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Topics: 
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• Basic Classical Controllers 

• Proportional Integral (PI) 

• Proportional Derivative (PD) 

• Proportional Integral Derivative (PID) 

• Using sT-Embed Optimize to tune a PID controller 

• Controller Function Blocks 

• Merge & Crossdetect Blocks 

• Discrete Reset Integrator 

• Countdown Timer with Underflow Protection 

• Pulse Counter 

• Binary Signal Conditioning 
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Proportional Integral (PI), Proportional Derivative 
(PD), and Proportional Integral Derivative (PID) 

Controllers 

3 
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Controllers are systems designed to modify and maintain a systems (Plant) performance when subjected to 

unmeasurable disturbances.   

 

Control System = Controller + Plant 

 

 

 

 

 

 

 

Controllers - Basics 

4 

Basic Control System Block Diagram & Signal Terminologies 

Performance is generally concerned with: 

 

•  Accuracy:  How well  the Controller maintains Y=Y* with D present.   

•  Transient:  How well the Controller shapes the trajectory of Y as changes are made in Y* with D present. 

Three Basic type of Controllers: 

 

•  Proportional – Integral (PI) Controller is used to achieve Accuracy Performance 

•. Proportional – Derivative (PD) Controller is used to achieve Transient Performance 

•  Proportional – Integral – Derivative (PID) Controller is used to achieve Both 
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PI controllers regulate a plant output, “y”, to a constant setpoint value, “y*” with disturbances present.  

 

 

 

 

 

 

 

Proportional – Integral (PI) Controller 
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dy = y* - y  

     = Error signal 

Ki = Integral Gain 

Kp = Proportional Gain 

K = Loop Gain 

PI Controller Tuning: 

 

Step 1.  Ki=0.1; Kp = 1; K = 1 

Step 2.  Apply PI controller to plant, adjust K for acceptable 

response 

Typical Performance Metric:  Maintain “dy” to remain within predefined limits for any disturbance input in steady state, 

maintain “u” to remain within predefined limits.  
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PD controllers shape the transient behavior of a plant output, “y”, as the setpoint is varied and with disturbances 

present.  

 

 

 

 

 

 

 

Proportional – Derivative (PD) Controller 
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PD Controller Tuning: 

 

Step 1.  Kd=a value; Kp = 0; K = 1 

Step 2.  Apply PD controller to plant, adjust Kd and K for acceptable 

transient response, then add Kp gain for accuracy 

Typical Performance Metric: Control the “Percent Overshoot” and “Time Constant” to remain within predefined  ranges, 

maintain “u” to remain within predefined limits.   

dy = y* - y  

     = Error signal 

Kp = Proportional Gain 

K = Loop Gain 

Kd = Derivative Gain 
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PID controllers regulate the plant output, y, at a setpoint value, y*, and shape the transient behavior of the plant output 

as the setpoint is varied and with disturbances present.  

 

 

 

 

 

 

 

Proportional-Integral-Derivative (PID) Controller 
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dy = y* - y  

     = Error signal 

Kp = Proportional Gain 

K = Loop Gain 

PID Controller Tuning: 

 

Step 1.  Kd=0; Kp = 1; Ki = .1; K = 1 

Step 2.  Apply PID controller to plant, adjust Kd and K for 

acceptable response 

Typical Performance Metrics: Maintain “dy” to remain within predefined limits for any disturbance input in steady state, 

maintain “u” to remain within predefined limits, control the “Percent Overshoot” and “Time Constant” to remain within 

predefined  ranges.  

Kd = Derivative Gain 

Ki = Integral Gain 
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This example presents an automobile model and the design and simulation of a PI speed controller.   

 

 

 

 

 

 

Automobile PI Speed Control (1/3) 
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Disturbance Signal 

Control Signal 
Controlled Signal 

PI Control - Plant Model 

VisSimEmbeddedTrainingModels/Auto Model.vsm
Auto Model.vsm
Auto Model.vsm
Auto Model.vsm
Auto Model.vsm
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Performance Requirements:  At y* = 60 mph, maintain car speed within +/- 3 mph, limit throttle % open to < 10% 

variation, Incline disturbance (worst case):  +/- 1 degree/20 seconds, maximum 5degrees. 

 

Control System = PI Controller + Plant Model 

 

. 

 

 

 

 

 

Automobile PI Speed Control (2/3) 
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Setpoint Signal Controlled Signal 
Error Signal Control Signal 

Disturbance Signal 
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Performance Requirements & Responses: 

 

 

 

 

 

 

 

Automobile PI Speed Control (3/3) 
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Speed is maintained within +/- 3 

mph at 60 mph setpoint 

Throttle variations are < 10% 

 

. 

 

 

 

 

 

Incline disturbance ranges 

from + to - .05deg/sec 

 

. 

 

 

 

 

 

Automobile PI Speed Control System 

VisSimEmbeddedTrainingModels/Auto Model with PI Control.vsm
Auto Model with PI Control.vsm
VisSim Embedded Training Models/Auto Model with PI Control.vsm
VisSim Embedded Training Models/Auto Model with PI Control.vsm
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The PI Speed Control developed in the previous example is to be programmed on an embedded processor.  Prior to 

this, a discrete version of the PI controller is developed and its performance is compared with the PI Speed Control.  

The Discrete PI shall be executed 1000x/sec and shall meet the same performance requirements.  

 

Control System = PI Controller + Plant Model 

 

. 

 

 

 

 

 

Discrete Automobile PI Speed Control (1/3) 

11 

2.  Apply “Convert s->z” to get discrete 

transfer function  

1.  Rewrite as a transfer function 

“Blocks/Linear System/transferFunction” 
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The continuous and discrete PI Speed Control are modeled “side by side”:   

 

 

 

 

 

 

 

Discrete Automobile PI Speed Control (2/3) 
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Discrete Automobile PI Speed Control System 

VisSimEmbeddedTrainingModels/Auto Model with PI Control Continuous and Discrete.vsm
Auto Model with PI Control Continuous and Discrete.vsm
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The continuous and discrete PI Speed Control are simulated with “Step Time” = .001 and “End” = 2000.   

 

 

 

 

 

 

 

Discrete Automobile PI Speed Control (3/3) 

13 



© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.   14 

This example Illustrates the design and implementation of a PD controller.  The structure has a damping coefficient, B, 

that varies between 0 - .04 randomly. 

 

Plant Model with Damping Gain, B, modeled as a sinusoidal variation:  

 

 

Structure PD Damping Control (1/3) 
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Damping Gain, B 

Plant Model Unit Step Response: 

Structure Damping - Plant Model 

VisSimEmbeddedTrainingModels/Structure Model Step Response.vsm
Structure Model Step Response.vsm
Structure Model Step Response.vsm
Structure Model Step Response.vsm
Structure Model Step Response.vsm


© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.   15 

Performance Requirements:  Step response percent overshoot <= 3%, time constant <= 1.5 sec,  control signal to 

remain within +/- 1, Damping disturbance (worst case):  B = 0 to 0.04 varying at .05rad/sec.  

 

 

. 

 

 

 

 

 

Structure PD Damping Control (2/3) 
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% Overshoot Requirement not met 

Structure Damping - Requirements Modeling 

VisSimEmbeddedTrainingModels/Structure Model Performance.vsm
Structure Model Performance.vsm
Structure Model Performance.vsm
Structure Model Performance.vsm
Structure Model Performance.vsm
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Performance Requirements  and Responses: 

 

 

 

 

 

 

 

 

Structure PD Damping Control (3/3) 
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% Overshoot Requirement and 

Time Constant Requirements met 

Control Signal Requirements met Structure Damping PD Control System 

VisSimEmbeddedTrainingModels/Structure Model with PD Control.vsm
Structure Model with PD Control.vsm
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Using the sT-Embed Optimizer to tune a PID 
controller 

17 
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This example Illustrates the design and implementation of a PID controller using the sT-Embed Optimization feature.   

 

The Plant model is represented by the transfer function: 

 

 

Performance Requirements:  Unit step response has 0-steady state error for time >= 3 seconds from application of the 

input signal, the output achieves 80% of its final steady state value at time = 1.5 seconds from application of the input 

signal, and the Control System is stable.   

 

Solution:  A PID controller is applied with the gains [ki, kp, kd] evaluated by minimizing a quadratic cost function based 

on the requirements.  The Control System block diagram, with signal labels, is; 

 

 

 

 

 

 

System PID Control Design using Optimization (1/3) 
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Plant model 

PID Controller 

Open Loop Plant Step Response 

VisSimEmbeddedTrainingModels/pid controller plant step response.vsm
pid controller plant step response.vsm
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The cost function to be minimized is defined as a block diagram using signals from the Control System and the 

requirement information.   

 

 

 

 

 

 

 

 

System PID Control Design using Optimization (2/3) 
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Error Signal 

Masking Signal = “step” 

configured with a “Time 

Delay (sec)” = 3 seconds.  

“sampleHold” value of the controlled 

signal, y,  at time = 1.5 seconds 

Scaling gains to equalize the 

weighting of the two terms 

Quadratic to smooth 

the search surface  

Integrated to improve error sensitivity 

sT-Embed “cost” block 

(“Blocks/Optimization”) 

The unknown parameters are the PID gains; [ki, kp, kd].  They 

are specified using “parameterUnknown” blocks 

(“Blocks/Optimization”)  and with the initial “guess” values (right). 
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The “Perform Optimization” option is selected in the “Blocks/Optimization” 

menu.  The “Method” and other values are left at their defaults. 

 

 

 

 

 

 

 

 

System PID Control Design using Optimization (3/3) 
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Results: 

 

 

 

 

 

 

 

 

PID Controller Adjustment using Optimization 

VisSimEmbeddedTrainingModels/pid controller optimization example.vsm
pid controller optimization example.vsm
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Controller Function Blocks 

21 
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merge and crossDetect Blocks 

22 

The “merge” block (“Blocks/nonlinear”) provides the “if-then-else” function.  If the Boolean “b” input is true (1), then the 

output is set to the “t” input, otherwise the output is set to the “f” input.   

The “crossDetect” block (“Blocks/nonlinear”) produces a +1 pulse when a signal passes through a “cross point” from 

below to above and a -1 pulse when a signal passes through a “cross point” from above to below.  In the example below, 

the cross point = 0 
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The “pulseTrain” block is used to produce pulses with a 

constant “Time Between Pulses”. 

 

The “crossDetect” block (“Blocks/Nonlinear”) may be used 

to produce pulse train signals with variable time between 

pulses.  The behavior of the “crossDetect” block, 

configured with its “Cross Point” = 0.25,  is illustrated in the 

following block diagram.   

  

 

 

 

 

 

 

 

CrossDetect, Limit, and ABS Blocks 

23 

“crossDetect” produces a high positive pulse 

when the signal transitions from less than the 

“Cross Point” to greater than the “Cross Point” 

  

 

. 

 

 

 

 

 

“crossDetect” produces a high negative pulse 

when the signal transitions from greater than 

the “Cross Point” to less than the “Cross Point” 

  

. 

 

 

 

 

 

Cross-Detect Example 

VisSimEmbeddedTrainingModels/crossdetect example.vsm
crossdetect example.vsm
crossdetect example.vsm
crossdetect example.vsm
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CrossDetect, Limit, and ABS Blocks 

24 

To retain only the negative pulse and convert it to a positive 

pulse, the “limit” block (“Blocks/Nonlinear”) configured with 

“Lower Bound” = -1 and “Upper Bound” = 0 and the “abs” 

block (“Blocks/Arithmetic”) may be used    

  

 

. 

 

 

 

 

 

Similarly, to retain only the positive pulse 

the “limit” block configured with “Lower 

Bound” = 0and “Upper Bound” = 1 may be 

used    

  

 

 

 

 

 

 

Cross-Detect Example 

VisSimEmbeddedTrainingModels/crossdetect example.vsm
crossdetect example.vsm
crossdetect example.vsm
crossdetect example.vsm
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Discrete Integrator with Reset 

25 

A discrete integrator with reset to a specified initial condition can be created by adding the “merge” block to the discrete 

integrator previously described.  

A digital integrator compound block with Pin labels could be created as: 

Discrete Reset Integrator Example 

VisSimEmbeddedTrainingModels/crossdetect example.vsm
DiscreteResetIntegrator.vsm
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CountDown Timer with Underflow Protection 

26 

The “CountDown” Timer outputs the remaining time to reach 0 seconds from an “InitialTime”.  It begins counting down 

when a positive pulse is applied to the “Reset” input.  Although the “CountDown” Timer output, “TimeToGo”, is limited to a 

lower bound of 0, the raw timer signal, “TimerValue” will continue counting down below 0.  If unchecked, this can cause 

an underflow problem.  To prevent this, underflow protection logic is added. 

Underflow Protection:  When the “TimerValue” decreases to less than "MinUnderflowTime", the timer is reset to 0.5* 

"MinUnderflowTime".  In this example, "MinUnderflowTime" is set to -10, so once the “TimerValue” reaches -10, it will rest 

to -5 and continually count down from -5 to -10. 

Count Down Timer Example 

VisSimEmbeddedTrainingModels/crossdetect example.vsm
CountDownTimer.vsm
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The “merge” block (“Blocks/Nonlinear”) is used to model “IF THEN ELSE” logic.  The block has 

three inputs; “b” = boolean, “t” = true, “f” = false, and one output.  When the boolean “b” input is 

1, the output is set to the true “t” input and when the boolean “b” input is not 1, the output is set 

to the false “f” input.    

 

. 

 

 

 

 

 

Pulse Counter 

27 

In the following example block diagram, the “unitDelay” block is used to count the number of pulses produced by a 

“pulseTrain” block configured with “Time Between Pulses” set to 0.1 seconds and “Time Delay (sec)” set to the global 

variable “TimeDelay”.  When the count reaches 12, the “merge” block is used to reset the “unitDelay” initial condition 

to 0. 

The “pulse count output” is taken upstream of the 

“unitDelay” to avoid a delay in the count value. 

. 

 

 

 

 

 

The “TimeDelay” value is 

applied to both the “step” and 

“pulseTrain” blocks for correct 

initial condition counter 

response.. 

The “pulse count output” is reset to “0” on each 

13th pulse and then counts up to 12 pulses. 

. 

 

 

 

 

 

Pulse Counter Example 

VisSimEmbeddedTrainingModels/pulse counter example.vsm
pulse counter example.vsm
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When using binary signals in a control algorithm it is sometimes necessary to detect rising and falling edge times.  Edge 

times are calculated using unit delays and backward differencing to produce a positive pulse for a rising edge and a 

negative pulse for a falling edge.   

 

When using the pulses to Sample/Hold, it is sometimes necessary to ensure the pulse occurs before the binary signal 

state has changed.    The following model accepts a raw binary input signal and outputs a 2x1 vector with element 1 = 

binary signal value (0 or 1) delayed by 1DT and element 2 = edge pulse (+1 for rising edge, -1 for falling edge). 

 

 

 

 

 

Binary Signal Conditioning 

28 

Binary value = 0 when S/H on rising edge is applied 

. 

 

 

 

 

 

Binary Signal Conditioning Example 

Binary value = 1 when S/H on falling edge is applied 

. 

 

 

 

 

 

VisSimEmbeddedTrainingModels/pulse counter example.vsm
BinarySignalConditioning.vsm
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End of Section 

29 


