
Embedded Application Development

sT Embed Training

Ric Kolk

Altair Engineering

rkolk@altair.com

mailto:rkolk@altair.com

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 2

Topics:

• Software Installation

• Software Installation Video

• Source & Debug Models

• sTE Real Time Operating System (RTOS)

• F28069M LaunchPad

• LED Blink

• Fixed frequency

• User set variable frequency

• Measure Blink ON time

• Hello World LED Blink Video

• Host to Target Communication

• Displaying CPU Usage

• Monitor Buffer

• Waveform Capture & Real Time Results

• Oscilloscope Display

• Fixed Point Arithmetic

• CPU Utilization Example

2

• Clock Speed, timers, interrupts

• ADC

• Configuration

• SOCx Setup

• Extern Functions, Read, and Write

• Chip Temperature Example

• 5 Wire Encoder

• Configuration

• Encoder Test Model Example

• Order of Execution

• Chip Temperature on the F28069M

• Motor Position Control on the F28069M

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 3

Software Installation

3

Software installation consists of the following two steps:

Step 1: Install the “code composer” software from Texas Instruments available at the following

link:

http://processors.wiki.ti.com/index.php/Download_CCS#Code_Composer_Studio_Version_6_Do

wnloads

Select the "Off-line Install“ and install with all recommended options. After

completing, verify the installation by going to the Start menu and confirming

you see the following (right)

Step 2: Install “solid Thinking Embed” software available at the following link:

http://www.vissim.com

Confirm VisSim/Embedded has been installed correctly;

NOTE: The following link contains information on the Texas Instrument

Launchpad

http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html

http://processors.wiki.ti.com/index.php/Download_CCS
http://processors.wiki.ti.com/index.php/Download_CCS
http://www.vissim.com/
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 4

Source & Debug Models for Embedded Control

4

Two types of Embedded Models: Source & Debug

4

VisSim

Generated

 .out file

& RTOS

Automatic C-Code Generation,

Compilation, linking, and downloading

Plant

Target

 Debug Model

 - signal monitoring

 - Interactive gains

 - Plots

Host

Target Interface

block

Host

Source

model

Source Model: A “.vsm” model that is CodeGen’d, Compiled, and

Downloaded to the target. The Source model executes on the Target with

no communication to the Host PC.

The Target Update time is controlled by the sTE“Time Step” value

(“System/System Properties/Range” menu)

Plant

Target

Interactive

Data

Exchange

Automatic C-Code Generation,

Compilation, linking, and downloading

Debug Model: A “.vsm” model, part of which is executed on the Target and

communicates, in real time, with the remaining part of the Debug model,

residing on the Host PC.

The Debug Model part residing on the Host contains a “Target Interface

Block” whose inputs and outputs communicate with the Target through the

Interactive Data Exchange.

The Target Update time is controlled either by “Time Step” or as a parameter

in the “Target Interface Block”.

Normally the Debug Model name is the Source Model name appended with “–

d” (for debug), ex; the source model myModel.vsm would have a debug model

named myModel-d.vsm

VisSim

Generated

 .out file

& RTOS &

Debug

blocks

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 5

When & How to use Source & Debug Models

5 5

Auto

Generated

 .out file

& RTOS

Plant

Target Host

Source

model

 Debug Model

 - signal monitoring

 - Interactive gains

 - Plots

Host

Target Interface

block

Plant

Target

Interactive

Data

Exchange
Auto

Generated

 .out file

& RTOS &

Debug

blocks

ONLY a Source Model is needed:

1. Create the target algorithm as a Source Model

2. CodeGen, Compile, and Download the Source Model to the

 Target.

3. The Target will begin executing the Source Model immediately.

Without Interactive Data Exchange:

With Interactive Data Exchange: BOTH a Source Model and a Debug Model are needed:

1. Create the target algorithm as a compound block in a Source Model. Add Input and Output

 pins to the compound block to send and receive data from the Host to the Target

2. CodeGen and Compile the Source Model to create an executable (.out) file

3. Create a Debug Model consisting of a “Target Interface” block configured to read the

 executable (.out) file from step 2. Onceconfigured, the “Target Interface” block will have

 the same input and output pins defined in Step 1. You can connect these with “signal

 producers” and “signal consumers” to sendcommands to the target or plot or display

 data from the target. Click “Go” in the Debug Model to initiate target execution.

No Interactive Data Exchange: Use Source Model ONLY

Interactive Data Exchange: Use both a Source Model and a

Debug Model

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 6

Real Time Operating System (RTOS)

6

Solid Thinking EMBED RTOS Features:

• Main-Timer 2 control thread runs at rate as set in diagram “System Properties…”

• Unlimited number of preemptable (high jitter) background threads – (option in Compound block)

• Efficient device drivers for on-chip peripherals

• Handle interrupts directly in sTE (option in Compound block)

• Interrupt based soft queued I/O for serial, SPI and I2C

• Instrument individual subsystems for CPU usage

An Operating System (OS) is software that manages a computer's memory, application processes, communication,

I/O, and all software and hardware residing on the computer. A Real-Time Operating System (RTOS) is an OS that

services real time application process data as it occurs with minimal buffering delays.

Terminology & Key Features:

• Process: A computer program that is executed as one or more threads.

• Task: Future promise to perform a process.

• Thread: Smallest sequence of programmed instructions that can be managed by an RTOS. Tasks are

 executed as one or more threads.

• Thread Switching Latency: Time required for the RTOS to switch executions between threads.

• Jitter: the variability in time required by the RTOS to accept and complete tasks.

• Hard vs. Soft RTOS: A hard RTOS has less jitter than a soft RTOS.

• Hard RTOS: Accepts and completes an application's task deterministically in time.

• Soft RTOS: Accepts and completes an application's task with variability in time.

• Interrupts: An event signal, from hardware or software, that requires immediate attention.

• Interrupt Latency: Time required for the RTOS to act on an interrupt.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 7

Solid Thinking EMBED RTOS Motor Control Setup

7

Typical Motor Control Model – Thread Architecture:

Background tasks are

captured in 100Hz block
Time critical control

operations are captured in an

interrupt driven block

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 8

F28069M – LaunchPad Develop Kit

8

All three microswitches must be set in the

upward facing direction

USB connection (used for JTAG

communications and power)

LED’s (red and blue)

Reset Button
Unless otherwise noted, all examples in this

presentation will use the Texas Instrument C2000

F28069M LaunchPad Development Kit (TI Part

Number: LAUNCHXL-F28069M) shown below:

http://www.ti.com/ww/en/launchpad/launchpads-

c2000-launchxl-f28069m.html

Quadrature Encoder Input (2 channels)

http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html
http://www.ti.com/ww/en/launchpad/launchpads-c2000-launchxl-f28069m.html

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 9

LED Blink Example

9

Step 1. Source Model Creation “BlinkLED.vsm”.

From the “Embedded/Piccolo” menu, select and

place an “F28x Config…” block in the model.

Configure the “F28x Config …” block as shown

to the right, make sure the “CPU = F28069M”

and the JTAG connection = “T1XDS100v2USB”,

other settings may be left at their default values

(right).

Click “OK” and the “F28x Properties” block will

look like (below).

The LED Blink model created in this example is a Source model with no interactive

data exchange.

One model is created in this example

Source Model: “BlinkLED.vsm”

Debug Model: Not Needed

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 10

LED Blink – Diagram Construction

10

From the “Embedded/Piccolo” menu, select and place a “Digital Output

for F280x” block in the model. (right)

NOTE: The F28069M board has two LED’s accessed through the

following channel and port information;

Red LED = Channel 34, Port B

Blue LED = Channel 39, Port B

NOTE: Port A has 32 bits, so channel 34 is on Port B

Right click on the “F28069M-ADCResult0” block to expose the

parameters, configure the block for output to the Red LED by setting the

“Type = Digital:” and select “Channel: 34 GPIO0” and “Port: A”. The

“Title” entry can be left blank and all other settings may be left at their

default values (right) Click “OK”.

Attach a “square wave” to the digital output channel. Set the

“Frequency” to 0.5 Hz. The completed “BlinkLED.vsm” model is shown

to the right.

Set the Target update time under the menu “System/System

Properties/Range” to the desired value, we will select

“Time Step” = .0001 sec

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 11

LED Blink – CodeGen & Target Execution

11

Step 2. Code Generation - Lasso all the blocks in

“BlinkLED.vsm” model and then;

Step 2a. Click “Tools/Code Gen”

Step 2b. Configure the Code Generation Properties

(right) as shown.

Target is the Launchpad microprocessor family,

F280X

In two steps you have generated

code to blink the LED’s on the

Target

Step 2c. Click “CodeGen” , “Compile…”

In this step the “.out” (executable) file is created. You’ll see the

compile progress in a DOS window that requires you to “Press

any key to continue…”

Step 2d. A Download to f280X window will

appear, click “Download”. This loads the

“.out” file to the target. The Target will begin

executing immediately.

View source model in VisSim

VisSimEmbeddedTrainingModels/HelloWorld.vsm
BlinkLED.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 12

Host to Target Communication Example

12

Step 1: Source Model “BlinkLEDwithControlledFrequency.vsm” .

Add and configure the “F28x Config …” block. A square wave

generator model is created using a “slider” block to control the

frequency. The “slider “ output is multiplied by “wt”, passed through a

“relay” and then limited to lie between 0 and 1 which creates the

square wave.

This example illustrates interactive data exchange which allows the user to control the

red LED blink frequency on the Target using a “slider” block on the Host.

Two models are created in this example

Source Model: “BlinkLEDwithControlledFrequency.vsm”

Debug Model: “BlinkLEDwithControlledFrequency-d.vsm”

View source model in VisSim

The “slider” controls the desired blink frequency, in Hz, and is

configured to provide frequencies between 1 and 10 Hz by setting the

Lower Bound = 1 and Upper Bound = 10.

The square wave signal is connected to a “Digital Output” block configured to light the red

LED (channel 34). Define the Target calculations in a compound block “Target

Calculations”.

VisSimEmbeddedTrainingModels/BlinkLEDwithControlledFrequency.vsm
BlinkLEDwithControlledFrequency.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 13

Host to Target Communication Example– Code Generation

13

Set the Target update time under the menu “System/System Properties/Range” to the desired value, we will select;

“Time Step” = .0001 sec

Step 2. Code Generation - Lasso the “Target Calculations” compound block and

then;

Step 2a. Click “Tools/Code Gen”

Step 2b. Configure the Code Generation Properties (right) as shown. Make

sure the “Include VisSim Communication..” option is checked.

Step 2c. Click “CodeGen” , “Compile…” , “Quit”
This step will create the “.out” file named as the “Result File” with the extension “.out” and place the

file in the “Result Dir” which defaults to “C:\VisSim90\cg”.

Step 2d. At this point you are finished with the

“BlinkLEDwithControlledFrequency.vsm” source model, make sure it is saved.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 14

Host to Target Communication Example– Execution

14

Step 3. Debug Model - Create the debug model by renaming the source model to “BlinkLEDwithControlledFrequency-

d.vsm”.

Edit the Debug model and delete or disconnect the “Target Calculations” compound

block. In its place, add a “Target Interface” block from the

(“Embedded/Picollo/Target Interface”) menu. The “Target Interface” block will have

the same input and output pins as specified in the “Target Calculations” compound

block in the source model. Connect the “slider” to the input pin of the “Target

Interface” block.

Configure the “Target Interface” block:

“Target Execution file” = “.out” file created in Step 2c.

“Sample Rate (Hz)” = desired value (it defaults to 1/”Time Step” value specified in

the source model.

“Keep Target Running” = checked to keep target running after

VisSim has been stopped.

View debug model in VisSim

Click “Go”, and, after a brief handshake, the Target will begin executing blinking

the red LED at the frequency specified by the “slider”.

VisSimEmbeddedTrainingModels/BlinkLEDwithControlledFrequency-d.vsm
BlinkLEDwithControlledFrequency-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 15

Compound Blocks and CodeGen

15

1. If a single compound block is not selected, the “Include

VisSim Communication Interface” option will be greyed out.

VisSim will generate code for the entire model.

2. If one compound block is selected and the “Include VisSim

Communication Interface” is checked, VisSim will generate

code for the selected compound block.

If you select the “Include VisSim Communication Interface” then VisSim will generate code ONLY for the selected compound block.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 16

Target Update Time

The Target code is executed at the “Time Step” value specified in the Source model used to produce the C Code. After compilation the

Target “Sample Rate (Hz)” value specified in the “Target Interface” block in the Debug model will default to 1/”Time Step” value specified for

the C Code generation, however, it can be modified.

Target

Code

Host

Code

Three ways to control the Target Update Time:

1. “Time Step” in “System/System Properties…”

sets the update time of the Target from the Source

model.

2. “Sample Rate (Hz)” in “Target Interface” may be

used to change the Target update rate during

execution of the Debug model.

3. “Local Time Step” in Compound block properties.

(NOTE: The compound block rate setting holds for

all compounds, EXCEPT the topmost one that is

selected for “Include Communication Interface”)

Host Targ

et

JTAG interface updates at

approximately 100Hz. This limits

the real time execution of the Host

16

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 17

Host To/From Target Communication Example

17

View source model in VisSim

This example illustrates bi-directional

interactive data exchange between the Host

and Target. A “slider” block is used to

control the red LED blink frequency and a

“plot” block is used to display the LED

“OnTime” both on the Host.

Two models are created in this example

Source Model:

“BlinkLEDwithControlledFrequencyAndOnTi

meCalculation.vsm”

Debug Model:

“BlinkLEDwithControlledFrequencyAndOnTi

meCalculation-d.vsm”

Step 1: Source Model

“BlinkLEDwithControlledFrequencyAndOnTi

meCalculation.vsm” .

Add and configure the “F28x Config …”

block. Add the square wave generator from

the previous example. Add the “OnTime”

calculation using a reset integrator (below)

VisSimEmbeddedTrainingModels/BlinkLEDwithControlledFrequencyAndOnTimeCalculation.vsm
BlinkLEDwithControlledFrequencyAndOnTimeCalculation.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 18

Host To/From Target Communication Example- Codegen

18

The Target calculations are captured in a compound block named

“TargetCalculations” (right).

Set the Target update time under the menu “System/System

Properties/Range” to the desired value, we will select;

“Time Step” = .0001 sec

Step 2. Code Generation - Lasso the “Target Calculations” compound block and then;

Step 2a. Click “Tools/Code Gen”

Step 2b. Configure the Code Generation Properties (right) as shown. Make

sure the “Include VisSim Communication..” option is checked.

Step 2c. Click “CodeGen” , “Compile…” , “Quit”
This step will create the “.out” file named as the “Result File” with the extension “.out” and place the file in

the “Result Dir” which defaults to “C:\VisSim90\cg”.

Step 2d. At this point you are finished with the

“BlinkLEDwithControlledFrequencyAndOnTimeCalculation.vsm” source model,

make sure it is saved.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 19

Host To/From Target Communication Example- Execution

19

Step 3. Debug Model - Create the debug model by renaming the source model to

“BlinkLEDwithControlledFrequencyAndOnTimeCalculation-d.vsm”

Edit the Debug model and delete or disconnect the “Target Calculations” compound

block. In its place, add a “Target Interface” block from the (“Embedded/Picollo/Target

Interface”) menu. The “Target Interface” block will have the same input and output

pins as specified in the “Target Calculations” compound block in the source model.

Connect the “slider” to the input pin of the “Target Interface” block and the “plot” to the

output pin.

Configure the “Target Interface” block:

“Target Execution file” = “.out” file created in Step 2c.

“Sample Rate (Hz)” = desired value (it defaults to 1/”Time Step” value specified in the

source model.

“Keep Target Running” = checked to for faster startup time

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 20

Host To/From Target Communication Example- Results

20

Setting the “slider” block at a 5 Hz frequency value, the “plot” block (right)

displays the measured “:OnTime” of 0.1 seconds +/- .01 seconds. The variation

is due to the “Sample Rate (Hz)” setting being used.

View debug model in VisSim

Click “Go”, and, after a brief

handshake, the Target will begin

executing blinking the red LED at

the frequency specified by the

“slider”.

The variation can be

reduced by increasing the

“Sample Rate (Hz)” . Setting

the “Sample Rate (Hz)” =

1000 Hz in the “Target

Interface” block reduces the

“:OnTime” error to +/- 0.01

seconds (below).

VisSimEmbeddedTrainingModels/BlinkLEDwithControlledFrequencyAndOnTimeCalculation-d.vsm
BlinkLEDwithControlledFrequencyAndOnTimeCalculation-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 21

Displaying the CPU Usage of the Target Application

21

Checking the “Show CPU Usage” option in the “Target Interface” block adds an output pin to the

“Target Interface” block entitled “%CPUusage. This output provides a dynamic value for the

Target CPU utilization in percent .

As expected, as the “Sample Rate (Hz)” value is

increased, the “%CPUutilization” value also

increases (right).

The BlinkLEDwithControlledFrequencyAndOnTimeCalculation-

d.vsm model (from the previous example) is modified to plot the

“%CPU usage” at three “Sample Rate (Hz)” values; 100 Hz, 1000

Hz, and 10000 Hz.

View debug model in VisSim

VisSimEmbeddedTrainingModels/BlinkLEDwithControlledFrequencyAndOnTimeCalculationCPUutilization-d.vsm
BlinkLEDwithControlledFrequencyAndOnTimeCalculation-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 22

Target to Host High Speed Communication - Monitor Buffer

22

The JTAG interface between the Host PC and the Target communicates data at approximately 100 Hz. The JTAG communication rate is

often very slow compared with the execution rate of the Target (often in the KHz range).

The “Monitor Buffer Read” and “Monitor Buffer Write” blocks provide a mechanism for a Debug model to buffer a large volume of data

acquired on the Target at the Target “Sample Rate (Hz)”, transmit the data periodically over the slower JTAG interface from the Target to the

Host, and then make the buffer contents available as a vector of data at regular intervals on the Host application.

The following figure illustrates the buffer mechanism to capture, transmit, and display a buffer of 1001 elements using Buffer ID 0. The Target

Update Rate = 10,000 Hz, and the Host “Time Step” = 0.01 seconds. The Target “Monitor Buffer Write” is triggered at 0.01 second intervals.

Sequence of Operation:
1. “Monitor Buffer Write 0” “trig” input outputs a pulse every 0.01 seconds

2. “Monitor Buffer Write 0” begins recording a new “buffer” of data when two conditions are met: (1) “trig” = 1 and (2) “buffer” is

empty. NOTE: recording continues uninterrupted until the “buffer” is full.

3. When “buffer” is full; “Monitor Buffer Read 0” “Trig” output produces a “1” pulse and the “buffer” is emptied into the “plot” block and

“buffer” is cleared and ready to accept new data.

4. Steps 2 and 3 are repeated.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 23

Monitor Buffer – Waveform Capture & Real Time Check

23

This example illustrates the use of the “Monitor Buffer” to (1) record a Target waveform and (2) record elapsed time on the Target.

Two models are created in this example

Source Model: “MonitorBufferTriggerAndTimeCheck.vsm”

Debug Model: “MonitorBufferTriggerAndTimeCheck-d.vsm”

Step 1: Source Model “MonitorBufferTriggerAndTimeCheck.vsm” - Add and configure the “F28x Config …” block. “Time Step” is set to

0.0001 seconds. A compound block named “Target Calculations” is created with the following contents;

Blink Blue LED at 2Hz

Monitor Buffer 0: (for waveform capture)

Buffer size = 100 elements

ID = 0

Input Signal = 200 Hz sawtooth

Trig Input: a 1-pulse is produced when sawtooth amplitude decreases

(1x/cycle)

Monitor Buffer 1: (for Target time record)

Buffer size = 250 elements

ID = 1

Input Signal = unit ramp (amplitude = time)

Trig Input: “Monitor Buffer 1 Empty” which is set to 1-pulse

when “Monitor Buffer 1” has been read and emptied by the

Host

View source model in VisSim

VisSimEmbeddedTrainingModels/MonitorBufferTriggerAndTimeCheck.vsm
MonitorBufferTriggerAndTimeCheck.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 24

Monitor Buffer – Waveform Capture & Real Time Check

24

Step 2. Code Generation - Lasso the “Target Calculations” compound block and then;

Step 2a. Click “Tools/Code Gen”

Step 2b. Configure the Code Generation Properties (right) as shown. Make

sure the “Include VisSim Communication..” option is checked.

Step 2c. Click “CodeGen” , “Compile…” , “Quit”
This step will create the “.out” file named as the “Result File” with the extension “.out” and place the file in

the “Result Dir” which defaults to “C:\VisSim90\cg”.

Step 2d. At this point you are finished with the

“BlinkLEDwithControlledFrequencyAndOnTimeCalculation.vsm” source model,

make sure it is saved.

Step 3. Debug Model - Create the debug model by renaming the source model to

“MonitorBufferTriggerAndTimeCheck-d.vsm” and edit as shown below (“Time Step”

= 0.01 sec)

“Monitor Buffer Read 0” outputs a vector of

100 elements beginning when the sawtooth

first decreases in amplitude. Vector is

recorded at 0.0001 sec intervals.

“Monitor Buffer Read 1”

outputs the first element

of the 250 element data

buffer.

Target time (y axis) vs

Host real time (x axis) to

confirm real time

operation.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 25

Monitor Buffer – Waveform Capture & Real Time Results

25

Waveform Capture: 100 points of the

Sawtooth waveform are buffered at

a10KHz rate on the Target. The buffer

is displayed on the Host at a rate of

100Hz (1/.01 seconds). Each refresh

of the buffer contains 10 milliseconds

of Target data.

Click “Go”, and, after a brief handshake, the Target will begin executing blinking the blue LED at the 2Hz rate.

Real Time Results: The Target

elapsed time is calculated at

a10KHz rate, 250 values are

buffered and transmitted to the

Host. Even though the Host is

executing at 100Hz, Target elapsed

time buffer is updated every 25

msec (because the Buffer Size is

set to 250 elements updated at

10KHz equivalent to a .1msec

update time).

Since the slope of “Target Time,

sec” vs “Host Time, sec” = 1 AND

since the Host is being forced to

run in real time, the Target is

therefore executing at a true 10KHz

rate.

View debug model in VisSim

VisSimEmbeddedTrainingModels/MonitorBufferTriggerAndTimeCheck-d.vsm
MonitorBufferTriggerAndTimeCheck-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 26

Monitor Buffer – Oscilloscope Display

26

This example illustrates the use of the “Monitor Buffer” to produce an Oscilloscope display of a sin wave signal generated on the Target.

The Oscilloscope is triggered at a negative to positive zero crossing of the sin wave.

Two models are created in this example

Source Model: “MonitorBufferControlledFrequencySinWave.vsm”

Debug Model: “MonitorBufferControlledFrequencySinWave-d.vsm”

Step 1: Source Model “MonitorBufferControlledFrequencySinWavevsm” - Add and configure the “F28x Config …” block. “Time Step” is

set to 0.0001 seconds. A compound block named “Target Calculations” is created with the following contents;

“Freq” is an

external input that

will be defined

using a “slider”

block on the Host.

“crossDetect” followed by a

“limit” set with [0 – 1] bounds

creates a trigger pulse at

each negative to positive zero

crossing of the sin wave.

View source model in VisSim

VisSimEmbeddedTrainingModels/MonitorBufferControlledFrequencySinWave.vsm
MonitorBufferControlledFrequencySinWave.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 27

Monitor Buffer – Oscilloscope Results

27

Step 2. Code Generation - Lasso the “Target Calculations” compound block and then;

Step 2a. Click “Tools/Code Gen”

Step 2b. Configure the Code Generation Properties (right) as shown. Make

sure the “Include VisSim Communication..” option is checked.

Step 2c. Click “CodeGen” , “Compile…” , “Quit”
This step will create the “.out” file named as the “Result File” with the extension “.out” and place the file

in the “Result Dir” which defaults to “C:\VisSim90\cg”.

Step 2d. At this point you are finished with the

“BlinkLEDwithControlledFrequencyAndOnTimeCalculation.vsm” source model,

make sure it is saved.

Step 3. Debug

Model - Create the

debug model by

renaming the

source model to

“MonitorBufferCont

rolledFrequencySin

Wave-d.vsm” and

edit as shown

below (“Time Step”

= 0.001 sec)

View debug model in VisSim

“slider” defines sin wave

frequency (Hz), bounds =

[100 – 1000] Hz.

X-axis: Based on 200 samples at .0001 sec.

intervals = 20msec

VisSimEmbeddedTrainingModels/MonitorBufferControlledFrequencySinWave-d.vsm
MonitorBufferControlledFrequencySinWave-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 28

Fixed Point Arithmetic

28

Fixed point arithmetic uses significantly less CPU time than floating point arithmetic on a CPU that does not have an

Floating Point Unit (FPU), and for this reason it is widely used in embedded systems where performance is more

important than precision.

Why you might not want an FPU:

• Adds more gates to the part = increased cost, increased physical size

• Increased energy consumption (bad for battery powered applications)

• Increases interrupt latency due to save/restore of FPU register set.

The VisSim fixed point block library (“Blocks/Fixed Point”), contains block functions for fixed point operations.

This library contains one “const” signal producer block. The

“const” block properties are defined as;

Where:

Const: constant value in decimal form.

Radix Point (bits): Location of the radix point in the binary

number (# of bits from the left, or the integer part)

Word Size (bits): Length of the binary number (bits)

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 29

Fixed Point Arithmetic - Terminology

29

Precision is the smallest difference between two consecutive binary values, is determined by the least significant (rightmost) bit.

For example, if a fixed point “const” block were configured as:

Radix Point = 2

WordSize = 16

Then, the number of bits to the right of the radix point = 14, the number of bits to the left = 2, and the precision = 2^-14

And the notation used is 2.16

When converting a decimal (floating point) value to a fixed point equivalent, precision determines how accurate the result is. sTE uses

truncation if the magnitude of the binary equivalent is less than the original decimal value.

Many of the Texas Instruments blocks use 1.16 format which has a range between -1 to .99997 and the precision = 3.0518e-005

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 30

Clock, Clock Ticks, Timers, & Interrupts

30

In embedded electronics a clock is what controls how fast the CPU cycles. The CPU speed is measured in Hz.

The time required for a CPU cycle (or a clock cycle time) is 1/CPU speed, in units of seconds.

For example, an 80MHz CPU speed would have a clock cycle time = 1/80e6 = 1.25e-8 seconds = .0125

microseconds.

One complete clock is defined as a clock tick.

A Timer keeps track of how many clock ticks occur without having to write specific code to keep track of time.

A Timer needs to be initialized and enabled. It will then proceed to count the clock ticks to a predefined value and then

start over. You can set the Timer to generate events at multiple times along the way to its end value; these events

could be an interrupt when it hits a certain number of clock ticks, or it can toggle, set, or clear a specialized pin.

By default, a CPU operates at the manufacturer’s clock frequency, however, overclocking can be used to increase the

CPU speed. Overclocking will use more power and generate more heat but will improve the speed performance of

the CPU.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 31

F28069 LaunchPad Clock Speed

31

The F28069 chip can be setup (using the Embedded/Piccolo/F28 Config… block) to run at its manufacturer’s CPU

Speed (80MHz) or it can be overclocked.

To set the CPU in overclock mode, the “Multiple of Crystal Freq” (below right) is selected to be 9x instead of the

normal 8x value (to produce the 90MHz rate overclock CPU speed).

manufacturer’s CPU

Speed = 80MHz Overclocked CPU Speed =

90MHz

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 32

F28069 – Analog to Digital Conversion (ADC)

32

The Analog Digital Converter (ADC) block (“Embedded/Piccolo/Digital/Analog Input for F280x”) converts an analog

(voltage) signal to a digital signal. A PWM signal is used to periodically trigger the ADC to begin its measurement and

conversion.

An ADC accepts a voltage input signal and produces a digital

output value:

Precision: The number of unique values, example, a 12 bit

ADC has 4096 unique values

Range: The maximum and minimum input voltages, example 0

to 3.3volts

Resolution: The smallest detectable input signal change,

example 3.3volts/4096 = .81millivolts

The ADC Configuration block is used to associate the ADC with a PWM generated Start Of

Conversion (SOC) signal.

Channel 5 (ADCRESULT5) is selected for the

ADC output

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 33

F28069 – ADC Configuration

33

The ADC unit must be configured to start conversions as

SOCx pulses are received from the PWM unit. The “ADC

F28069 Properties” (“Embedded/Piccolo/ADC Config…”)

is shown to the right. The ADC block is using ch5

(ADCRESULT5)

* TI does not allow “Sample Clks” values < 7.

“Sample Clks” is the settling time required for the ADC to

converge to a stable value in terms of “ticks”. This is

normally set to a value between 7 and 11*. 16 was

chosen here.

There are 16 result registers; ADCRESULT0 through

ADCRESULT15. Each result register is connected to a

“Src” pin. At the right, ADCRESULT0 is shown

connected to pin 0, ADCRESULT1 is connected to pin 1,

… “Trigger” is the source of the trigger value for the ADC.

For this entry we have set the trigger to “ePWM1-SOCA”

(which will be explained next)

To sync ADC measurements to the ePWM unit, you must send a SOCx (start of conversion) pulse

from the ePWM unit to the ADC and also configure the ADC unit to use the SOCx pulse as the ADC

Sample Trigger. The Piccolo parts allow each PWM unit to send a SOC pulse to each ADC channel.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 34

F28069 – ADC SOCx Setup

34

Example of ePWM setup to produce SOCA

50% duty cycle is fine to use (we are only

using 1 PWM, (EPWMA)

PWM Configuration:

Only EPWMA is being used

No deadband is needed

SOCA is set to repeat each time the PWMA

counter reaches a full period

Before we apply the ADC, we need to understand

how “functions” are called from VisSim

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 35

Extern Function Block

35

The Extern Function block (Embedded/Picollo/Extern

Function) lets you call an external function. For

example, the Extern Function is configured to call the C

function EALLOW (right).

The configuration parameters are described below:

Function name: Specifies the function call. You can

specify arguments to the function that reference the input

pins. The pins are referenced using $ notation. For

example, Foo($1,$2).

Do not declare function: Prevents the code generator

from creating a declaration for the function. This is useful

if the function is already declared in the header file.

Return Value Type: Specifies the data type of the variable. If you choose hardware register, VisSim

Embedded will only create a reference in the code and not an external declaration. The remaining

data types are described in the block help file.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 36

Expression Block

36

Solid Thinking EMBED recognizes C expressions for

numeric data using the “expression” block located in the

“Blocks” menu. Using this block, you are able to include

common math and transformations functions from the “C

math.h numerics library” like acos, asin, atan2, cos, cosh,

exp, fabs, log, log10, pow, sin, sinh, sqrt, tan, tanh, … in

your model.

The following link presents the functions in the common

math and transformations in the “C math.h numerics

library”,

http://www.cplusplus.com/reference/cmath/

The following example demonstrates the use of the “fmod”

and “cos” functions;

View this example in VisSim

http://www.cplusplus.com/reference/cmath/
VisSimEmbeddedTrainingModels/ExpressionsFromMathh.vsm
ExpressionsFromMathh.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 37

Extern Read & Extern Write Blocks

37

The Extern Read block (Embedded/Picollo/Extern Read) lets you read

an external variable from another C code module into the diagram. If, for

the Data Type, you choose hardware register, you can enter a hardware

peripheral register name and the block output will produce the value of

that register when compiled.

The Extern Read block only allows built-in C data types. This means, for

example, that you would specify the unsigned short data type in the

Extern Read block to match a uint16 user-defined data type.

The Extern Write block (Embedded/Picollo/Extern Write) lets you write a

value to an external variable in another C code module. If, for the Data

Type, you choose hardware register, you can enter a hardware

peripheral register name and the block input will be written to that register

when compiled.

The Extern Write block only allows built-in C data types. This means, for

example, that you would specify the unsigned short data type in the

Extern Write block to match a uint16 user-defined data type.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 38

Configuring the ADC Control Register & Execution Order

38

ADCCTL1 is a control register that lets you configure the ADC unit, the bits are defined as follows:

Execution Order: VisSim will execute in

“top down” order so the vertical placement

of the blocks is critical

OR with 0x1 sets bit 0 to 1 and

leaves the remaining bits

unchanged

EALLOW is a function that allows writing to configuration registers.

EDIS is a function to disable writing to the configuration registers.

To configure the ADC to read the chip temperature on ADCINA, the following

sequence of instructions is executed
EALLOW

ADCCTL1 bit 0 = 1 (bit 0 =TEMPCONV, setting bit 0 =1 causes temp sensor connected to ADCINA5)

EDIS

The equivalent VisSim block diagram is implemented using the “extern function”,

“extern write”, and “extern read” block previously discussed

// bit 15 0: RESET, ADC software reset, 0=no effect, 1=resets the ADC

// bit 14 0: ADCENABLE, ADC enable, 0=disabled, 1=enabled

// bit 13 0: ADCBSY, ADC busy, read-only

// bit 12-8 0's: ADCBSYCHN, ADC busy channel, read-only

// bit 7 1: ADCPWDN, ADC power down, 0=powered down, 1=powered up

// bit 6 1: ADCBGPWD, ADC bandgap power down, 0=powered down, 1=powered up

// bit 5 1: ADCREFPWD, ADC reference power down, 0=powered down, 1=powered up

// bit 4 0: reserved

// bit 3 0: ADCREFSEL, ADC reference select, 0=internal, 1=external

// bit 2 1: INTPULSEPOS, INT pulse generation, 0=start of conversion, 1=end of conversion

// bit 1 0: VREFLOCONV, VREFLO convert, 0=VREFLO not connected, 1=VREFLO connected to B5

// bit 0 0: TEMPCONV, 1=temp sensor connected to ADCINA5

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 39

Order of Execution

39

sTE will execute in “top down” order based on the vertical placement of blocks

Order of execution

In situations where the top down ordering is not adequate, sTE provides an “execOrder” block (“Blocks/Signal Consumers”)

View this example in VisSim

VisSimEmbeddedTrainingModels/OrderOfExecutionExample.vsm
OrderOfExecutionExample.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 40

Chip Temperature Example

40

This example illustrates the use of the “ADC” and “PWM” to measure the chip temperature of the microcontroller chip on the F28069M

Launchpad board.

Two models are created in this example

Source Model: “ChipTempOnF28069M.vsm”

Debug Model: “ChipTempOnF28069M-d.vsm”

Step 1: Source Model “ChipTempOnF28069M.vsm” - Add and configure the “F28x Config …” block. “Time Step” is set to 0.005 seconds.

A compound block named “Target Calculations” is created with the following contents;

Blink Red LED at 1Hz

Read

ADC5 Linear Scaling to get degC

First Pass

Logic

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 41

Chip Temperature Example – Setup’s

41

ADC Setup

ADC Configuration Setup

PWM SOCA Setup

View Source Model in VisSim

VisSimEmbeddedTrainingModels/ChipTempOnF28069M.vsm
ChipTempOnF28069M.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 42

Chip Temperature – CodeGen & Execution

42

Step 2. Code Generation - Lasso the “Target Calculations” compound block and then;

Step 2a. Click “Tools/Code Gen”

Step 2b. Configure the Code Generation Properties (right) as shown. Make sure the “Include

VisSim Communication..” option is checked.

Step 2c. Click “CodeGen” , “Compile…” , “Quit”
This step will create the “.out” file named as the “Result File” with the extension “.out” and place the file in the “Result Dir”

which defaults to “C:\VisSim90\cg”.

Step 2d. At this point you are finished with the “ChipTempOnF28069M.vsm” source model,

make sure it is saved.

Step 3. Debug Model -

Create the debug model

by renaming the source

model to

“ChipTempOnF28069M-

d.vsm” and edit as shown

below (“Time Step” =

0.005 sec)

View Debug Model in VisSim

VisSimEmbeddedTrainingModels/ChipTempOnF28069M-d.vsm
ChipTempOnF28069M-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 43

Encoder

43

The F28069M LaunchPad board has inputs for two quadrature encoders. Quadrature encoders measure rotational

angles by counting discrete “ticks”.

Typically, an encoder will have between 256 to 4000 ticks per revolution.

 There are two types of encoders:

• Incremental: Although this type of encoder begins counting “ticks” at power up, it’s information is not accurate until

an “index pulse” occurs. The “index pulse” occurs 1x/revolution. When used for motor control, incremental

encoders must be rotated initially in “open loop” mode until the “index pulse” is sensed.

• Absolute: This type of encoder begins counting “ticks” at power up and provides accurate angle data immediately.

Encoders have 5 electrical connections: +5v, ground, A, B, index pulse

The A and B outputs consist of discrete values, 1 or 0, and are out of phase by 90 degrees, this allows the direction of

rotation to be determined:

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 44

Encoder

44

The F28069M LaunchPad board has

encoder peripherals that manage the

encoder count value and reset the count

value each time an “index pulse” occurs.

The F28069M LaunchPad encoder

connections are shown below:

Note: the rectangular pin (viewed from bottom

of LaunchPad board) is always pin 1

Encoder 2

Connection

Encoder 1

Connection (pin 1 is

leftmost pin)

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 45

Encoder – Startup

45

An incremental encoder begins counting “ticks” at power up, it’s information is not accurate until an “index pulse” occurs. The “index

pulse” occurs 1x/revolution. When used for motor control, incremental encoders must be rotated initially in “open loop” mode until the

“index pulse” is sensed.

A VisSim model to detect the “index pulse” is presented below, In this model, the “index pulse” is named “EncoderIndexHasOccured”

When bit 2 of QEPSTS = 1, the “EncoderIndexHasOccured”

discrete is set to 1 and remains there.

QEPSTS is the

quadrature encoder

status register

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 46

Encoder – Test Model

46

The following model is used on an 8 pole PMSM. It detects the “Index pulse” and measures the electrical and

mechanical angles. “Time Step” = .0001 sec.

“AngleElectricalNormalized” =

normalized (0-1 = 0-360 degrees)

electrical angle

 = “Index Pulse”

“AngleMechanicalNormalized” =

normalized (0-1 = 0-360 degrees)

mechanical angle

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 47

Encoder – TI Peripheral Block & Results

47

The eQEP Properties are

presented below:

Manually turning the PMSM motor shaft produces the

following time history results

View Source Model in VisSim View Debug Model in VisSim

VisSimEmbeddedTrainingModels/EncoderRead.vsm
EncoderRead.vsm
VisSimEmbeddedTrainingModels/EncoderRead-d.vsm
EncoderRead-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 48

Motor Position Control Example

48

24V, 3A

power supply

This example illustrates the use of the “ADC”, “PWM”, and encoder to control the position (angle) of a PMSM motor.

Teknic M-2310P-LN-

04K Low voltage

servo motor with

encoder

http://www.ti.com/tool/l

vservomtr

http://www.ti.com/tool/lvservomtr
http://www.ti.com/tool/lvservomtr

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 49

Motor Position Control Example

49

TI LAUNCHXL-F28069M

NOTE: J1 and J2 MUST

be disconnected as the

board is receiving power

from the 24V power supply

and not the USB

TI BOOSTXL-

DRV8301

http://www.ti.com/too

l/boostxl-drv8301

http://www.ti.com/tool/boostxl-drv8301
http://www.ti.com/tool/boostxl-drv8301
http://www.ti.com/tool/boostxl-drv8301
http://www.ti.com/tool/boostxl-drv8301

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 50

Motor Position Control Example

50

Two models are created in this example

Source Model: “Motor Position Control - LaunchPadDRV8301-pmsm-28069M.vsm”

Debug Model: “Motor Position Control - LaunchPadDRV8301-pmsm-28069M-d.vsm”

Step 1: Source Model “Motor Position Control - LaunchPadDRV8301-pmsm-28069M.vsm” - Add and configure the

“F28x Config …” block. “Time Step” is set to 0.0001 seconds. A compound block named “PMSM Control” is created

with the following contents;

View Source Model in VisSim

Step 2. Code Generation - Lasso the “Target Calculations” compound block and then;

Step 2a. Click “Tools/Code Gen”

Step 2b. Configure the Code Generation Properties (right) as shown. Make

sure the “Include VisSim Communication..” option is checked.

Step 2c. Click “CodeGen” , “Compile…” , “Quit”
This step will create the “.out” file named as the “Result File” with the extension “.out” and place the file in

the “Result Dir” which defaults to “C:\VisSim90\cg”.

Step 2d. At this point you are finished with the “Motor Position Control -

LaunchPadDRV8301-pmsm-28069M.vsm.vsm” source model, make sure it is

saved.

VisSimEmbeddedTrainingModels/Motor Position Control - LaunchPadDRV8301-pmsm-28069M.vsm
Motor Position Control - LaunchPadDRV8301-pmsm-28069M.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 51

Motor Position Control Example

51

Step 3. Debug Model - Create the debug model by renaming the source model to “MonitorBufferTriggerAndTimeCheck-

d.vsm” and edit as shown below (“Time Step” = 0.005 sec)

Set the “Sample Rate (Hz)” in the F280x Target Interface block to 20KHz.

View Debug Model in VisSim

Click “Go”, and, after a brief handshake, the Target will begin executing.

Setting the “slider” block to different position setpoint values will cause the motor to rotate until the

setpoint value is achieved.

VisSimEmbeddedTrainingModels/Motor Position Control - LaunchPadDRV8301-pmsm-28069M-d.vsm
Motor Position Control - LaunchPadDRV8301-pmsm-28069M-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

End of Section

52

