentals Video

VisSimEmbeddedTrainingModels/00 FixedPointMenu.vsm
FixedPointMenu.vsm
VisSim Embedded Training Models/00 FixedPointMenu.vsm
https://youtu.be/ZeTBLS-0Wqc

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Fixed Point Configuration - “const” block

Radix Point (bits): Analogous to the decimal point in a base 10 number.
Word Size (bits): Total number of bits in the fixed point number, set equal to the
wordsize for the Target architecture.

example: 4.16 ||, ENERRRRERENA

= Maximum Value =0111.1111111111111111 =

f Fixed Point Const Block Prupcﬂies-)
[Radix Point [bits} ‘Word Size [bits) 79997558594
Representable Range: -8.0000000000..7.99375568594 Mlnlmum Value = 1000.00000000000000 = '8
Cf:f:;.m :'””:‘f:“ E Representable Range: -8 to 7.9997558594
[ok | [cacel | [Hep |
Const: Entered in floating point representation.

Precision: Smallest step (difference) between two consecutive N bit number values

* Example: 4.16: precision = 27-12

* Example: 1.16: precision = 27-15
Fixed point targets only recognize integer values. sT-Embed codegen automatically converts decimal numbers to scaled integer
values based on the Radix Point and Wordsize settings. Comments, indicating the original Const value, are added to sT-Embed

codegen on each conversion

Auto scale: Resets the “Representable Range” when the maximum or minimum values are exceeded.

Warn on overflow: Presents a dialog box indicating an overflow (used in conjunction with “Fixed Point Block Set Configure...”)

Min Val Seen & Max Val Seen: watermarks of minimum and maximum values passed through the block const block properties

EMBED solidThinking’

VisSimEmbeddedTrainingModels/01 ConstBlockProperties.vsm
ConstBlockProperties.vsm
ConstBlockProperties.vsm
ConstBlockProperties.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 5

Displaying Overflow Messages

Overflow: The situation where the minimum or maximum value exceeds the “Representable Range”. Use the following procedure to observe

overflow in a fixed point “gain” block. —
- Window Help
Code Gen...
1. In the “F|Xed P0|nt BIOCk Set Model Wizard... [7] Overide Word Size Word Sies [itz]:
Configuration” (“Tools/Fixed Point Block Import C [C] Enable Auta soaling
Set Configure...”), check the “Enable insert Mathezd Obyect ’ ozl R Rl & 5 Sl
N Customize 3
OVGrﬂOW Alert MeSSQgeS” Tutorial Creator 13
VML Workspace

Fixed Point Block Set Configure...

-
Fixed Point Gain Block

l Radix Point [bitz]: ‘word Size [bitg):

2. In the fixed point “gain” block, “Fixed Point Gain Block

Properties”, check the “Warn on overflow” l Representable Range: 80000000000, 7 3397558534
Gaine 55
@jsoa\e MinVal Seen: 0
PIRT] ” . m on overlow Max'Val Seen. 0
3. Apply a “slider” input = +/-100,
[OK] [Cancel] [Help]

Click “Go” to run the simulation, an fixed point overflow
overflow is detected and the

following message will be [mbor [Rewy [gnore ’@
displayed: | Radi Poirt [bils} Word Size (bits]
P . . . ” . Representable Rangs: -8.0000000000..7.9997558594
In the “Fixed Point Gain Block Properties”, the Min Val Seen and e 55
Max Val Seen display the high and low water marks of values that B vt ok T
have passed through the block. —) [wham onovlons \ bMawVal Seen 560
oK Cancel Hel
Fixed Point Overflow Example ;

EMBED solidThinking’

VisSimEmbeddedTrainingModels/04 DisplayingOverflowMessages.vsm
DisplayingOverflowMessages.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 6

Using the Autoscaling Feature

For each fixed point block, sT-Embed maximizes precision by selecting the smallest acceptable range for each fixed point block in a model.

1. A model is created consisting of a:

“sawtooth” with “Amplitude” = 200 from grr 1 TR 5
(“Blocks/Signal Producer”) -4.16 - -

“const” from (Blocks/Fixed Point”) 100@fx4.16

“add” from (“Blocks/ Fixed Point”)

“gain” from (“Blocks/ Fixed Point’) [[T
Radie Point (bits): \wiord Size (i) Badzheribil Eectzelbh Rladi Paint [bits]: word Size [bits]:

. . . . Representable Range: -8.0000000000. 7.39375568534 Fiepresantable Fiange: -8.0000000000.7.3357558534 Representabls Flange: -5.0000000000.7 8357556554
2. Each fixed point block is configured as Const 100 lbwioscss MinvalSeen 0 Gan 55

ShOWﬂ tO the I'Ight (V1w scald Min ¥l Seer: 0 Eiwemenovefes Mawa“:;:g:] Autto scale MinVal Seer: 0
[Clwanonovedlow MaxVal Seer: 0 Input Count; @+®- [CIwam on averflow MaxVal Seenc 0
o] [Comcel | [Hep] o [caed | [Hep | o | [Concel | [ek

3. In the “Fixed Point Block Set Configuration” (“Tools/Fixed Point Block Set Configure...”), check the Mo
“Enable Auto Scaling" Option- 7] Ovenide Ward Size \word Size [bits)

Enable Auto scaling
[] Reset Radix Point at $im Start
[Enable Overflow Alert Messages

4. Click “Go” to run the simulation, the fixed point blocks being autoscaled whose output value [
exceeds the Min Val Seen or Max Val Seen will turn red, at the end of the simulation, each fixed
point block will display the modified radix point value that provides an acceptable Representable
Range for the simulation signals.

Reset Radix Point Example Autoscale Video

ok | [Cameel | [Hep

EMBED solidThinking’

VisSimEmbeddedTrainingModels/05 AutoscalingFeature.vsm
AutoscalingFeature.vsm
https://youtu.be/Vz4JRYmHTiE
https://youtu.be/Vz4JRYmHTiE
https://youtu.be/Vz4JRYmHTiE
https://youtu.be/Vz4JRYmHTiE

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 7

Code Generation — Commenting, Inline Shifts

To view the automatic commenting and efficient execution features of sT-Embed fixed point code generation, we will illustrate code gen for a
simple model using a “Host” Target.

1. VisSim model consisting of “const” [T@sd.1s —r{Z@ke 16— 0]
and “gain” blocks (“Blocks/Fixed AR ! St e g

H il TP H [T . Resutt File: FixedPoirtConstModels ¢ | |
Point”), and “display” (“Blocks/ Signal e EoEe
Consumers”)blocks. I "

Optimi v [T Ghesk for Peformance Issues

eiface (provides ineractive debug)

2. Configure “Code Generation Properties” under (“Tools/ Code Gen...”) = - s s o
. H “% ” T . ” Call from Foreign RTOS/User App: On-Chip RAM Only
as shown to the right. Click “Code Gen”, then “View... S ——"

Stacksze: 0 Hezpsize: 0

f lFimdPDiﬂtCunsModds.c - Notepad Pasiodic Funcion Name: [ogMain

3. The Code Gen “c” file will ———— - !
appear |n Hnotepad" — éf‘;:zx'lﬁw Automatic € Code Generator version B

/% output for FixedrPointConstModels.vsm at Tue
sep 01 16:34:39 2015 */

#include "math.h"
#include "cgen.h”

extern copousLE zed: | Inline shifts (multiply & divide) of
static yold euaingroiys | 7l scaled integers for efficient
10,0,0.01,0,0,0,0,0,0,0,0 H

,0,0,0,0,0,0,0,cgMain,0,0,0,0,0,0 execution.

SIM_STATE *sim=&Tsim;
static void cgMain()

m

int t5;
int H
= MUL_SHIFTL 6 /% 1@fx4.16 */,16384,15)/*
2@

Scaled Integer: T SpTr T ob0er eIt Comment of original floating point
display((t3 * 0.00390625));

-2.81@x8.16 = value
-719 = (-2.81/(2-8) =-719) |

int main()

simInit(&sim);|
startsim();
return 0; m

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 8

Fixed Point Arithmetic — CPU Utilization Example

This example illustrates the CPU time savings using fixed point arithmetic instead of floating point to implement a
digital filter.

7+2.0000097387362+.99997060955299

The digital filter transfer function is: 9.82585231224611e-006
7-1.99110458269792+.99114388591402

The digital update time is: 0.001 seconds.

Two versions of the digital filter transfer functions are implemented,
+ Digital Filter — FLOATING POINT
+ Digital Filter — FIXED POINT

The input to each filter is attached to analog input O which is pinned out on the F28069M LaunchPad board. By placing
your finger between J1 and J3 pins on the LaunchPad, an analog input signal is created.

The top level VisSim model has the two digital filters in the compound block “DigitalFiltersFixedAndFloatingPoint”

7 N

:buttoninput

Digital Filter - FLOATING POINT — :OutputFloatingPointFilter |-

DigitalFiltersFixedandFloatingPoint l:

Digital Filter - FIXED POINT

[:OutputFixedPointFilter

Two state “button” selects

o . Contents of “DigitalFiltersFixedAndFloatingPoint”
what filter is active

Note: ‘buttoninput” selects either filter

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 9

CPU Utilization Example - Filter Configurations

Digital Filter — FLOATING POINT Digital Filter — FIXED POINT

Transfer Function Properties Transfer Function Properties
7+2.0000097387362+.99997060955299
9.825852312246112-006 — ik = 9.525&5131224611e-ooszaz'mmgmm61*'99997060955299
7°-1.99110458269792+.99114388591402 7°-1.99110458269792+.99114388591402
Transfer Function Properti
Specification Method ‘mat/m File mat/m File

® Polynomial File: File
ETEWW Delay [T Use 325t precision TE'WB“ DE‘:’_’r T 7] Use 32 bit precision
Discrete dT: 0.0001 /| Discrete .
] Foles and Zeros [7] Use scaled fixed poirt] Potes and Zeroe Use scaled fixgd po
Radi Poirt: [0

[] Display Fitter Method Word Length: [16 [T Display Fiter Method Wor

nitial Value: 0 Inital Value:

Gain 9.82585231224611e-006 fowest order state on right) Gain: 9825852312461 1e-006 (ovst ofter state on right)

Polynomial Coefficierts
[T e N 1 3 000005738736 83357060955259
Denominator: 1-1.9911045826379 9914388591402

Polyromial Coefficients
Numerator:
Denominator: 1-19911045826979 99114

Fixed Point Format Selected 8.32

View source model in sT-Embed Fixed Point Filter Video

solidThinking’

https://youtu.be/eXuwno2qunc
https://youtu.be/eXuwno2qunc
VisSimEmbeddedTrainingModels/FixedPointVersusFloatingPointDigitalFilterCPUUsage.vsm
FixedPointVersusFloatingPointDigitalFilterCPUUsage.vsm
FixedPointVersusFloatingPointDigitalFilterCPUUsage.vsm
FixedPointVersusFloatingPointDigitalFilterCPUUsage.vsm
FixedPointVersusFloatingPointDigitalFilterCPUUsage.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 10

CPU Utilization Example - Results

F28x Config: F2B8069ME90MHZ
TI ¥DS100v2 USB

Code is generated for the
“DigitalFiltersFixedAndFloatingPoint”

compound block and executed in the == *4’{ “igi‘a“‘e““"m“‘g"“"“m:::::::il: Similar filter performance
“target Interface” (below). %
] 0 pret =E 3
— Filter Responses
1.50| —Floating Point
P 1.25 —Fixed Point
FloatingPoint | —1 #1001
e\t FixedPointVersusFloatingPointDigitalFilterCPUUsage FiwedPoint—— N Jo=
HCFU
.50
25
* 0 1 1 L 1
Step 1: Place finger over J1 and J3 pins to create an 0 2 4 3 3 10
. input signal to the filters P Time (sec)
NOTE: Up until now, we have developed
" " n " Step 2: Run embedded model, toggle "button™
Separate Source and Debug between “Fixed Pt" and “Float". —¥] Plot [= &@]=]
mOdels When the 'JTAG Step 3: Observer %CPU Utilization savings with Fixed » # CPU Utilization
communication transfer speed can Point filter NI b
is sufficient (for the model being
used) it is possible to combine the B 108
"Source" and "Debug" models into Floating Point GPU Utiization = 1766 o sk
one "Source" model which includes oalng Foin reton = g AL e L
the "target Interface". Fixed Point CPU Utilization = 2%~ » ° ' = ° ‘.0 T F 0

View debug model in sT-Embed

EMBED solidThinking’

VisSimEmbeddedTrainingModels/FixedPointVersusFloatingPointDigitalFilterCPUUsage-d.vsm
FixedPointVersusFloatingPointDigitalFilterCPUUsage-d.vsm
FixedPointVersusFloatingPointDigitalFilterCPUUsage-d.vsm
FixedPointVersusFloatingPointDigitalFilterCPUUsage-d.vsm
FixedPointVersusFloatingPointDigitalFilterCPUUsage-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 11

Summary

* When a target does not support hardware multiply or divide, the operations must be performed in software.
* A software divide is approximately 100x slower than a hardware multiply, add, or shift

* A software square root involves several divide iterations and is approximately 200x to 300x slower than a hardware multiply, add, or
shift

+ Using Fixed Point arithmetic greatly reduces the CPU Utilization required for software multiplies, divides, and other complex operations.

* In the digital filter example, the fixed point implementation used 1.8% CPU while the floating point implementation used 16.76% CPU,
almost a factor of 10x savings in %CPU Utilization.

» sT-Embed Fixed Point blockset provides an easy and efficient way to migrate control algorithms to fixed point implementations that meet
target hardware limitations and CPU Ultilization requirements.

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

End of Section

™

solidThinking

