
Algebraic, Differential, & Difference

Equations and Transfer Functions
sT-Embed Training

Ric Kolk

Altair Engineering

rkolk@altair.com

mailto:rkolk@altair.com

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 2

2

Topics:
• Algebraic Equations

• Static Explicit

• Static Implicit, using the sT-Embed built in solver

• Differential Equations

• Specifying Initial Conditions

• Modeling Linear Differential Equations

• Using an integrator to differentiate

• Creating a rate limiter

• Difference Equations

• Unit Delay, Sample Hold, Pulse Train Blocks

• Modeling Linear Difference Equations

• Transfer functions

• Continuous

• Discrete

• Continuous to Discrete Transformation

• sT-Embed Filter Design Option

• IIR, FIR

• Continuous, Discrete

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Algebraic Equations

3

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 4

Static Explicit Equations: Equations of the form y=Y(x1, x2, x3, …).

 input variables = x1, x2, x3, …

output variable(s) = y

linear or Nonlinear relationship =Y(x)

Can be modeled & solved using simple arithmetic, Boolean, and other blocks

Static Explicit Equations

Example: Incompressible fluid flow through a restriction

2.32

/,

/,

,

,

/,

2

3

2

2

3
















factorconversiongravg

ftlbdensity

ftlboppressuredrP

ftareaA

unitlesscoefeargdischC

sftflowrateQ

Pg
ACQ

c

m

f

d

c
d





Incompressible Fluid Flow Example

VisSimEmbeddedTrainingModels/Incompressible Fluid Flow Example.vsm
Incompressible Fluid Flow Example.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 5

Static Implicit Equations: Equations of the form y=Y(y).

input variables = y

output variable(s) = y

linear or Nonlinear relationship =Y(y)

Static Implicit Equations - Basics

In these equations, the output variable is also an input variable. Linear implicit equations are simple to solve analytically, nonlinear equations generally

require root finding.

For both linear and nonlinear, the built in sT-Embed Newton Raphson Optimizer and two sT-Embed blocks are used for their solution;

Unknown Block: in the Block/Optimization menu – represents an unknown value to be determined by the optimization.

Constraint Block: in the Block/Optimization menu – represents a constraint with a value to be driven to 0, the constraint equation must be written

in “error” form with the error signal applied to the constraint.

The unknown block works in conjunction with constraint blocks to solve equations for unknowns using Newton-Raphson iteration. For

each unknown, there should be a constraint block that is fed directly or indirectly by the unknown.

The maximum iteration count, error tolerance, and perturbation are established under the Implicit Solver tab in the dialog box for the

System > System Properties command.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 6

Static Implicit Equations - Linear

When the “unknown” and “constraint” blocks are present, sT-Embed will ask if you want to use the built in Newton Raphson “implicit solver”, you accept

this.

The implicit solver does not require the simulation to transition in time, it makes its calculations at a time interval within a sT-Embed “Time Step”

The setup for the implicit solver is located under “System/System Properties/Implicit Solver”

Example – Linear Equation::

yy  512

Static Implicit Linear Equation Example

VisSimEmbeddedTrainingModels/Static Implicit Linear Equation Example.vsm
Static Implicit Linear Equation Example.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 7

Static Implicit Equations - Nonlinear

Example – Nonlinear Equation::

Static Implicit Nonlinear Equation Example

y y  
1

5
62()

VisSimEmbeddedTrainingModels/Static Implicit Nonliner Equation Example.vsm
Static Implicit Nonliner Equation Example.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Differential Equations

8

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 9

sT-Embed uses the “1/s” operator to represent time integration:

Differential Equations – Integration Operator

sT-Embed provides three Integration blocks in the (“Blocks/Integration”) menu. Each integrator block and its unit step response behavior is

presented below.

Integrator Block

Limited Integrator

Block

Reset Integrator

Block

The integrator output is reset to

the reset (“r”) value when the

boolean input (“b”) goes High.

Here, the boolean signal is created

with a “pulseTrain” block

configured:

The integrator output is limited to lie

between the lower limit value (“l”) and

The upper limit value (“u”).

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 10

Integrator initial conditions can be implemented using any of three methods:

Integration – Specifying the Initial Condition

Method 1: “right click” on the integrator to expose its properties menu and enter

the “Initial Condition” value

Method 2: Define a global variable with the integrator initial condition. “right

click” on the integrator to expose its properties menu and enter the global

Variable name as the “Initial Condition” . This method is often used when the

Initial conditions must be varied.

Method 3: The initial condition, either a variable or constant value, is added to

the integrator output. The “Initial Condition” value in the integrator is set to 0.

This method is often used when the initial conditions must be varied.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 11

sT-Embed uses the “s” operator to represent time differentiation:

Differential Equations – Derivative Operator

sT-Embed provides one differentiation block in the

(“Blocks/Integration”) menu.

In the following block diagram, a 1 rad/sec unity amplitude sinusoid

input signals is applied to a “derivative” block. The “Input Signal” time

history is displayed in the lower plot (“green”0, the “Derivative Signal”

time history in the upper plot (“red”), and the “Integrated Derivative

Signal” time history in the center plot (“blue”). The “Integrated

Derivative Signal” time history is identical to the “Input Signal” time

history as expected.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 12

12

Model & solve the differential equation:

Modeling a Differential Equation (1/2)

Step 1. Identify the order, n, of the equation, for this equation, n = 1.

Step 2. Serially place and connect n- “integrators” (“Blocks/Integration”), use “variables”

(“Blocks/Annotation”) to label the states (integrator outputs) from right to left beginning with “y” , also label

the input to the leftmost integrator even though it is not a state.

Step 3. Solve the differential equation for the largest derivative of the output variable as a function of the

input(s) and states. Incorporate the solution into the step 2 diagram. Use a unit “ramp” for time.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 13

13

Modeling a Differential Equation (2/2)

Step 4. “right click/Integrator Properties” to set the y(0) =1 initial condition:

Step 5. Connect y to pin 1 of a “plot” block, Click the “Go” button or press “F5” or “System/Go“ to run the simulation.

Modeling a Differential Equation

VisSimEmbeddedTrainingModels/DifferentialEquationExample.vsm
DifferentialEquationExample.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 14

14

Linear Differential Equation with Input Dynamics (1/3)

Step 1. Identify the order, n, of the state equation, for this equation, n = 3.

Step 2. Serially place and connect n- “integrators” (“Blocks/Integration”), use “variables”

(“Blocks/Annotation”) to label the states (integrator outputs) from right to left beginning with

“x” . also label the input to the leftmost integrator even though it is not a state.

Control system design often deals with linear differential equations. Although most physical system equations are non-linear, it is frequently possible to

linearize them over an envelope of operating conditions. The resulting linear differential equations are usually of the same order but with coefficients that

vary over the operating conditions.

Since the equation is linear, it can be rewritten as two differential equations based on a

newly introduced variable named the state and its derivatives. Normally the state variable is

assigned as “x”. The two equations are called (1) the state equation and (2) the output

equation.

State Equation:

Output Equation:

The steps to create the block diagram model introduced previously are slightly generalized.

Model & solve the differential equation (initial conditions = 0) and the input, u, set to a unit step at time =

1.25 seconds.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 15

15

Linear Differential Equation with Input Dynamics (2/3)

Step 3. Solve the state equation for the largest derivative of the state variable as a function of the input(s) and states. Incorporate the solution into

the step 2 diagram.

Step 3a. Incorporate the output equation into the step 3 diagram.

Step 4. “right click/Integrator Properties” to set the initial condition, note that any output initial conditions will need to be transformed to state initial

conditions.

Modeling a Differential Equation with Input Dynamics

VisSimEmbeddedTrainingModels/DifferentialEquationWithInputDynamicsExample.vsm
DifferentialEquationWithInputDynamicsExample.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 16

Linear Differential Equation with Input Dynamics (3/3)
Step 5. Configure the “step” block (“Blocks/Signal Producer”) with a “Time Delay (sec)” = 1.25 seconds. Connect y to pin 1 of a “plot” block, Click

the “Go” button or press “F5” or “System/Go“ to run the simulation.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 17

17

Van der Pol Oscillator & Strip Charts

The Van der Pol oscillator obeys the second order differential algebraic equation

Where:

 x = position

We will use sT-Embed to model the oscillator and plot its behavior while varying the damping, u, between 0.01 to 4.

= xDot = velocity

= xDDot = acceleration

u = damping coefficient

x(0) = 1 = Initial position

Van der Pol Oscillator Example & Strip Chart

Models/VanDerPolVideo2.mp4
VisSimEmbeddedTrainingModels/VanDerPol.vsm
VanDerPol.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Difference Equations

18

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 19

Difference equations are based on sequences instead of signals. A sequence takes on values at discrete instances on time.

Often the sequence time interval is constant and called the “discrete update time”, Δt.

19

Difference Equations – Unit Delay Operator

Continuous time, t, is related to the discrete update time by the relationship:

Where: k is the sequence index

The “z” operator is used to represent one unit of time advance (one unit of discrete update time);

Sequences with constant discrete update times are written using only the sequence index;

Similarly, the “1/z” “operator is used to represent one unit of time delay.

sT-Embed uses the “unitDelay” block (“Blocks/Time Delay”) to model the unit delay. The “unitDelay” block can be used for both constant and

variable discrete update times.

The sT-Embed “unitDelay” block, below, accepts two inputs; a boolean input “b”, ,used to trigger the delay and a sequence or signal input, “x”;

Pulse input used to trigger the unitDelay

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 20

When the discrete update time is constant, the sT-Embed “pulseTrain” operator (“Blocks/Signal Producers”) is used to trigger the “unitDelay”. The

behavior of a “PulseTrain” configured with a 0.01 second “Time Between Pulses” is shown below:

.

20

Difference Equations – Unit Delay & Pulse Train (1/2)

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 21

21

Difference Equations – Unit Delay & Pulse Train (2/2)

The following block diagram illustrates the behavior of the “unitDelay” block operating on a unit “ramp” input and triggered by a “pulseTrain”

configured with a 0.1 second “Time Between Pulses”. The “unitDelay” is configured with a 0 valued initial condition.

.

0

Sample

Input ,

x(0)

0.1

Sample

Input ,

x(1)

0.2

Sample

Input ,

x(2)

0.3

Sample

Input ,

x(3)

Output =

Initial

Condition

Output =

x(0)

Output =

x(1)

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 22

The “sampleHold” block (“Blocks/Nonlinear”) is similar in behavior to the “unitDelay” block except it does not apply a delay to the input signal or

sequence.

The following block diagram illustrates the behavior of the “sampleHold” and “unitDelay” blocks when a unit ramp signal is input to both blocks and

triggering is performed using a “pulseTrain” configured with a “Time Between Pulses” = 0.1 seconds.

.

22

Difference Equations – Unit Delay & Sample Hold

Unit Delay and Sample Hold Example

VisSimEmbeddedTrainingModels/UnitDelay SampleHold Example.vsm
UnitDelay SampleHold Example.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 23

Model & solve the difference equation (initial conditions = 0) and

the input, u, set to a unit step at time = 1.25 seconds. The digital

update time is 0.01 seconds.

Since the equation is linear, it can be rewritten as two difference equations based

on a newly introduced variable named the state and its derivatives. Normally the

state variable is assigned as “x”. The two equations are called (1) the state

equation and (2) the output equation.

.

23

Linear Difference Equation with Input Dynamics (1/3)

State Equation:

Output Equation:

Step 1. Identify the order, n, of the state equation, for this equation, n = 3.

Step 1a. Create the discrete update time as the variable “trigger” defined by a “pulseTrain” block configured with the “Time

Between Pulses” = 0.01 seconds.

The steps to create the block diagram model are identical to those used for the Linear Differential Equation with

Input Dynamics except the discrete update time is defined in step 1a.

Step 2. Serially place and connect n- “unitDelays” (“Blocks/Integration”), use “variables” (“Blocks/Annotation”) to label the

states (unit delay outputs) from right to left beginning with “x(k)” . also label the input to the leftmost unitDelay even though it

is not a state.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 24

24

Linear Difference Equation with Input Dynamics (2/3)

Step 3. Solve the state equation for the largest time advance of the state variable as a function of the input(s) and states. Incorporate the solution into

the step 2 diagram.

Step 3a. Incorporate the output equation into the step 3 diagram.

Step 4. “right click/unitDelay Properties” to set the initial condition, note that any output initial conditions will need to be

transformed to state initial conditions.

Difference Equation Example

VisSimEmbeddedTrainingModels/DiscreteEquationExample.vsm
DiscreteEquationExample.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 25

25

Linear Difference Equation with Input Dynamics (3/3)
Step 5. Configure the “step” block (“Blocks/Signal Producer”) with a “Time Delay (sec)” = 1.25 seconds. Connect y(k) to pin 1 of a “plot” block,

Click the “Go” button or press “F5” or “System/Go“ to run the simulation.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 26

26

Transfer Functions

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 27

27

Transfer Functions

Example: Continuous System, u = input, x = output

.

Transfer Function

General Form of a Transfer Function:

Continuous

Discrete

Linear Differential and Difference Equations can be represented by transfer functions. Transfer functions provide an

efficient way or representing a Plant, Controller, or Control System. A transfer function is a ratio of the systems

output/input expressed as the ratio of two polynomials, a numerator and a denominator, represented as coefficients of

descending powers of either “s” (continuous) or “z” (discrete).

.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 28

Continuous Transfer functions are defined using the sT-Embed “transferFunction” block located in “Blocks/Linear

System”

.

28

Continuous Transfer Functions

Example:

.

Transfer Function Example

VisSimEmbeddedTrainingModels/Transfer function example.vsm
Transfer function example.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 29

29

Using an Integrator to Differentiate
Since it is numerically more stable and accurate to solve differential equations using numerical integration methods

rather than differentiation., differential equation models will be constructed using integrators.

In situations where differentiation is necessary, the following approximation to

differentiation can be used (right).

The “Approximate Derivative” block diagram model (using “tau”

in place of “τ”) is written as (right). For stability, “tau” should be

set as tau >= “Time Step” * 2

In the following block diagram, a 1 rad/sec unity amplitude sinusoid input signals is applied to the “Approximate

Derivative” model. “derivative” block. Tau is set equal to 2*Time Step. The “Input Signal” time history is

displayed in the lower plot (“green”0, the “Derivative Signal” time history in the upper plot (“red”), and the

“Integrated Derivative Signal” time history in the center plot (“blue”). The “Integrated Derivative Signal” time

history is identical to the “Input Signal” time history as expected.

Differentiator Approximation Example

VisSimEmbeddedTrainingModels/Differential Approximation.vsm
Differential Approximation.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 30

30

How to create a Rate Limiter

We can extend the “Approximate Derivative” block developed previously to create a rate limiter block.

A limit block (“Blocks/nonlinear”) is added upstream of the integrator to implement the rate limit action. The Lower

Bound and Upper Bound values are set the rate limit values in units/sec.

In the following example, a unit amplitude sin wave is passed through a rate limit set to +/- 0.8units/sec

Rate Limiter Example

VisSimEmbeddedTrainingModels/Differential Approximation.vsm
RateLimiterExample.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 31

Discrete Transfer functions are defined using the sT-Embed “transferFunction” block located in “Blocks/Linear System”

.

31

DiscreteTransfer Functions

Example: DiscreteTransfer Function with digital update time = .1 seconds

.

Make sure you check “Discrete” and enter

the dT (discrete update time)

Discrete Transfer Function Example

VisSimEmbeddedTrainingModels/discrete transfer function example.vsm
discrete transfer function example.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 32

The “transferFunction” block can be used to convert continuous transfer functions to discrete form.

.

32

Continuous to DiscreteTransfer Function Conversion

Example: Convert T(s) to T(z) using a discrete update time = .01 sec

and compare the unit step responses using Simulation Time Step =

.001 sec and End = 10 sec

Step 1. Copy

and Paste the

T(s) transfer

function so

there are two

copies.

Step 2. right click on the

lower “transferFunction” block

to reveal “Transfer Function

Properties”

Step 3. click “Convert

S->Z”, enter the

“Discrete Update Time”

value in seconds.

Step 4. click “OK” and see

the discrete transfer function ,

click “OK” again

Connect a “Step” input

(“Blocks/Signal Producers”) to

both transfer functions and

plot their outputs using Time

Step = .001 sec and End = 10.

Continuous to Discrete Conversion Example

VisSimEmbeddedTrainingModels/Continuous to Discrete.vsm
Continuous to Discrete.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 33

33

Filter Design Option

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 34

34

Filter Design Option - Features

Filters can be configured as:

Low Pass

High Pass

Band Pass

Band Reject

The Filter Design option is located in the “Blocks/Linear Systems/Transfer Function” Block. Two filter types are

supported:

IIR = Infinite Impulse Response (filter with feedback)

FIR = Finite Impulse Response (sometimes called a tapped delay filter)

Analog (S-Domain) filters

can be converted to

Discrete (Z-Domain) filters

Discrete Filters can be

converted to Fixed Point for

improved Real Time

Performance

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

End of Section

35

