
Fixed Point Arithmetic and Filters

sT-Embed Training

Ric Kolk

Altair Engineering

rkolk@altair.com

mailto:rkolk@altair.com

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 2

Topics:

2

• Fixed Point BlockSet

• Fixed Point Fundaments Video

• Configuring a Fixed Point Block, “const” example

• Displaying Overflow Messages

• Using the Autoscale Feature

• Autoscale Video

• Code Generation, commenting, in line functions

• %CPU Utilization Example – discrete filter

• Discrete fixed point filter %CPU Comparison Video

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 3

Fixed Point Blockset

3

• The 33 element solid Thinking EMBED fixed point blockset
(“Blocks/ Fixed Point”) is used to design and simulate
performance of fixed point algorithms prior to codegen and
execution on an embedded platform.

Fixed Point Block Features:

• Automatic radix point scaling

• Overflow alerts

• High & Low levels to determine optimal radix point settings

• Master control for all fixed point blocks

• Fixed Point Code Generation Features:

• Highly efficient code using in-line shifts

• Automatic commenting to enhance readability

Fixed Point Menu

Fixed Point Fundamentals Video

VisSimEmbeddedTrainingModels/00 FixedPointMenu.vsm
FixedPointMenu.vsm
VisSim Embedded Training Models/00 FixedPointMenu.vsm
https://youtu.be/ZeTBLS-0Wqc

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 4

Fixed Point Configuration - “const” block

Example: 4.16

= Maximum Value = 0111.1111111111111111 =

7.9997558594

Minimum Value = 1000.00000000000000 = -8

Representable Range: -8 to 7.9997558594

Const: Entered in floating point representation.

Precision: Smallest step (difference) between two consecutive N bit number values

• Example: 4.16: precision = 2^-12

• Example: 1.16: precision = 2^-15

Fixed point targets only recognize integer values. sT-Embed codegen automatically converts decimal numbers to scaled integer

values based on the Radix Point and Wordsize settings. Comments, indicating the original Const value, are added to sT-Embed

codegen on each conversion

Auto scale: Resets the “Representable Range” when the maximum or minimum values are exceeded.

Warn on overflow: Presents a dialog box indicating an overflow (used in conjunction with “Fixed Point Block Set Configure…”)

Min Val Seen & Max Val Seen: watermarks of minimum and maximum values passed through the block const block properties

Radix Point (bits): Analogous to the decimal point in a base 10 number.

Word Size (bits): Total number of bits in the fixed point number, set equal to the

wordsize for the Target architecture.

VisSimEmbeddedTrainingModels/01 ConstBlockProperties.vsm
ConstBlockProperties.vsm
ConstBlockProperties.vsm
ConstBlockProperties.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 5

Displaying Overflow Messages

5

1. In the “Fixed Point Block Set

Configuration” (“Tools/Fixed Point Block

Set Configure…”), check the “Enable

Overflow Alert Messages”

2. In the fixed point “gain” block, “Fixed Point Gain Block

Properties”, check the “Warn on overflow”

Overflow: The situation where the minimum or maximum value exceeds the “Representable Range”. Use the following procedure to observe

overflow in a fixed point “gain” block.

In the “Fixed Point Gain Block Properties”, the Min Val Seen and

Max Val Seen display the high and low water marks of values that

have passed through the block.

3. Apply a “slider” input = +/-100,

Click “Go” to run the simulation, an

overflow is detected and the

following message will be

displayed:

Fixed Point Overflow Example

VisSimEmbeddedTrainingModels/04 DisplayingOverflowMessages.vsm
DisplayingOverflowMessages.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 6

Using the Autoscaling Feature

6

1. A model is created consisting of a:

“sawtooth” with “Amplitude” = 200 from

 (“Blocks/Signal Producer”)

“const” from (Blocks/Fixed Point”)

 “add” from (“Blocks/ Fixed Point”)

 “gain” from (“Blocks/ Fixed Point”)

2. Each fixed point block is configured as

shown to the right:

For each fixed point block, sT-Embed maximizes precision by selecting the smallest acceptable range for each fixed point block in a model.

3. In the “Fixed Point Block Set Configuration” (“Tools/Fixed Point Block Set Configure…”), check the

“Enable Auto Scaling” option.

4. Click “Go” to run the simulation, the fixed point blocks being autoscaled whose output value

exceeds the Min Val Seen or Max Val Seen will turn red, at the end of the simulation, each fixed

point block will display the modified radix point value that provides an acceptable Representable

Range for the simulation signals.

Reset Radix Point Example Autoscale Video

VisSimEmbeddedTrainingModels/05 AutoscalingFeature.vsm
AutoscalingFeature.vsm
https://youtu.be/Vz4JRYmHTiE
https://youtu.be/Vz4JRYmHTiE
https://youtu.be/Vz4JRYmHTiE
https://youtu.be/Vz4JRYmHTiE

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 7

Code Generation – Commenting, Inline Shifts

7

To view the automatic commenting and efficient execution features of sT-Embed fixed point code generation, we will illustrate code gen for a

simple model using a “Host” Target.

2. Configure “Code Generation Properties” under (“Tools/ Code Gen…”)

as shown to the right. Click “Code Gen”, then “View…”

Scaled Integer:

-2.81@fx8.16 =

-719 = (-2.81/(2^-8) = -719)

1. VisSim model consisting of “const”

and “gain” blocks (“Blocks/Fixed

Point”), and “display” (“Blocks/ Signal

Consumers”)blocks.

3. The Code Gen “c” file will

appear in “notepad”

Comment of original floating point

value

Inline shifts (multiply & divide) of

scaled integers for efficient

execution.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 8

Fixed Point Arithmetic – CPU Utilization Example

8

This example illustrates the CPU time savings using fixed point arithmetic instead of floating point to implement a

digital filter.

The digital filter transfer function is:

The digital update time is: 0.001 seconds.

Two versions of the digital filter transfer functions are implemented,

• Digital Filter – FLOATING POINT

• Digital Filter – FIXED POINT

The input to each filter is attached to analog input 0 which is pinned out on the F28069M LaunchPad board. By placing

your finger between J1 and J3 pins on the LaunchPad, an analog input signal is created.

The top level VisSim model has the two digital filters in the compound block “DigitalFiltersFixedAndFloatingPoint”

Two state “button” selects

what filter is active
Contents of “DigitalFiltersFixedAndFloatingPoint”

Note: “buttonInput” selects either filter

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 9

CPU Utilization Example - Filter Configurations

9

Digital Filter – FLOATING POINT

Transfer Function Properties

Fixed Point Format Selected 8.32

Digital Filter – FIXED POINT

Transfer Function Properties

Fixed Point Filter Video View source model in sT-Embed

https://youtu.be/eXuwno2qunc
https://youtu.be/eXuwno2qunc
VisSimEmbeddedTrainingModels/FixedPointVersusFloatingPointDigitalFilterCPUUsage.vsm
FixedPointVersusFloatingPointDigitalFilterCPUUsage.vsm
FixedPointVersusFloatingPointDigitalFilterCPUUsage.vsm
FixedPointVersusFloatingPointDigitalFilterCPUUsage.vsm
FixedPointVersusFloatingPointDigitalFilterCPUUsage.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 10

CPU Utilization Example - Results

10

Code is generated for the

“DigitalFiltersFixedAndFloatingPoint”

compound block and executed in the

“target Interface” (below).

Floating Point CPU Utilization = 17%

Fixed Point CPU Utilization = 2%

Similar filter performance

View debug model in sT-Embed

NOTE: Up until now, we have developed

separate "Source" and "Debug"

models. When the JTAG

communication transfer speed can

is sufficient (for the model being

used) it is possible to combine the

"Source" and "Debug" models into

one "Source" model which includes

the "target Interface".

VisSimEmbeddedTrainingModels/FixedPointVersusFloatingPointDigitalFilterCPUUsage-d.vsm
FixedPointVersusFloatingPointDigitalFilterCPUUsage-d.vsm
FixedPointVersusFloatingPointDigitalFilterCPUUsage-d.vsm
FixedPointVersusFloatingPointDigitalFilterCPUUsage-d.vsm
FixedPointVersusFloatingPointDigitalFilterCPUUsage-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 11

Summary

11

• When a target does not support hardware multiply or divide, the operations must be performed in software.

• A software divide is approximately 100x slower than a hardware multiply, add, or shift

• A software square root involves several divide iterations and is approximately 200x to 300x slower than a hardware multiply, add, or
shift

• Using Fixed Point arithmetic greatly reduces the CPU Utilization required for software multiplies, divides, and other complex operations.

• In the digital filter example, the fixed point implementation used 1.8% CPU while the floating point implementation used 16.76% CPU,
almost a factor of 10x savings in %CPU Utilization.

• sT-Embed Fixed Point blockset provides an easy and efficient way to migrate control algorithms to fixed point implementations that meet
target hardware limitations and CPU Utilization requirements.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

End of Section

12

