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Topics: 
• Algebraic Equations 

• Static Explicit 

• Static Implicit, using the sT-Embed built in solver 

 

• Differential Equations 

• Specifying Initial Conditions 

• Modeling Linear Differential Equations 

• Using an integrator to differentiate 

• Creating a rate limiter 

 

• Difference Equations 

• Unit Delay, Sample Hold, Pulse Train Blocks 

• Modeling Linear Difference Equations 

 

• Transfer functions 

• Continuous 

• Discrete 

• Continuous to Discrete Transformation 

 

• sT-Embed Filter Design Option 

• IIR, FIR 

• Continuous, Discrete 
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Algebraic Equations 
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Static Explicit Equations:  Equations of the form y=Y(x1, x2, x3, …). 

 input variables = x1, x2, x3, … 

output variable(s) = y  

linear or Nonlinear relationship =Y(x) 

 

Can be modeled & solved using simple arithmetic, Boolean, and other blocks 

 

 

 

Static Explicit Equations 

Example:  Incompressible fluid flow through a restriction 
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Incompressible Fluid Flow Example 

VisSimEmbeddedTrainingModels/Incompressible Fluid Flow Example.vsm
Incompressible Fluid Flow Example.vsm
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Static Implicit Equations:  Equations of the form y=Y(y). 

input variables = y 

output variable(s) = y  

linear or Nonlinear relationship =Y(y) 

 

 

 

Static Implicit Equations - Basics 

In these equations, the output variable is also an input variable.  Linear implicit equations are simple to solve analytically, nonlinear equations generally 

require root finding. 

 

 

For both linear and nonlinear, the built in sT-Embed Newton Raphson Optimizer and two sT-Embed blocks are used for their solution; 

 

Unknown Block: in the Block/Optimization menu – represents an unknown value to be determined by the optimization. 

 

Constraint Block: in the Block/Optimization menu – represents a constraint with a value to be driven to 0, the constraint equation must be written 

in “error” form with the error signal applied to the constraint. 

  

The unknown block works in conjunction with constraint blocks to solve equations for unknowns using Newton-Raphson iteration. For 

each unknown, there should be a constraint block that is fed directly or indirectly by the unknown.  

 

The maximum iteration count, error tolerance, and perturbation are established under the Implicit Solver tab in the dialog box for the 

System > System Properties command.  
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Static Implicit Equations - Linear 

When the “unknown” and “constraint” blocks are present, sT-Embed will ask if you want to use the built in Newton Raphson “implicit solver”, you accept 

this.  

 

The implicit solver does not require the simulation to transition in time, it makes its calculations at a time interval within a sT-Embed “Time Step” 

 

The setup for the implicit solver is located under “System/System Properties/Implicit Solver” 

 

Example – Linear Equation:: 

yy  512

Static Implicit Linear Equation Example 

VisSimEmbeddedTrainingModels/Static Implicit Linear Equation Example.vsm
Static Implicit Linear Equation Example.vsm
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Static Implicit Equations - Nonlinear 

Example – Nonlinear Equation:: 

Static Implicit Nonlinear Equation Example 

y y  
1

5
62( )

VisSimEmbeddedTrainingModels/Static Implicit Nonliner Equation Example.vsm
Static Implicit Nonliner Equation Example.vsm
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Differential Equations 
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sT-Embed uses the “1/s” operator to represent time integration:  

 

 

Differential Equations – Integration Operator 

sT-Embed provides three Integration blocks in the (“Blocks/Integration”) menu.  Each  integrator  block and its unit step response behavior is 

presented below. 

Integrator Block 

Limited Integrator  

Block 

Reset Integrator  

Block 

The integrator output is reset  to 

the  reset (“r”) value when  the 

boolean  input (“b”) goes  High.  

Here, the  boolean signal is created 

with a “pulseTrain” block 

configured: 

The integrator output is limited to lie 

between the lower limit value (“l”) and 

The upper limit value (“u”). 
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Integrator initial conditions can be implemented using any of three methods: 

 

 

Integration – Specifying the Initial Condition 

Method 1: “right click” on the integrator to expose its properties menu and enter 

the “Initial Condition” value 

Method 2: Define a global variable with the integrator initial condition.  “right  

click” on the integrator to expose its properties menu and enter the global  

Variable name as the “Initial Condition” .  This method is often used when the  

Initial conditions must be varied. 

 

Method 3: The initial condition, either a variable or constant value, is added to  

the integrator output.  The “Initial Condition” value in the integrator is set to 0.  

This method is often used when the initial conditions must be varied.  
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sT-Embed uses the “s” operator to represent time differentiation: 

 

Differential Equations – Derivative Operator 

sT-Embed provides one differentiation block in the 

(“Blocks/Integration”) menu.   

 

In the following block diagram, a 1 rad/sec unity amplitude sinusoid 

input signals is applied to a “derivative” block.  The “Input Signal” time 

history is displayed in the lower plot (“green”0, the “Derivative Signal” 

time history in the upper plot (“red”), and the “Integrated Derivative 

Signal” time history in the center plot (“blue”).  The “Integrated 

Derivative Signal” time history is identical to the “Input Signal” time 

history as expected.  
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Model & solve the differential equation: 

 

Modeling a Differential Equation (1/2) 

Step 1.  Identify the order, n, of the equation, for this equation, n = 1. 

 

Step 2.  Serially place and connect n- “integrators” (“Blocks/Integration”), use “variables” 

(“Blocks/Annotation”) to label the states (integrator outputs) from right to left beginning with “y” , also label 

the input to the leftmost integrator even though it is not a state. 

Step 3. Solve the differential equation for the largest derivative of the output variable as a function of the 

input(s) and states.  Incorporate the solution into the step 2 diagram.  Use a unit “ramp” for time. 
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Modeling a Differential Equation (2/2) 

Step 4.  “right click/Integrator Properties” to set the y(0) =1 initial condition:  

Step 5. Connect y to pin 1 of a “plot” block, Click the “Go” button or press “F5” or “System/Go“ to run the simulation.  

Modeling a Differential Equation 

VisSimEmbeddedTrainingModels/DifferentialEquationExample.vsm
DifferentialEquationExample.vsm
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Linear Differential Equation with Input Dynamics (1/3) 

Step 1.  Identify the order, n, of the state equation, for this equation, n = 3. 

 

Step 2.  Serially place and connect n- “integrators” (“Blocks/Integration”), use “variables” 

(“Blocks/Annotation”) to label the states (integrator outputs) from right to left beginning with 

“x” . also label the input to the leftmost integrator even though it is not a state. 

Control system design often deals with linear differential equations.  Although most  physical system equations are non-linear, it is frequently possible to 

linearize them over an envelope of operating conditions.  The resulting linear differential equations are usually of the same order but with coefficients that 

vary over the operating conditions.   

Since the equation is linear, it can be rewritten as two differential equations based on a 

newly introduced variable named the state and its derivatives.  Normally the state variable is 

assigned  as “x”.  The two equations are called (1) the state equation and (2) the output 

equation. 

State Equation: 

Output Equation: 

The steps to create the block diagram model introduced previously are slightly generalized. 

Model & solve the  differential equation (initial conditions = 0) and  the input, u, set to a unit step at time = 

1.25 seconds. 
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Linear Differential Equation with Input Dynamics (2/3) 

Step 3. Solve the state equation for the largest derivative of the state variable as a function of the input(s) and states.  Incorporate the solution into 

the step 2 diagram.   

Step 3a. Incorporate the output equation into the step 3 diagram.   

Step 4.  “right click/Integrator Properties” to set the initial condition, note that any output initial conditions will need to be transformed to state initial 

conditions. 

Modeling a Differential Equation with Input Dynamics 

VisSimEmbeddedTrainingModels/DifferentialEquationWithInputDynamicsExample.vsm
DifferentialEquationWithInputDynamicsExample.vsm
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Linear Differential Equation with Input Dynamics (3/3) 
Step 5. Configure the “step” block (“Blocks/Signal Producer”)  with a “Time Delay (sec)” = 1.25 seconds. Connect y to pin 1 of a “plot” block, Click 

the “Go” button or press “F5” or “System/Go“ to run the simulation.  
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Van der Pol Oscillator & Strip Charts 

The Van der Pol oscillator obeys the second order differential algebraic equation 

Where: 

 x = position 

 

 

 

We will use sT-Embed to model the oscillator and plot its behavior while varying the damping, u,  between 0.01 to 4.  

 

 

 

= xDot = velocity 

 

 
= xDDot = acceleration 

 

 

u = damping coefficient 

 

 

x(0) = 1 = Initial position 

 

 

Van der Pol Oscillator Example & Strip Chart 

Models/VanDerPolVideo2.mp4
VisSimEmbeddedTrainingModels/VanDerPol.vsm
VanDerPol.vsm
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Difference Equations 
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Difference equations are based on sequences instead of signals.  A sequence takes on values at discrete instances on time.  

Often the sequence time interval is constant and called  the “discrete update time”, Δt. 
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Difference Equations – Unit Delay Operator 

Continuous time, t, is related to the discrete update time by the relationship:   

 

 

 

 

 

Where: k is the sequence index 

The “z” operator is used to represent one unit of time advance (one unit of discrete update time); 

 

 

 

 

 

Sequences with constant discrete update times are written using only the sequence index;  

 

 

 

 

 

Similarly, the “1/z” “operator is used to represent one unit of time delay.   

 

 

 

 

 

sT-Embed uses the “unitDelay” block (“Blocks/Time Delay”) to model the unit delay.  The “unitDelay” block  can be used for both constant and 

variable discrete update times.  

 

The sT-Embed “unitDelay” block, below,  accepts two inputs; a boolean input  “b”, ,used to trigger the delay and a sequence or signal input, “x”; 

 

 

 

 

 

Pulse input used to trigger the unitDelay 
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When the discrete update time is constant, the sT-Embed “pulseTrain” operator (“Blocks/Signal Producers”) is used to trigger the “unitDelay”.  The 

behavior of a “PulseTrain” configured with a 0.01 second “Time Between Pulses” is shown below:  

. 
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Difference Equations – Unit Delay & Pulse Train (1/2) 
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Difference Equations – Unit Delay & Pulse Train (2/2) 

The following block diagram illustrates the behavior of the “unitDelay” block  operating on a unit “ramp” input and triggered by a “pulseTrain”  

configured with a 0.1 second “Time Between Pulses”.  The  “unitDelay” is configured with a 0 valued initial  condition. 

. 

 

 

 

 

 

0 
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Output = 
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Output = 
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The “sampleHold” block (“Blocks/Nonlinear”) is similar in behavior to the “unitDelay” block except it does not apply a delay to the input signal or 

sequence.    

 

The following block diagram illustrates the behavior of the “sampleHold” and “unitDelay” blocks when a unit ramp signal is input to both blocks and 

triggering is performed using a “pulseTrain” configured with a “Time Between Pulses” = 0.1 seconds. 

  

 

. 
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Difference Equations – Unit Delay & Sample Hold 

Unit Delay and Sample Hold Example 

VisSimEmbeddedTrainingModels/UnitDelay SampleHold Example.vsm
UnitDelay SampleHold Example.vsm
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Model & solve the  difference equation (initial conditions = 0) and  

the input, u, set to a unit step at time = 1.25 seconds.  The digital  

update time is 0.01 seconds. 

 

Since the equation is linear, it can be rewritten as two difference equations based 

on a newly introduced variable named the state and its derivatives.  Normally the 

state variable is assigned  as “x”.  The two equations are called (1) the state 

equation and (2) the output equation. 

 

  

 

. 
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Linear Difference Equation with Input Dynamics (1/3) 

State Equation: 

Output Equation: 

Step 1.  Identify the order, n, of the state equation, for this equation, n = 3. 

 

Step 1a.  Create the discrete update time as the variable “trigger” defined by a “pulseTrain” block configured with the “Time 

Between Pulses” = 0.01 seconds. 

The steps to create the block diagram model are identical to those used for the Linear Differential Equation with 

Input Dynamics except the discrete update time is defined in step 1a.  

 

Step 2.  Serially place and connect n- “unitDelays” (“Blocks/Integration”), use “variables” (“Blocks/Annotation”) to label the 

states (unit delay outputs) from right to left beginning with “x(k)” . also label the input to the leftmost unitDelay even though it 

is not a state. 
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Linear Difference Equation with Input Dynamics (2/3) 

Step 3. Solve the state equation for the largest time advance of the state variable as a function of the input(s) and states.  Incorporate the solution into 

the step 2 diagram.   

Step 3a. Incorporate the output equation into the step 3 diagram.   

Step 4.  “right click/unitDelay Properties” to set the initial condition, note that any output initial conditions will need to be 

transformed to state initial conditions. 

Difference Equation Example 

VisSimEmbeddedTrainingModels/DiscreteEquationExample.vsm
DiscreteEquationExample.vsm
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Linear Difference Equation with Input Dynamics (3/3) 
Step 5. Configure the “step” block (“Blocks/Signal Producer”)  with a  “Time Delay (sec)” = 1.25 seconds.  Connect y(k) to pin 1 of a “plot” block, 

Click the “Go” button or press “F5” or “System/Go“ to run the simulation.  
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Transfer Functions 
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Transfer Functions 

Example:  Continuous System, u = input, x = output 

 

. 

 

 

 

 

 

Transfer Function 

General Form of a Transfer Function: 

Continuous 

Discrete 

Linear Differential and Difference Equations can be represented by transfer functions.  Transfer functions provide an 

efficient way or representing a Plant, Controller, or Control System.   A transfer function is a ratio of the systems 

output/input expressed as the ratio of two polynomials, a numerator and a denominator, represented as coefficients of 

descending powers of either  “s” (continuous) or “z” (discrete). 

 

  

 

. 
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Continuous Transfer functions are defined using the sT-Embed “transferFunction” block located in “Blocks/Linear 

System” 

 

 

. 
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Continuous Transfer Functions 

Example: 

 

. 

 

 

 

 

 

Transfer Function Example 

VisSimEmbeddedTrainingModels/Transfer function example.vsm
Transfer function example.vsm
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Using an Integrator to Differentiate 
Since it is numerically more stable and accurate to solve differential equations using numerical integration methods 

rather than differentiation., differential equation models will be constructed using integrators.   

In situations where differentiation is necessary, the following approximation to 

differentiation can be used (right).  

The  “Approximate Derivative” block diagram  model  (using “tau” 

in place of “τ”) is written as (right).   For stability, “tau” should be 

set as tau >= “Time Step” * 2 

In the following block diagram, a 1 rad/sec unity amplitude sinusoid input signals is applied to the “Approximate 

Derivative” model.  “derivative” block.  Tau is set equal to 2*Time Step.  The “Input Signal” time history is 

displayed in the lower plot (“green”0, the “Derivative Signal” time history in the upper plot (“red”), and the 

“Integrated Derivative Signal” time history in the center plot (“blue”).  The “Integrated Derivative Signal” time 

history is identical to the “Input Signal” time history as expected.  

Differentiator Approximation Example 

VisSimEmbeddedTrainingModels/Differential Approximation.vsm
Differential Approximation.vsm
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How to create a Rate Limiter 

We can extend the “Approximate Derivative” block developed previously to create a rate limiter block.  

A limit block (“Blocks/nonlinear”) is added upstream of the integrator to implement the rate limit action.  The Lower 

Bound and Upper Bound values are set the rate limit values in units/sec.  

 

In the following example, a unit amplitude sin wave is passed through a rate limit set to +/- 0.8units/sec 

Rate Limiter Example 

VisSimEmbeddedTrainingModels/Differential Approximation.vsm
RateLimiterExample.vsm
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Discrete Transfer functions are defined using the sT-Embed “transferFunction” block located in “Blocks/Linear System” 

 

 

. 
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DiscreteTransfer Functions 

Example: DiscreteTransfer Function with digital update time = .1 seconds  

 

. 

 

 

 

 

 

Make sure you check “Discrete” and enter 

the dT (discrete update time) 

Discrete Transfer Function Example 

VisSimEmbeddedTrainingModels/discrete transfer function example.vsm
discrete transfer function example.vsm
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The “transferFunction” block can be used to convert continuous transfer functions to discrete form.  

 

. 
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Continuous to DiscreteTransfer Function Conversion 

Example: Convert T(s) to T(z) using a discrete update time = .01 sec 

and compare the unit step responses using Simulation Time Step = 

.001 sec and End = 10 sec 

 

 

 

 

 

 

Step 1.  Copy 

and Paste the 

T(s) transfer 

function so 

there are two 

copies. 

Step 2.  right click on the 

lower “transferFunction” block 

to reveal “Transfer Function 

Properties” 

Step 3.  click “Convert 

S->Z”, enter the 

“Discrete Update Time” 

value in seconds. 

Step 4.  click “OK” and see 

the discrete transfer function , 

click “OK” again 

Connect a “Step” input 

(“Blocks/Signal Producers”) to 

both transfer functions and 

plot their outputs using Time 

Step = .001 sec and End = 10.  

Continuous to Discrete Conversion Example 

VisSimEmbeddedTrainingModels/Continuous to Discrete.vsm
Continuous to Discrete.vsm
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Filter Design Option 
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Filter Design Option - Features 

Filters can be configured as: 

Low Pass 

High Pass 

Band Pass 

Band Reject 

The Filter Design option is located in the “Blocks/Linear Systems/Transfer Function” Block.  Two filter types are 

supported: 

 

IIR = Infinite Impulse Response (filter with feedback) 

FIR = Finite Impulse Response (sometimes called a tapped delay filter) 

Analog (S-Domain) filters 

can be converted to 

Discrete (Z-Domain) filters  

 

 

Discrete Filters can be 

converted to Fixed Point for 

improved Real Time 

Performance 
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End of Section 
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