Pulse Width Modulation

sT-Embed Training

Ric Kolk
Altair Engineering

mailto:rkolk@altair.com

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 2

+ PWM & Duty Cycle

* ePWM Block — Modules
* Time Base
* Action Qualifier
» Deadband
+ Event Time
» Solenoid Modeling, Simulation, Transfer Function Approximation, Processor in the Loop (PIL) Simulation (requires F28069M board to be attached)

* Motor Modeling, Dynamics, Time Constant

» Using the eCap block to record PWM Carrier Period and Frequency (Example requires the F28069M board to be attached)

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 3

PWM Basic Terminology

The “ePWM” block (“Embedded/F280x”) produces two PWM signals (PWMA and PWMB). These control signals are
always opposite each other; when one is high (On), the other is low (Off):

L Tpwm L tOn R
PWMA On value
Off value
On value
PWMB
Off value
Three Important PWM Features:
Tpwm = Carrier Period(sec)
1
Fpwm = Carrier Frequency, Hz =
Tpwm
tOn
Duty Cycle =
Tpwm

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 4

PWM Generation

In an embedded application, the target processor produces pulses from a Time Based Clock (TBCLK). The Time Based Clock can run at
the CPU speed or a fraction of it. Pulses produced by the TBCLK are counted as they occur forming a staircase signal whose count value
at any time is monitored by a Time Based Counter (TBCTR). When the TBCTR reaches a preset value named the Time Base Period
(TBPRD), the counter resets itself to 0 and the staircase signal repeats. PWM signals are produced based when the TBCTR equals a

Compare (CMP) value.
TBCTR A
(counts) —}I I{— Time Based Clock (TBCLK), (sec)
TBPRD valu
CMP valu
5
4
2
py
"t >
PWM A time
On valus
Off value
>
time

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 5

PWM Count Mode, Period, and Frequency

Most target processors support three Count Modes; Up Count, Down Count, and Up/Down Count:

Tpwm is the PWM
Carrier Period (sec),

Up Fpwm is the PWM
Count Carrier Frequency Tme = (TBPRD + l) * TBCLK
Mode: (H2). Fpwm = 1/Tpwm
Each step occurs at
a clock tick.
Down Timer Period is Tpwm = (TBPRD + 1) * TBCLK
Count the number of Fpwm = 1/Tpwm
Mode: steps in one
Carrier Period
e ey Toum = 2TBPRD! LK
Up/Down _
P Count the Up/Down Fpwm = 1/Tpwm
Mode: Count Mode

compared with
the Up or Down
Count Modes

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 6

PWM Resolution

The resolution, n, of a PWM generator is equal to the number of Time Based pulses present in the PWM period
expressed as a number of bits.

prm

Number of Time Base pulses per PWM period =
TBCLK

T
. G pwm
Resolution expressed as a number of bits: n = log, <T BCL K>

For example, a 20kHz PWM signal is to be generated using an 80MHz CPU. The Time Based Clock
(TBCLK) is set to 1/80Mhz and the resolution is calculated as:

Towm _ /20K

= = 4000
TBCLK 1/80M

n = log,(4000) = 11.96 = 12 bits

The High Resolution Timer option, if available on your hardware, decreases the TBCLK to a value of
150e-12 seconds. This is particularly useful if your application requires a high PWM frequency
(NOTE: 250kHz and greater is considered to be a high PWM frequency).

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

SsTE ePWM Block

The sTE ePWM block (below) is a two channel device. It has two Duty Cycle (DC) inputs and produces two PWM output signals and two
Start of Conversion (SOC) signals. The channels are referred to as “A” and “B”. The DC inputs are fractions in 1.16 format. The PWM

and SOC signals are sent directly to hardware pins. They are accessible to your STE model using an “Extern Read” statement.

%4 Duty Cucle AM1.16)
oDy Coele BB F28026-EFWM1A/EPWIM1B

|)
1
PWM
> > —_—
Time Based Action Qualifier Deadband WM
Module . Module > Module
y
DCA 1 i
SOC
o >
DB Event Time
Module L S0C__
B

The ePWM block consists of four key Modules; (1) Time Based, (2) Action Qualifier, (3) Deadband,
and (4) Event Timer. Each Module is described in this document.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 8

SsTE PWM Block — Module Properties

The sTE ePWM block (“Embedded/Piccolo/ePWM?”) property window is used to configure the PWM Modules.

280x ePWM Properti

P/ Unit [T Use High Res Timer
Time Hase
Time Base Module: Define the type of e g Bt
count and Period < | TimerPeros: 2060 SkHz [F] Change Period Dynamically
[CITBCTR=TBPHS on SYNCl puke TBPHS [phass} 0
Change Phase Dynamicaly EPWMSYNC! pire [GPIOR
EPWHSYNCD EPWHSTNED pin
CMPA Load O | CTR =Zero w| CMPELoadOn: | CTR =Zen -
Action Qualifier Module: Define when HEEA Chen cHPB

up down up down P

e el oo ol B o)

Deadband Module: Define deadband —_ Hosoor: (Do -
to prevent “shoot-through” and polarity

the PWM cycles and the PWM output Pin B

——— PWM Output Registers

ey Pty Mo Inversion

Input Select: Db in = Pw/Ma, DBB in = Plibts

Rising Edge Delap (0-1023) |0 Fallng Edge Delay (01023)

=

Event Time Module: Define the SOC
signals

= }
— I Send Stait ADE Conversion Fulse & [SOCA] [

S end Start ADC Conversion Pulse B (SOCB]: CT

SOC Outputs

Sl Handing

EPWMA output an fault High impedance - —
Digital Conpate...
EPWMB output on fault High impedance -

[T Add Enable Pin [0 value forces Faul]

Extemnal T2+ Fault Source: [7]1 (]2 [7]3 (14 [5 (76 [[oca []oce
Autoreset T2 Faul Source: []1 [F2 [[]3 [[14 []5 [[CJoca [C]DCE
1zt [GRm2 <) 1zz [GRoiz ~| T2 [GRole_ <]
128 | =] 128 | <] Tz -

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 9

STE ePWM - Basic Time Base Module Configuration:

The basic “Time Base” Module features of the ePWM (“Embedded/F280x”) block are located in the “Time Base” frame of the ePWM
properties window.

Sets the TBCLK = 150e-12 seconds (approximately) for high

frequency PWM applications (typically > 250kHz)

Sets the TBCLK = k/CPU clock speed
(Hz), where k is selected from the

— User select: Set the dropdown menu. Note: “None” means
TBPRD = # clock k=1.
ticks per PWM
period
Pt Unit: [[]Use wer

Time Base

Rate Scaling: Count Mode;

Tirmer Period: 8000 5kHz [7] Change Period Dynamically

[T] TBCTR=TEPHS on SYMC| pulse TBPHS [phase]. |0

Change Phaze Dynamically EFWMSYHE pir: [GPIOE

EPWHSYNCD: [EFWMSYNCI [v] EPWMSYNCO pin Explained on the
CMPA Load Or: | CTR = Zera v | CMPE Load On: |CTR =Zem - next slide

STE calculates the PWM Carrier frequency
(Fpwm) based on the Timer Period, Count Mode,
and Rate Scaling.

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 10

Change Period Dynamically Option

In some situations it is not possible to create the desired PWM Carrier Frequency from the integer “Timer Period”. Suppose we wanted to
create a PWM signal with a minimum 25nsec ON time and 475nsec OFF time. The “Count Mode” is set to “Up/Down”. The CPU Speed is
90MHz and the TBCLK = 1/90MHz.

Based on the ON and OFF times selected, the PWM Period is calculated as 500nsec and the PWM Carrier Frequency is
calculated as 1/500nsec = 2MHz.

Since the “Timer Period” MUST be an integer value, it is not

Time Base

Reto Soaing — possible to achieve the desired 2MHz PWM Carrier Frequency.
TinetPerct (22 204545MHz] Change Peiod Dynamically (Here the best we can do is set “Timer Period” = 2 to achieve
2.04545MHz)

To solve this problem, select the “Change Period Dynamically” option which adds a “Period(1,16)” input pin to the PWM block. This
pin accepts a user defined “Fractional Period Multiplier” constant that is calculated as follows:

Experiment with the “Timer Period” value until you obtain a value that produces a PWM Carrier Frequency, F, such that F/2MHz is a
rational fraction between 0 and 1 (Note: 2MHz is the desired PWM Carrier Frequency). The “Fractional Period Multiplier” is set to this
rational fraction.

_ After some experimentation adjusting the “Timer Period” value, we

Rate Sl Count Hode: select a value of 200 which produces a PWM Carrier Frequency of

Tiner Peios(200_) Wichange Perodynamicay 225kHZz. - Since 225k/2M = .1125 is a rational fraction between 0 and
1, we will use this “Timer Period” value and a “Fractional Period
Multiplier” set to .1125 to achieve the 2MHz PWM Carrier Frequency.

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 11

PWM Frequency Selection Issues:

Interference with Mechanical System Frequency: Generally dominant mechanical frequencies are in the 200Hz or less range. PWM
frequency should be selected at least 10x the dominant mechanical frequency. This is normally not a limiting factor.

Power Loss: In a motor, torque is proportional to the average current. Consider a motor with a torque constant k driven by a constant
current source, I, and by a PWM current source that ranges from 0 to L, and has a Duty Cycle, DC. To achieve the same

torque, the following is true:

T =k X Ieonse = k X DC X Lpeay

= The PWM driven motor requires
more current than the constant
P = (Ipeax X DC)2X R current motor to develop the
same torque.

Ipeak = E X Iconst

Heat: In a motor winding there is always a small resistance, R. As current is passed through the winding resistance, I3,,sR watts of

energy is transferred from electrical to heat energy. For a PWM current signal with a period, T, on-time, tOn, Duty Cycle, DC, and
ranging from 0 10 [,.q , the Igys value is calculated as:

1o] , 1, ton tOn ton
Ipmus = ?_L Ipeade — IRMS*® = Flpeak t|0 = IpeakT = Igys =]peak T

Ipus = IpeakDC

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 12

PWM Frequency Selection Issues:

For a 0 to I,,.qx PWM signal, power loss through a resistor, R, is calculated as: P = Iﬁeak XDC X R

For a constant current signal of value DC X I,,.qi, power loss through Ris: P = (Ipeqr X DC)?x R

—> As DC decreases, more and more power is lost through the
resistance to heat when using a PWM signal compared to a
constant signal of the same average value.

Switching Losses: An ideal switch is either fully on or off which means it never dissipates any power. Real switches don’t switch
instantaneously, they have a transition time during which they dissipate power. The transition time is usually fixed per edge. For
example, using a switch that requires a 1 microsecond transition time in a 25kHz PWM (40 microsecond period) means that the transition
time is 1/40 of the total. If the PWM frequency were increased to 250kHz (4 microseconds), this ratio would increase to ¥ which would
significantly and adversely affect performance.

Vibration and Noise: An electric motor uses wire coils to produce magnetic force. Every length of wire in the motor undergoes lateral
movement proportional to the current being passed through it. When the current is cycled, i.e. a PWM signal, the movement becomes a
regular vibration audible to the human ear. Since the range of human hearing is generally considered to be 20Hz to 20kHz, PWM
frequency is often selected to be 20kHz or greater to eliminate audible noise being produced.

Resolution: Normally a resolution of 10 bits (1/1024 = .001) is adequate. Based on your CPU speed and PWM period, confirm your
resolution is adequate. If not consider using the “High Resolution Timer”, adjusting the PWM period, overclocking, or moving to a faster
CPU.

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 13

Advanced Time Base Module Configuration:

The advanced “Time Base” Module features of the ePWM (“Embedded/F280x”) block are located in the “Time Base” frame of the
ePWM properties window

Time Base
Rate Scaling: Count Mode:
Tirmer Penod: 8000 BkHz [Change Period Dynanmically
[TBCTR=TERHS on SYNCI pulse TBPHS (phazel: |0 — TBPHS: is a count offset value (to
Change Phaze Dynarically | EPwMSYNDI i | GRIOE pl’OdUCE a phase Shlft)
EFwWMSYNCD: |EPwWMSYNGI = | EPWMSYNCO pire | Unused =
[CMPA Load On: | CTR = Zern <] CMPE LoadOr: |CTR =Zera = TBCTR = TBPHS on SYNC1 pulse: When
I checked, the TBPHS count offset value is
L added to TBCTR when a SYNC1 pulse
Specify the condition when to load the CMPA occurs.
and CMPB values. Choices are [Zero, Period,
Period or Zero, and Immediate]. Normally “Zero” Change Phase Dynamically: Adds an input
is selected. pin to the PWM block which accepts a

fractional value that is multiplied by the
“Timer Period” and assigned to “TBPHS”.

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 14

Advanced Time Base Module Configuration - Synchronization:

The operation of PWM modules can be synchronized to operate as a single system when needed using hardware pins
named EPWMSYNCI (input) and EPWMSYNCO (output).

——— - EPwmiznict PWI 1 EPwhisyNoO———fs{EPWMsvhc PWIM 2 EPwMSHCO——e{EPwisvic PYWM 3 EPwMsyhcol——— ©° " efEPwmsviic PWIM n EPwMsYNCOo}—

|} J
1
Time Base
Rate Scaling: Count Mode;
Tirmer Penod: 8000 BkHz [Change Period Dynanmically

[T] TBCTR=TBPHS on SYMCI pulse TBPHS [phaze): |0

Change Phaze Dynarically | EPwRSYNEI pine | GRIOG Input pin
EPwMSYRCD: | EPwMSYRCI EPWHMSYNCO pir: | Unused b Output pin
CPA Load On: | CTR = Zemo CMPB LoadOn: | CTR =Zemo hd

There are 4 selectable synchronizing actions that can be applied to the
EPWMSYNCO output signal:

EPWMSYNCI: This sets EPWMSYNCO = EPWMSYNCI

TBCTR = zero: This sets EPWMSYNCO =1 when the TBCTR (time based
counter) =0

TBCTR = CMPB: This sets EPWMSYNCO = 1 when the TBCTR = CMPB

None: This sets EPWMSYNCO =0 always

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 15

STE PWM — Time Base Setup Example 1

Example 1:

Setup the PWM to produce a 10kHz carrier frequency with “Count Mode” set to “Up. The CPU Speed is 80MHz.

Time Baze

Rate Scaling: Count Mode: Up -
Timer Period: 8000 10kHz [] Change Period Dynamically
[T] TECTR=TBPHS an SYNCI pulse TBPHS [phasze] |0

Change Phaze Dynamically EPwWMSYHEI pin: | GRIOE

EPWMSYNCD: [EPWMSYNDI w | EPWMSYNCO pir:
CMP& Load On: | CTR = Zem + | CKMPE Load On: CTR =Zera -

Step 1: Experiment with “Timer Period” until 10kHz Carrier Frequency is
obtained.

NOTE: CPU Speed = Timer Period * Carrier Frequency

NOTE: there are 8000 discrete levels of duty cycle in this configuration

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 16

STE PWM — Time Base Setup Example 2 (1/3)

Example 2:

Setup the PWM to produce a 25nsec ON and 475nsec OFF signal with “Count Mode” set to “Up/Down”. The CPU Speed is 90MHz.

Based on the ON and OFF times provided, the Carrier Period is calculated as 500nsec OR equivalently, the Carrier Frequency is
2MHz.

“Timer Period” MUST be an integer

value, we cannot achieve the desired

2MHz Carrier Frequency.

To solve this problem, use the “Change Period Dynamically” option
which allows you to define a “Fractional Period Multiplier” and send

Time Baze « » « . ” e A
Rate Scaling Count Made: to the “ePWM” block through the “Period” input pin.
Timer Period: 2.04545MHz pie Period Dynamically
[C1 TBCTR=TBPHS on SYNCl pulse TEPHS [phass): |0 Operation: Carrier Frequency
Change Phase Dynamically o .
anilsiI i |(Clale New Carrier Frequency ional Period Multipli
EPWMSYNCD: EPwWMSYHED pln. B Fractional Period Multiplier
EMP Load On: EMPD Load O New Timer Period = Timer Period x Fractional Period Multiplier
Time Base
R elip Fount Hode: Setting the “Fractional Period Multiplier” = .1125, these settings
Timer Period: 200 225kHz Change Period Dynamicaly become.
[T] TRCTR=TBPHS on SYNCI pulse TBPHS [phase): |0
Change Phaze Dynamicaly EPWMSYNC pin: |GPIDG

- EFWMEYNED pin New Carrier Frgqugncy =*225kHz_/.1125 = 2MHz
CMPA Load On: CMPB Load On: New Timer Period = 200 * .1125 = 22.5

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 17

STE PWM — Time Base Setup Example 2 (2/3)

STE model using the F28069M LaunchPad running at 90MHz. PWM setup for a Carrier Frequency = 2MHz using Up/Down Counter.

Source Model e S|

Pia/M Unit: [7] Use High Res Times

Time Base
Rate Scaling Nan Count Mods

F28x Config: FQBOEQM@QUMHZ‘) Z

TIXDS100v2 USB Timer Period: 200 225kHz Change Period Dynamically
[C] TBCTR=TBPHS on SYNClpulse TBPHS (phasst |0

_ Changs Phase Dynamically EPWMEYNE]
0.47 oury cycle PWI Generation o0 (o
et ERuSNED L T ——

CMPA Load Or: | CTR =Zeio x| CMPBLoadOn: | CTR =Zen A

Action Qualfier:

ChPa CMPB
w down up down B GFID Pin
P [0 ~[1 ~|[x ~]x ~ [GPO0 ~|
EPWME: [=[x =[x <] ~ [GPio1 -]
. Deadhand
Duty Cycle convert %Dty Cycle A[115] PWM Setup D::ay r::;de [D\sahled ']
Fromepseeoe F23000uEPwiaEPie | roy —
0.1125 convert [x{Pericd (1.15) 0 Inversion
[0.1725] o Input Select Db in = Pah, DBB in = Py/bA
Fractional Period Multiplier Rising Eige Delay (0410231 |0 Faling Edge Delay (0-1023) |0
Use PWM1A edge as frigger Send Start ADC Canversian Pulse & (30CA).
Pos Edge Detedl Send Start ADC Conversion Pulse B (SOCE]
Fault Handing
[trig] it) F2B069M EPWMA output on Faul
F28069M-GFI00 Plsarst_ Monitor Buffer Write 0 EFAWMB output on faul
[] Add Enable Pin (D value forces Fault]
PWM Signal lonitor 200 Elements of PWIITA Evtemal T2 Faut Souree: [11 [[]2 []3 []4 05 []6 []Dca []0CE
Autoreset TZ« Fault Source: [[]1 [[]2 [[]3 []4 []5 [[]6 [Jpca [CIDCE
7[Rz -] tz2 [GRotz -] 7z [GRoi4 <)
T24: | =) 125 | -] 1z | -
couree Model

solidThinking’

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
ePWM28069 TI RK.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 18

STE PWM - Time Base Setup Example 2 (3/3)
Debug Model: e
Simulation Setup: [—— F

TimeStep = .01 seconds Bk T
End =20 SeCOndS ePWM2B069_TIFK out jei=tbean

[

Taiget Fiequency (MHz)
20

Sample Rate = 225kHz

. Cannectars: .
B T | L NOTE: the actual sample rate is 225kHz/.1125 =
[Show izalion ulputs:
e Tagta ok 2MHz
Embedded T arget Support Version
TIXDS100v2 USB WisSim/E CD for F280< +30 Build 215
[016 |—{1ePWM28059_TI_RK.out]
- ([Comcel | [nep]
F250501 ol K] PWM Signal - 10KHz [==
Monitor Buffer Read 0 Butfer 20
181
161
>
141
I
121
» 10
8
8 Plot x-Range Calculation:
4 200 points are recorded in the buffer.
o 2 PWM frequency = 2MHz = 500nsec
L ‘ ‘ ‘ ‘ ‘ . ‘ ‘ Fractional Period Multiplier = .1125
» “0 S5e-7 1e-6 1.5e-f 25e6 35e6 4.5e-6 ':;':Z’fgec' 6.5e-6 7.5e6 8.5e-6 9.5e-6 1.05e-5 XMaX = 200 * sooe_g * 1125 = 1125e_5 SeCOf‘IdS

Debug Model

solidThinking’

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
ePWM28069 TI RK-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 19

PWM Events & Actions

The Duty Cycle input value is converted to a TBCTRA
CMP value. (counts)

TBPRD valu
As the TBCTR pulse counter increments from 0 CMP valu B
to TBPRD, it passes through the CMP value. i

Y I——
Similarly, when the TBCTR is reset to 0, it also] N—— _I_I_I'rr
passes through the CMP value. These four Lz
Events, Z, Up, Down, and Period are shown i >
(right): Zero (2) Down Event: time
Event: TBCTR = CMP while decreasing

TBCTR=0 Up Event: Period (P) Event:
TBCTR = CMP while increasing TBCTR = TBPRD

At each Event, any of four Actions can be performed. These actions provide a means to define the PWM edges:

X = Do Nothing
0 = Force the PWM value to 0 (Off Value)
1 = Force the PWM value to 1 (On Value)
T = Toggle the PWM value
if the PWM value = 1, Toggle will set it = 0 and if the PWM value = 0, Toggle will setit=1

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 20

STE ePWM - Action Qualifier Module

The “Action Qualifier” Module features (Events, Actions, and PWMA and PWMB output pins) are configured “Action Qualifier” frame of
the ePWM properties window.

Events:

Z=When TBCTR=0

up = When TBCTR = CMP while increasing
down = When TBCTR = CMP while decreasing

— PWMA Action, P =When TBCTR = TBPRD

Event, & Pin

Settings

Action Qualifier:
CMPA CMPE
Z up down Jup down | P —_\
e EFW/MA: % wJo »[1 <% v|x «|[x] [GPD0 ~] Output Pin numbers
e £/ ME: o1 w0 w|[x <% <|[x ~] [sRO1] assigned to PWMA and
PWMB.

= PWMB Action,

E"eT‘t’ & Pin User select: Action dropdown:
Settings X = Do Nothing

0 = Force PWM output to O

1 = Force PWM output to 1

T = Toggle PWM output

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 21

PWM Examples

Example Example Example
1 2 3
Count Mode Count Mode Count Mode
CMP, CMPE CMP&, CMPE CMPA, CMPE
z up down up down P Z up down up down P 7 up down up down P
(2 (0 £ |0 03 PR B 0 EREI IR | F302 1| ETR I e (T3 R | 09 | AR
TBCTR
CMP L. ool
value
PWM A
> > >
time

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 22

PWM Deadband

An H bridge is an electronic circuit consisting of 4 switches. One use of an H bridge is to provide bidirectional rotation
control of a DC motor.

When switches S1 and S4 are closed (and S2 and S3

are open) a positive voltage is applied across the s1 s3

motor (M) causing it to rotate in one direction. Closing B @

S3 and S2 and opening S1 and S4 reverses the \f:d -~

voltage polarity across the motor causing it to operate . S s4 _Ela

in the reverse direction.

The four switches are controlled by a complimentary WM ——— ———— Claced

pair of PWM signals, PWMA and PWMB. PWMA PR L L open

controls S1 and S4 and PWMB controls S2 and S3. An Clnced

ideal pair of PWM control signals is shown to the right: PWM [[Open
B

Ideal switches require O time to switch 5=l L; s3=le srﬁlﬂ e! 1

between states (Open and Closed). If + —O—

the switches are ideal, two current flow sl -a-[] s~ ‘- sa=17]

patterns are possible:

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 23

PWM Deadband — Shoot Through

Real switches (Thyristors, FET’s, ...) do not behave in an ideal manner. They have a finite “turn On” and “turn Off” switch transition time
which, in general, are not equal. When these switches are used in an H bridge under PWM control, these transition times can cause a
catastrophic failure of the switches called “Shoot Through”. For example, a thyristor application may have a “turn On” = .2 milliseconds
and “turn Off” = 2.8 milliseconds.

In the following sequence of switch conditions, PWMA transitions from ON (Closed) to OFF (Open) and PWMB from OFF to ON. The
sequence uses non-ideal switches, each with a “turn Off” time > “turn On” time.

PWMA commanded
31-[]L> sﬁlrl Sl-[]L> sa=¢] s1=H s3] S1 and S4 to Open
T + —O_ but due to their longer
syl 'a-[] sl 'Sl-ﬂ] sigl sa={]] switch “turn Off” times,
they remain closed

PWM ,— Closed PWM li Closed PWM ,—\ while S3 (commanded
A A A Open by PWMB) closes

Closed because of it's shorter
PWM—|_ Open Pwm— Open PWM
B

“turn On” time*.
B B

PWM signal generators have a feature called “Deadband” which provides a method for independently adding delay to the PWMA and
PWMB edges (both rising and falling edges) to accommodate switch transition times and prevent a Shoot Through situation from

occurring.
* S2 was excluded in this explanation for clarity, it too could be in a closed state.

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 24

SsTE ePWM - Deadband Module

The “Deadband” Module allows delays to be added to rising and/or falling edges of the PWM signals.

The input signals to the “Deadband” module are the PWMA and PWMB output signals from the “Action Qualifier” module. Internally, the
“Deadband” module creates the signals “DbA” and “DbB” for channel A and B based on the “Input Select” settings. The “Delay Mode” and
“Polarity” settings are then applied to the “DbA” and “DbB” signals to produce the PWMA and PWMB output signals (below):

Deadband Module
PWM DbA PWM
A > > LN
Action Qualifier Input Select Delay Mode
Module > > And Polarity R

PWM DbB PWM

B B
The “Deadband” Module of the ePWM Deadband:
(“Embedded/F280x”) block is located in the Delay Mode: Disabled -
"Deadband" frame of the ePWM properties Polarity: Ma Inversion
window. Input Select: Db in = Pladbdds, DBE in = Pysba,

Rizing Edge Delay (0-1023) |0 Faling Edge Delay (0-1023): |0

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 25

SsTE ePWM - Deadband Module

Input Select: Specifies the PWM source signals to be used for ChA and ChB deadband operations. These signals are named “DbA” and
“DbB”. Four configuration options are available

Input Select: Dhmn P, DbB in= F'wm

\, / « PWMA Inis the source for both falling-edge and rising-edge
gﬁ in = %mg EEE in = %mg‘ delay. This is the default mode.
n= in= « PWMA In is the source for falling-edge delay, PWMB In is the

Db& in = P/MB. DBB in = PWwWMEB .
\ source for rising-edge delay.
« PWMA Inis the source for rising edge delay, PWMB In is the

source for falling-edge delay.
* PWMB In is the source for both falling-edge and rising-edge

Delay Mode: Specifies the delay.

PWM Deadband mode to be Delay Mode: Rizing Edoe Delay on Dhdin oly

used for Deadband . Off

operations, there are four Rising Edge Delay on Dhéin only < » Deadband is applied to PWMA rising edge

ontions: Faling Edge Delay on DbBin only - < : + Deadband is applied to PWMB falling edge

0] . Rizsing Edge Delay on DhéinkF aling Edge Delay on DbBin <« ue— Deadband is applied to PWMA rising edge and
PWMB falling edge
Polarity: The polarity control
gllpws you to specify yvhether the Polay: T—— -
rising-edge delayed signal and/or . Off
the falling-edge delayed signal is Irvvert Rising Edge Delay on & ¢ * Invertrising edge delay on PWMA
; ; nvert Faling Edge Delayon B - = < « Invert falling edge delay on PWMB
to be inverted before be|ng sent Irvwert Rising Edge Delay on A & Faling Edge Delay on B a .
 Invertrising edge delay on PWMA and invert

out of the Deadband module. falling
There are four options edge delay on PWMB

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 26

STE ePWM — Deadband Module Examples
/ Example 1: PWM . | i PWM input signh

A p—from Action
Deaduand p— Qualifier Module
Delay Mode: |Rising Edge Delay on DbAin only vJ EWM
R
Polarity: | No Inversion v l —
Input Select [DbAin = PWMA DbB in = PWMA v Db PWM signals after
Rising Edge Delay (0-1023); 100 Falling Edge Delay (0-1023): 500| = = p™Input Select
DbB
o
—» 4 100 counts— & -
PWM PWM output
A ™=signals from
Deadband Module
K EWM » /

r -
/ Example 2: PWM | PWM input signh

5 A; — p=from Action
eadband: Y
Delay Mode: (Rising Edge Delay on DbAintFaling Edge DelayonDbBin__v| ~ PWM Qualifier Module
Polarity: | No Inversion '] B =
Input Select [DbA in = PWMA, DbB in = PWMA - Db PWM signals after
Rising Edge Delay (0-1023; 100 Faling Edge Delay (01023} 200] Ly [=Input Select
DbB
i i 100 counts—p |- =
PWM PWM output
A =signals from
K PWM > [4— 200 copints —p» t Deadband Mwy
e

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 27

STE ePWM — Deadband Module Examples
/ Example 3: PWM i PWM input signh

I

e p=—from Action
Deadband: PWM Qualifier Module
Delay Mode: [Rising Edge Delay on DbAintFaling Edge Delay on DbBin v | B -
Polarity: Nol H =
Iroout ;elecl' A . wmﬁ,mg s : | Db PWM signals after
‘ i L : vl e — Iinput Select
Rising Edge Delay (0-1023) 100 Falling Edge Delay (0-1023) 200 DbB
s
—» 4 100 counts— |- -
PWM PWM output
A ===signals from

K SRR —» 200 cofints —» Deadband MQW
B
ﬂixample 4: PWM PWM input signh

~ — p==from Action
Deadband: PWM Qualifier Module
Delay Mode: Rising Edge Delay on DbéinéF alling Edge Delay on DbBin ~ ~ B d
Polaity: T r—— —
Input Select: Dbé in = P\WMA, DbB in = PwMA - Db PWM signals after

A —Input Select
Rising Edge Delay (0-1023): 100 Falling Edge Delay (0-1023) 200 -

—» 14 100 counts—! 4 -
PWM PWM output

—_signals from

A —
\ PWM —» 4 200 cofints — Deadband Mody
B -

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 28

sT-Embed ePWM = Event Time Module

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 29

sT-Embed ePWM - Fault Handling

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 30

PWM Example — Solenoid Control

Solenoid Model (Top Level):

::' win, volks Eecthagletic
fload. M Solenoid ™™

Solenoid Model (Detalils):

Calculated Parameters

Parameters
Inductance as

a function of x.
Inductance Increases
as x increases

Plunger Mass, kg

Plunger Damping

Spring Constant

Coil Resistance, ochms

Coil Inductance, H

Initial Plunger Position, m

MNon energized plunger distance, m

Partial derivative
of L{x) WRT x

Electromagnetic Force

displacement, m

Back EMF

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 31

PWM Example — Solenoid Simulated Response

Solenoid Model Simulation Response:

vin, volts ElectroMagnetic

Solengid "™ |® | Salenoid Plunger Position (= @] =]

o SE
A0F
45+
B 40
35
s 30b
£ o5l
o 20F
15+
10
£ 5L
U =3
B -5

10 L L L L L L L L

0 05 A 15 2 25 3 3 4 45 5 Eh 6 65 T 715 8 8 9 9 1
» Time (sec)

Vin = 5 volts applied at 0.2 seconds
fLoad = 10 Newtons applied at 0.5 seconds and removed at 0.7 seconds
Simulation Update Time = 1e-5 seconds

Solenoid Model

EMBED solidThinking’

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
SolenoidModel.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 32

PWM Example — Solenoid PWM Generator

PWM Model (Top Level):

—HDuty Cucle, fraction PV F"'.-.l'Ml—

PWM Model (Details):

Rail Voltage. volts:5 —#{ -DCRailVoltage volts
[10000 ——m -PWMFrequency Carrier Frequency, Hz

‘DutyCycleFraction
(0] Ip|

l -
DutyC cIeFraction - b DCRaIVoltage @—t) merge ———
[0] merge I

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 33

PWM Example — Solenoid PWM Generator Simulation

PWM Model Simulation Results:

[T PR » " POt ===
J— 6.0
551
IrnnEEEEEiE IRERERE !
45F
P+ 40F
351
301
251
20f
15F
10F
sk
ot I Apimins Ipimnn
»
ol
» 0 .0001 0002 .0003 .0004 0005 0006 .0007 .0008 .0009 001 001 0012 .0013 0014 0015 0016 0017 0018 0019 002
eeeeeeee

PWM Carrier Frequency = 10kHz
Duty Cycle Slider swept from .8 to .15 during the .002 second simulation
Simulation Update Time = 1le-5 seconds

PWM Generator Model

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
PWMControl.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 34

PWM Example — Solenoid w/PWM Control Simulation

Solenoid w/PWM Control Simulation Results:

[045 |1 {Dut Cucle, iraction PVYN P —
—= o I By
50
451

201
B 35F

. . \ \ . . \
5 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 10
P Time (sec)

PWM Carrier Frequency = 10kHz
Duty Cycle Slider swept randomly between 0 and 1 during the 10 second simulation
Simulation Update Time = 1e-5 seconds

Solenoid Model with PWM Control

EMBED solidThinking’

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
SolenoidWithPWMControl.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 35

PWM Example — Solenoid Approximate Transfer Function

Solenoid Approximate Fixed Point Transfer Function

&7

't ot SE

P{flLoad,
8884.72289 i

1= 7
5°+40 65+8884 72289

6

Linearized 2d order madel

22+2 0000022198272+ 9999993337267
222072942130373e-007 Rl
771 9995929722169z + 999! 2

Linearized 2d order discrete model (dt = 1e-5 sec)

2%+2.00000022198272+.99999933379267

2%1.9995929722169z+. 0862
Linearized 2d order discrete fixed point model (dt = 1e-5 sec) in 4.32

> 2.22072942130373-007

5
4
3
2
4
0
1

Vin =5 volts
Fload = 0 Newtons
Simulation Update Time = 1e-5 seconds

Solenoid Approximate Transfer Function Model

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
SolenoidTransferFunction.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

PWM Example — Solenoid PIL — Source Model

PIL Source Model (Top Level):

Duty Cycle Fraction
\ 0.43 ——»{ convert +{Duty Cycle ePWM & Solenoid TF = L= ox |

PIL Source Model (Detalils):

Heartbeat (Red LED)
F28069M-GP1034

Solenoid Transfer Function Plant Model 4.32

PWM1A
2
Duty Cyde Z-+2.00000022198272+.99999933379267
i P Py - . | * .
>—urLy—<§/DulyEyt\sﬂﬂ 2 8069M-EPWM LA/EPWMLE F28069M-GPI00 [convert 2.22072942130373e-007 B 5@Mx4.16

> Dty Cycle B{L16] 7°-1.99959297221697+.99959386050862

mm

!

PWM1A output on GPIOO
PWM1B output on GPIO1

Use PWM1A edge as trigger
Monitor PWM1A

vigl16.76) F28069M
signal__Monitor Buffer Write 0

PWM1B aE e F28065M
F28065M-GPIO1 signsl__Monitor Buffer Write 1

Simulation Update Time = 1e-5 seconds

PWM Driving Solenoid TF Source Model

36

solidThinking’

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
PWMDrivingSolenoidTF.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 37

PWM Example — Solenoid PIL PWM Configuration

PWM Configuration

P Uit []Use High Res Timer
Time Base
Rate Scaling CountMode:
TimerPeriod: 4000 10kHz [[]Change Period Dynamically:
[C] TBCTR-TBPHS on SYNCI pulse TBPHS (phassy. |0
Change Phase Dynamically EPYMSYNCIpin: | GPIOB ~

EPWMSYNCO: |TBCTR =zera ~| EPWMSYNCO pin
COMPA Load On: [CTR= Zero ~| cuPBLosdon: [CTR=Zero -

Action Qualifier: CMPA CMPE

z up down down P GPIO Pin
EPWWIMA: GFIO0 v
EPWMB: GFIO1 -
Deadband:
Delay Made: [R\squdgE Delay on DbAinFalling Edge Delay an DbBin v]
Polarity: (Invert Falling Edge Delay anB -]
Input Select [DbAm=P’WMA DbB in = PwitdA V]
Rising Edge Delay (0-1023): 100 Falling Edge Delay (1-1023; 100

Send Start ADG Conversion Pulse A (S0GA). GTR=-PRD -
Send Start ADC Canversion Pulse B (SOCB) DCBEVT1 -
FaultHandling
EPWMA outauton fault High impedance -
Digjtal Campare.
EPWME outauton fault High impedance -

[Add Enable Pin (0 value farces Fault)

External TZx Fault Source: [D2 03 4 Os [Os [Coca [oce
Autoreset T2xFaultSource: [[]1 [[]2 []3 []4 []5 [1s [Joca [Joce
T21: [GRIO12 ~] 122 [GRIO13 ~] Tza [cPoia -]

Tz4 | -] 725 | v T -

Carrier Frequency = 10kHz
GPIO0 = PWM 1A output
GPIO1 = PWM 1B output

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 38

PWM Example — Solenoid PIL — Debug Model
PIL Debug Model (Top Level):

Duty Cyde Fraction
—>lxl
1 convert D>{Bus Cicle PWMDrivingSolenodTF.out , o, T 1657

F28069M T . .
s et o AR T - —

5 }

»

1 > 55

KA RVEVRTRVEVEVAVRVAVEY
ok o 50
4 R R R 45

P [.0001 .0002 .0003 .0004 .0005 .0006 .0007 .0008 .0009 .001 Y

» Time (sec) E"-D

Bl
F28069M Tig|
Monttor Buffer Read 1suua'_—_f\- | PWM1B Signal - 10KHz = [==] 33

> ? o 20

st A A A A A A A A A

) . 25
0

20 ‘ ‘ . ‘ ‘ ‘ ‘ ‘ ‘

1 . . , . . , . . , N) 1 2 3 4 5 6 7 [9 10
[.0001 .0002 .0003 .0004 .0005 .0006 .0007 .0008 .0009 .001

Rl
> Time (sec)

Simulation Update Time = .01 seconds

PWM Driving Solenoid TF Debug Model

solidThinking’

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
PWMDrivingSolenoidTF-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 39

PWM Example — Solenoid PIL — Debug Model

PIL Debug Model (Details):

Simulation Update Time = .01 seconds

PWM Driving Solenoid TF Source Model

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
PWMDrivingSolenoidTF.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 40

PWM Example — Motor Control

It is important to understand how the PWM Carrier Period (and Frequency) is selected.

To do this we will create a basic motor model, identify its fundamental time constant, and then select
the PWM Carrier Period short enough to produce an acceptable level of motor velocity fluctuation.

Basic Motor Model: Where:

Te = Electromagnetic Torque

w
V1= Input Voltage load q
J_ R = Motor armature resistance Tload = Loa T(.]rque
Te=Kt*i Tload T c=) R=1/B J=Motor Inertia

L= Motor armature inductance o
B = Motor Friction

Vb = Back EMF voltage .
Kb = Back EMF Constant w = Motor mechanical speed

Kt = Torque Constant

The equivalent motor block diagram becomes:

Tload

Vi + | i - 1—
F Ls+R Te Js+B

v =

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 41

Motor Dynamics — Electrical Time Constant

. . _ 2
Using the following example values; R=10Q J=.02kg-m
L=1mH Bz o1 -m-s
N-m rad
Kt=1—- volt -s
amp Kb=1
rad

)) . L
The Electrical Time Constant is calculated as: 7. :§:-0001530

To calculate the Mechanical Time Constant, the following simplifications are applied;
Tload = 0 (no load torque)
Motor friction, B =0 1 1
And the electrical dynamics are replaced by their dc-value; Ts7r|_, &

Applying these assumptions, the motor model block diagram simplifies to:

Vi + 1 i Te 1 w

R Js+0

Kb [¢———

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 42

Motor Dynamics — Mechanical Time Constant

The closed loop transfer function of the simplified motor model is calculated as: w__ K
V1 RJs+Kt-Kb

_RJ
Kt-Kb

And the Mechanical Time Constant is calculated as: 7, = .2sec

In successful applications, the Mechanical Time Constant should be the fundamental (or dominant)
time constant, typically 100 to 1000 times slower than the electrical time constant.

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 43

PWM Carrier Period & Frequency

The PWM Carrier Period, Tpwm, and Frequency, Fpwm, is calculated to produce an acceptable
value of motor velocity fluctuation.

As an example, assume that a 0.05% velocity fluctuation is the goal.

If the initial motor velocity, w(0) = 1, and the dominant time constant of the motor = mechanical time
constant is 0.2 seconds,

—Tpwm

e = 9995
Tpwm = -7, In(.9995) =.0001sec

Then the problem is that of solving the mechanical
time constant for the Tpwm (PWM Carrier Period):

Fpwm = 1/Tpwm = 10KHz.

The typical range for the PWM Catrrier Frequency is 10KHz <= Fpwm <= 40KHz. Using frequencies
less than 10KHz result in unacceptable motor velocity ripple and values greater than 40KHz tend to

increase the transistor switching frequency (in the H Bridge) to a level that causes them to heat up
and prematurely fail.

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 44

Motor Speed Response to PWM

This example illustrates the response of a motor transfer function model to a PWM signal
implemented on the F28069M LaunchPad target. Values from the previous “Motor Dynamics”

example are used.)) o
The motor model is defined as a unity gain first order transfer

function with a mechanical dominant time constant = .2 seconds !
(right)
The PWM Carrier Frequency is set to 10KHz. Using the following settings:

:Motor Speed

PWM Carrier Frequency

F28x Properties: CPU Speed
(MHz) = 80MHz

F28x Properties

Clock Souree:
Bulipe of Crystal Freq:
HSFLLK: 80MHz
LSPELK: 20MHz

ePWM Properties:
Rate Scaling = 1/2
Count Mode = up/down
Timer Period = 2000

EPWMSYNCI pin: |GPIOB
CPUL EPWMSYNED: [Tl ~| EPWMSYNC pir: [Unused -
[Enable Interactive Peripheral Made CMPA Load On: [T v| CMPBLoadOr: [CTA = Zen ~|
if counting “up” and TBCTRA goes thru —
CPU Speed (MHz} 80 9 up 9 i

CMPA, set EPWMA =0
if counting “down” and TBCTRA goes
thru CMPA, set EPWMA =1

if counting “up” and TBCTRB goes thru="|
CMPB, set EPWMB =1

if counting “down” and TBCTRB goes
thru CBMPB, set EPWMB =0 /

[Change Period Dynamically
[TBCTR=TBPHS on SYNCI pukse BPHS [phasel |0
Change Phase Dy

GFIO Fin

Rising and Falling edge deadbands
bick (time delays) normally set to the same
value (units are ticks)

Tz1:[BF012 ~) tzz (GRoia v] Tza [GRoie o)
. . . . 24 <) 125 | o) Tz -
Since the PWM Carrier Frequency is 10KHz, the target model update frequency is selected to

be 20 times faster (200KHz), this is equivalent to a target update time = 1/200KHz = 5e-6 sec.

EMBED solidThinking’

Autoreset TZx Fault Source: [7]1 [[2 [[13 []4 []s []s [Coca [Coce

High impedance -
Digital Compare.

ault]
01 [2 [13 @4 @5 Bs Eocs [Cbcs

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 45

Motor Speed Response — Motor Model

mat/m File
File:

The motor model transfer function is converted to a fixed point discrete
transfer function, format 4.32, using an update time = 5e-6 sec (right)

DP\ dZem o o
The motor model transfer function receives the PWMA signal from TERREE e or az -
GPIOO (below) NOTE: PWMB is not used in this example. e ?mmm vt e
Polynomial Coefficients
741 Numerator
F28069M-GPIO0 1.24998437519531e-005 ——————————— i+ :speed | Denorminator: 1 -3393750003125
Z-.9999750003125

Format 4.32, same as the transfer function

Monitor Buffers are used to record 100 elements of PWM data (into Monitor Buffer 0) and Motor
speed (into Monitor Buffer 1) — (below):

Use PWM1A edge as trigger

Maonitor PWM1A Monitor Motor Speed

rigl16.16) F28068M - triglE. 6] F28069M
F28069M-GPIO0 signal Monitor Buffer Write 0 I speed [s{signal Monitor Buffer Write 1

Monitor Buffer Write Properti

Bulfer Size (words), 100 Buifer I

o) [canca | [Hee |

Monitor Buffer Write Properti

Buller Size fwords) 100 Bulfer ID:

[) [cancel | [Hem |

View source model in sT-Embed

The trigger signal “:trig” is pulsed every time a PWM cycle begins (10KHz)

EMBED solidThinking’

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
MotorRippleDueToPWMCarrierFrequency.vsm
MotorRippleDueToPWMCarrierFrequency.vsm
MotorRippleDueToPWMCarrierFrequency.vsm
MotorRippleDueToPWMCarrierFrequency.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 46

Motor Speed Response — Source Model

The completed Source model becomes e PA0SSH-EPWILA 2PN
(right):

Use PWM1A edge as trigger

Monitor PWIM1A

tigl16.161 F28069M
signal__Monitor Buffer Write 0

Monitor Motor Speed

mgns 161 F28069M
i -speed —>{sional__Monitor Buffer Write 1

F28069M-GPI00

z+1
I 1.24998437519531e- 005 — t- cspeed |
2-.9999750003125

The source model is captured in a
compound block named “ePWM” (below):

Motor Mode! - Fixed Point Discrete 4 32

N
P :PWM Command —K] convert w
~ Format 1.16 required as the duty cycle command value for the ePWM block

C Code is generated for “ePWM” and compiled into “MotorRippleDueToPWMCarrierFrequency.out”
by applying the “Code Gen...” option under the “Tools” menu.

Fas0x Torgenertoe Properien U s
The Debug model is created from the |

im3L i o

Source model by replacing the “ePWM”

. « y» PL:PWM Command convert —{-DmcweePAM—— 0] cloFippleDueTol oy TAgetBoad 0~
compound block with a “Targetinterface = I e
. “ ti . Pulse Width MotorRi ebuel ol arrierFrequency.oul ! atorspes
block configured to read the “.out” file MR |
produced by the Source model. The L eep Tt Furming ot

“Targetinterface” is configured to
execute at a “Sample Rate (Hz):” =
200KHz rate (right):

Block Title:

Shaw CPU Utilization

[Sy Target to This Block
Embedded Target Support Version
VigSim/ECD for F2806 30 Build 39

i3 Cancel Hebp

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 47

Motor Speed Response — Debug Model

The sT-Embed Debug model, which includes the “Targetinterface” block, is configured to execute at a
0.01 second update time allowing the JTAG interface adequate time to transfer the Monitor Buffer
contents.

The competed Debug model and results showing the PWM signal and the motor speed buffers are
presented below:

‘ F28x Config: F28069M@80MHz
TIXDS100v2 USB

[0.795 —{ :PWM Command convert —-DuwyCileePWMI—(1]
—F
Pulse width MotorR\pp\eDueToPWMCarrierFrequency.outZEPUusag:
F28069M Trig -)
Monitor Buffer Read 0 Butier K PWM Signal - 10KHz
» 20 Fixed Point motor model
o T transfer function % CPU
¥ L0 utilization.
sl
{: DU 5 I5 DDIDI UDIUJ.S UDIUZS UDIUBS UDIU45 NOTE thlS mOdel WOUId not
8- i
» Time (sec) execute at the 200KHz rate if
Fixed Point were NOT used.
F28069M Trig —
Monitor Buffer Read 1 Buffer K] Motor Speed - AVERAGE =) @

.8

NOTE: Debug model settings: dt=0.01
+ seconds, "End(sec)" = 25; "Run in Real Time"
‘ : ‘ : ‘ . ‘ : ‘ checked, "Auto Restart" checked, and "Retain

a 10 20 30 40 50 60 70 80 90
Time (sec) State" checked.

o o o
T

Y VvV VYV ¥

View debug model in sT-Embed

EMBED solidThinking’

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency-d.vsm
MotorRippleDueToPWMCarrierFrequency-d.vsm
Models and Videos - Section 3/MotorRippleDueToPWMCarrierFrequency-d.vsm
Models and Videos - Section 3/MotorRippleDueToPWMCarrierFrequency-d.vsm
Models and Videos - Section 3/MotorRippleDueToPWMCarrierFrequency-d.vsm
Models and Videos - Section 3/MotorRippleDueToPWMCarrierFrequency-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 48

Motor Speed Response — Speed Jitter Results

The Debug model was allowed to restart several times with the “MotorSpeed*” fixed at .795 to
determine if the Motor Speed Jitter was within the +/- 0.0005 unit limits (below, right)

Parameters Calculated Parameters Motor Speed Ripple due to PWM Input
TIXDS100v2 USB

0.515 || :MotorSpeed= |~

+
[-Detospeca}*» >

: - T “MotorSpeed
Width X
[Pulse MotorRippleDueToPWMCarrierFrequency.out - 32.75
Controller
Fa806aM] -
‘mmrauﬂu Read QBuse 5 PWM Signal - 10KHz s (@)= (|] Meter Speed - @
0] 7958 —Hi Limit
M sk 7957 —Motor Speed
¥ 7ase -
1 .‘ ‘ T I 1 II 1]]ll-'cbs--;peezae::o.n;
M | \ | \ | Il | 7954
(S 1 AN O ¥ A o
o ses .000r 00015 00025 00035 00045 :
+ Time (sec) 752
7951
F I r
Morstor aafter fead 1o T Motor Speed - AVERAGE s [@® L R
» 90 7949
M 7048
» A0 7047
B asp p T
7045
7944
oo o w4 L > b 25 5 75 10 15 15 175 20 25 25
Time (sec) Time (sec)

Motor Speed response to PWM is within

View debug model in sT-Embed the +/- 0.0005 unit limits

solidThinking’

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency-d.vsm
MotorRippleDueToPWMCarrierFrequency-d.vsm
MotorRippleDueToPWMCarrierFrequency-d.vsm
MotorRippleDueToPWMCarrierFrequency-d.vsm
MotorRippleDueToPWMCarrierFrequency-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 49

Record ePWM timing using eCap Block (1/5)

The “eCap” block (Embedded/Piccolo/eCap) provides the ability to record the “on” and “off” times of
PWM signals. Let’s create a sT-Embed model that outputs a PWM signal on GPIO0 and an “eCap”
block that records the “on” time and “period” of the PWM signal for display.

The following model is constructed. We have also included a “Monitor Buffer” to display the PWM
waveform in a “plot” block

Use PWM1A edge as trigger
F28069-GPIO0 Pos Edge Detect

wigE. 16 F28069
F28059—GF’IOUsignal Monitor Buffer Write 0

Size setto 100

-duty cycle 3 Duty Cyele A[1.16] ECAP11(32.32]] i -period |

+:Duty Cycle B1.16) F28069-EPWM1A/EPWM1B F28069 Ecapz_13z.32) B+ -onTime |
Period (116] eCapture1 ECAP3_132.32)

ECAP4_1(32.32)

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Record ePWM timing using eCap Block (2/5)

The “PWM” and “eCap” blocks are configured as follows:
% Duty Cucle A116) ECAP1_132.32)

£+ -duty cycle }—Ui
<Oty Cycle B8] F28068-EPWM1A/EPWIMIB F28069 ECAPz_132.32)

| Perind (1.16) eCapture! ECAP3_132321—
ECAPY_1(32.32)—

50

280x ePWM Properties 280x eCap Properties
R A SRR Capture Unit Input Prescale:
Time Base
Fate Soaling: Mone | Count Mods: up - Ma Events: Pl Pin
TimerPericd: 200 A0z 7] Change Psriod Dynamically i
TECTR-TBPHS on SYNCI pulse TEPHS (phese) |0 ven S
Change Phase Dynamicaly P08 5 Event2 [triggeronfalindNge ~ |
EPWMSYNCD: |EPWMSYINGE ~| EPWMSYNCOpin: |Unused = ErariE
| cMPALondOn [CTR=zZer v| cMPBLosdOn [CTR=Zem zl
Action Cualifier o - Event4
2 up dow up down P in
EPWMA % i <o <% <% <] <o =
EFWME M v}[x -]x -‘ i vI I 1 - \ N
— \ eCap input
DelayMode: [Dissbled -] Record the
Polariy: o Inversion -
Inpt Select o in = P4, DBB in = PWMA first 2 setto
Rising Edge Delay (01023} |0 Faling Edge Delsy [0-1023) |0
F PWMA
Send Start ADC Corversion Pulsa A (SOCA). DCAEVT1 - [-
Send StanADC Corvarsion Pulss B (SOCE) [DeBEVTI |
Foult Handling
EF'WMA output an feult: Figh impedance -~ l e
EPWNE autput on fault High impedance - 4]
Add Enable Fin (0 value forces Fault)
Extemal TZx Faull Source 1 2 [F3 M4 Fls [Fls [Floca [Floce E\{ent 1
AvioresetT2sFaukSowrs: [11 [z [13 (4 ©Js [[Foca [loce Triggers here &
T21: |[GPIO1Z x| Tz |GRIOI3 > Tz3 |GPIOI4 A timel' iS rest E
‘ vent 2
T2s | ¥| Tz5 x| T | - !
Triggers here
K Cancel Help
Lo = Lo PWM output (channel A) set to GPIO0

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 51

Record ePWM timing using eCap Block (3/5)

The “eCap” block is configured to output the values of the first 2 events. The following figure
illustrates how the event values are calculated.

Timer count

Period ™=

On time'

time

S e B
T [

Event 1
Triggers here &
timer is rest

Event 2
Triggers here

EMBED solidThinking'

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 52

Record ePWM timing using eCap Block (4/5)

For the “eCap” block to operate, we need to jumper the pins that correspond to GPIO0 and GPIO5.
The pin definitions for the F28069M LaunchPad are presented below.

Table 2. F28069M LaunchPad Pin Out and Pin Mux Options - J1, J3

Mux Value Mux Value
3 2 1 0 J1 Pin J3 Pin 0 1 2 3
+33V 1 21 +5V
ADCINAG 2 22 GND
J13 3 23 ADCINAT
J14 4 24 ADCINB1
SPISIMOB SCITXDA TZ1 GPIO12 5 25 ADCINA2
ADCINBG 6 26 ADCINB2
XCLKOUT SCITXDB SPICLKA GPIO18 7 27 ADCINAD
SCITXDB MCLKXA EQEP1S GPI022 8 28 ADCINBO
ADCSOCBO EPWMSYNCO |SCLA GPI033 9 29 ADCINA1
ADCSOCAG EWPMSYNCI |SDAA GPI032 10 30 NC.

Table 3. F28069M LaunchPad Pin Out and Pin Mux Options - J4, J2

Mux Value Mux Value
3 2 1 1 J4 Pin J2 Pin 0 1 2 3

Rsvd Rsvd EPWM1A GPIOD 40 20 GND

COMP10UT Rsvd EPWM1B GPIO1 39 19 GPIO19 SPISTEA SCIRXDB ECAP1

Rsvd Rsvd EPWM2A GPI02 38 18 GPIO44 MFSRA SCIRXDB EPWM7B

GOMP20UT SPISOMIA EPWM2B GPIO3 37 17 NC/

Rsvd Rsvd EPWM3A GPI04 36 16 RESET#

ECAP1 SPISIMOA EPWM3B GPIOS 35 15 GPIO16 SPISIMOA Rsvd TZ2

SPISOMIB Rsvd T2 GPIO13 4 14 GPIO1T SPISOMIA Rsvd TZ3
NC. 33 13 GPIOSD EQEP1A MDXA TZ1
DAC1 32 12 GPIOS1 EQEP1B MDRA TZ2
DAC2 A 1 GPIOS5 SPISOMIA EQEP2A HRCAP1

The jumper is positioned as
show to the right connecting
pins 35 (GPIO5) and 40
(GPI100)

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Record ePWM timing using eCap Block (5/5)

Results are shown below:

0.5049
|
Fraction ON time

View source model in sT-Embed

View debug model in sT-Embed

OnTime

convert 1CAPEPVVMW\dchEUX.Oul;

| PWM Waveform Measurements

= [@ =]

300 —Period

275 —On Time
250
225+
200

175
150
125
100
75
50
25
0

Time (sec)

F28069 Tng'—‘
Maonitor Buffer Read 0 Butter

] PWM Wave Form

(= [E]==]

Plot x-Range Calculation:

100 points are recorded in the monitor buffer.
PWM frequency = 450kHz = 2222nsec
xMax = 100 * 2222e-9 = 2.222 e-4 seconds

YV VYV YT VYO

20
16F

-
o

o
T

0
0 2eb 4ebh GBebh Be-dh 0001 00014
Time (sec)

00018 00022

53

solidThinking’

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
RKCAPePWMwidth280x.vsm
RKCAPePWMwidth280x.vsm
RKCAPePWMwidth280x.vsm
RKCAPePWMwidth280x.vsm
VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
RKCAPePWMwidth280x-d.vsm
RKCAPePWMwidth280x-d.vsm
RKCAPePWMwidth280x-d.vsm
RKCAPePWMwidth280x-d.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 54

Record ePWM timing using eCap Block (4/5)

For the “eCap” block to operate, we need to jumper the pins that correspond to GPIO0 and GPIO5.
The pin definitions for the F28069M LaunchPad are presented below.

Table 2. F28069M LaunchPad Pin Out and Pin Mux Options - J1, J3

Mux Value Mux Value
3 2 1 0 J1 Pin J3 Pin 0 1 2 3
+33V 1 21 +5V
ADCINAG 2 22 GND
J13 3 23 ADCINAT
J14 4 24 ADCINB1
SPISIMOB SCITXDA TZ1 GPIO12 5 25 ADCINA2
ADCINBG 6 26 ADCINB2
XCLKOUT SCITXDB SPICLKA GPIO18 7 27 ADCINAD
SCITXDB MCLKXA EQEP1S GPI022 8 28 ADCINBO
ADCSOCBO EPWMSYNCO |SCLA GPI033 9 29 ADCINA1
ADCSOCAG EWPMSYNCI |SDAA GPI032 10 30 NC.

Table 3. F28069M LaunchPad Pin Out and Pin Mux Options - J4, J2

Mux Value Mux Value
3 2 1 1 J4 Pin J2 Pin 0 1 2 3

Rsvd Rsvd EPWM1A GPIOD 40 20 GND

COMP10UT Rsvd EPWM1B GPIO1 39 19 GPIO19 SPISTEA SCIRXDB ECAP1

Rsvd Rsvd EPWM2A GPI02 38 18 GPIO44 MFSRA SCIRXDB EPWM7B

GOMP20UT SPISOMIA EPWM2B GPIO3 37 17 NC/

Rsvd Rsvd EPWM3A GPI04 36 16 RESET#

ECAP1 SPISIMOA EPWM3B GPIOS 35 15 GPIO16 SPISIMOA Rsvd TZ2

SPISOMIB Rsvd T2 GPIO13 4 14 GPIO1T SPISOMIA Rsvd TZ3
NC. 33 13 GPIOSD EQEP1A MDXA TZ1
DAC1 32 12 GPIOS1 EQEP1B MDRA TZ2
DAC2 A 1 GPIOS5 SPISOMIA EQEP2A HRCAP1

The jumper is positioned as
show to the right connecting
pins 35 (GPIO5) and 40
(GPI100)

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Pin Out definitions for F28069 ControlStick

Using the PWM and “eCap”
settings from the previous
example, the jumper settings for
the F28069 ControlStick
positioned as show to the right
connecting pins 15 (GPIO5) and
17 (GPIOO0)

EMBED solidThinking’

F28069 USB controlSTICK PIN-OUT TABLE

1 2 3 4
ADC-A6 ADC-A2 ADC-AD V3
COMP3 (+VE) | COMPI1 (+VE)
5 6 7 8
ADC-A4 ADC-B1 EPWM-4B TZ1
COMP2 (+VE) GPIO-07 GPIO-12
9 10 11 12
SCL-A ADC-B6 EPWM-4A ADC-Al
GPIO-33 COMP3 (-VE) GPIO-06
13 14 15 16
SDA-A ADC-BO EPWM-3B 5V0
GPIO-32 GPIO-05 (Disabled by
Default)
17 18 19 20
EPWM-1A ADC-B4 EPWM-3A SPISOMI-A
GPIO-00 COMP?2 (-VE) GPIO-04 GPIO-17
21 22 23 24
EPWM-1B ADC-AS EPWM-2B SPISIMO-A
GPIO-01 GPIO-03 GPIO-16
25 26 27 28
SPISTE-A ADC-B2 EPWM-2A GND
GPIO-19 COMP1 (-VE) GPIO-02
29 30 31 32
SPICLK-A GPIO-34 PWMIA-DAC GND
GPIO-18 (LED) (Filtered)

55

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

End of Section

™

solidThinking

