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Topics: 

2 

• PWM & Duty Cycle 

• ePWM Block – Modules 

• Time Base  

• Action Qualifier 

• Deadband 

• Event Time 

• Solenoid Modeling, Simulation, Transfer Function Approximation, Processor in the Loop (PIL) Simulation (requires F28069M board to be attached) 

• Motor Modeling, Dynamics, Time Constant 

• Using the eCap block to record PWM Carrier Period and Frequency (Example requires the F28069M board to be attached) 
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PWM Basic Terminology 

3 

The “ePWM” block (“Embedded/F280x”) produces two PWM signals (PWMA and PWMB). These control signals are 

always opposite each other; when one is high (On), the other is low (Off): 

Tpwm tOn 

Tpwm = Carrier Period(sec) 

Duty Cycle = 
tOn 

Tpwm 

Fpwm = Carrier Frequency, Hz = 
1 

Tpwm 

Three Important PWM Features: 

On value 

On value 

Off value 

Off value 
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PWM Generation 

4 

In an embedded application, the target processor produces pulses from a Time Based Clock (TBCLK).  The Time Based Clock can run at 

the CPU speed or a fraction of it.  Pulses produced by the TBCLK are counted as they occur forming a staircase signal whose count value 

at any time is monitored by a Time Based Counter (TBCTR).    When the TBCTR reaches a preset value named the Time Base Period 

(TBPRD), the counter resets itself to 0 and the staircase signal repeats.  PWM signals are produced based when the TBCTR equals a 

Compare (CMP) value.   

time 

time 

PWM 

On value 

Off value 

TBCTR  
(counts) 

CMP value 

5 

4 

3 

2 

1 

0 

Time Based Clock (TBCLK), (sec) 
TBPRD value 
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PWM Count Mode, Period, and Frequency 

5 

Most target processors support three Count Modes; Up Count, Down Count, and Up/Down Count: 

Up  

Count  

Mode: 

Down  

Count  

Mode: 

Up/Down  

Count  

Mode: 

Tpwm is the PWM 

Carrier Period (sec), 

Fpwm is the PWM 

Carrier Frequency 

(Hz). 

Tpwm is approx. 

twice the value for 

the Up/Down 

Count Mode 

compared with 

the Up or Down 

Count Modes 

Each step occurs at 

a clock tick.  

Timer Period is 

the number of 

steps in one 

Carrier Period 

Tpwm = (TBPRD + 1) * TBCLK 

Tpwm = 2*TBPRD* TBCLK 

Tpwm = (TBPRD + 1) * TBCLK 

Fpwm = 1/Tpwm 

Fpwm = 1/Tpwm 

Fpwm = 1/Tpwm 
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PWM Resolution 

6 

The resolution, n, of a PWM generator is equal to the number of Time Based pulses present in the PWM period 

expressed as a number of bits.   

Resolution expressed as a number of bits: 

Number of Time Base pulses per PWM period = 

𝑛 = 𝑙𝑜𝑔2

𝑇𝑝𝑤𝑚

𝑇𝐵𝐶𝐿𝐾
 

𝑇𝑝𝑤𝑚

𝑇𝐵𝐶𝐿𝐾
 

For example, a 20kHz PWM signal is to be generated using an 80MHz CPU.  The Time Based Clock 

(TBCLK) is set to 1/80Mhz and the resolution is calculated as: 

𝑇𝑝𝑤𝑚

𝑇𝐵𝐶𝐿𝐾
= 

1
20𝑘 

1
80𝑀 

= 4000 

 
𝑛 =  𝑙𝑜𝑔2 4000 = 11.96 = 12 bits 

The High Resolution Timer option, if available on your hardware, decreases the TBCLK to a value of 

150e-12 seconds.  This is particularly useful if your application requires a high PWM frequency 

(NOTE:  250kHz and greater is considered to be a high PWM frequency).  
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DCB 

DCA 

sTE ePWM Block 

7 

The sTE ePWM block (below) is a two channel device. It has two Duty Cycle (DC) inputs and produces two PWM output signals and two 

Start of Conversion (SOC) signals.   The channels are referred to as “A” and “B”.  The DC inputs are fractions in 1.16 format. The PWM 

and SOC signals are sent directly to hardware pins.  They are accessible to your sTE model using an “Extern Read” statement.    

SOC

A 

PWM

B 

PWM

A 

SOC

B 

Action Qualifier 

Module 

Deadband 

Module 
Time Based 

Module 

Event Time 

Module 

The ePWM block consists of four key Modules; (1) Time Based, (2) Action Qualifier, (3) Deadband, 

and (4) Event Timer.  Each Module is described in this document.  
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sTE PWM Block – Module Properties 

8 

The sTE ePWM block (“Embedded/Piccolo/ePWM”) property window is used to configure the PWM Modules.   

Time Base Module:  Define the type of 

count and Period 

Action Qualifier Module:  Define when 

the PWM cycles and the PWM output Pin 

Deadband Module:  Define deadband 

to prevent “shoot-through” and polarity 

PWM Output Registers 

Event Time Module:  Define the SOC 

signals SOC Outputs 
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sTE ePWM – Basic Time Base Module Configuration: 

9 

User select: Set the 

TBPRD = # clock 

ticks per PWM 

period. 

sTE calculates the PWM Carrier frequency 

(Fpwm) based on the Timer Period,  Count Mode, 

and Rate Scaling. 

3 Count 

Modes: 

Sets the TBCLK = k/CPU clock speed 

(Hz), where k is selected from the 

dropdown menu.  Note:  “None” means 

k=1.  

The basic “Time Base” Module features of the ePWM (“Embedded/F280x”) block are located in the “Time Base” frame of the ePWM 

properties window.  

Explained on the 

next slide 

Sets the TBCLK = 150e-12 seconds (approximately) for high 

frequency PWM applications (typically > 250kHz) 
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Change Period Dynamically Option 

10 

Based on the ON and OFF times selected, the PWM Period is calculated as 500nsec and the PWM Carrier Frequency is 

calculated as 1/500nsec = 2MHz.  

In some situations it is not possible to create the desired PWM Carrier Frequency from the integer “Timer Period”.  Suppose we wanted to 

create a PWM signal with a minimum 25nsec ON time and 475nsec OFF time.  The “Count Mode” is set to “Up/Down”.  The CPU Speed is 

90MHz and the TBCLK = 1/90MHz.  

Since the “Timer Period” MUST be an integer value, it is not 

possible to achieve the desired 2MHz PWM Carrier Frequency.  

(Here the best we can do is set “Timer Period” = 2 to achieve 

2.04545MHz) 
 

To solve this problem, select the “Change Period Dynamically” option which adds a “Period(1,16)” input pin to the PWM block.   This 

pin accepts a user defined “Fractional Period Multiplier” constant that is calculated as follows: 

After some experimentation adjusting the “Timer Period” value, we 

select a value of 200 which produces a PWM Carrier Frequency of 

225kHz.   Since 225k/2M = .1125 is a rational fraction between 0 and 

1, we will use this “Timer Period” value and a “Fractional Period 

Multiplier” set to .1125 to achieve the 2MHz PWM Carrier Frequency.  

Experiment with the “Timer Period” value until you obtain a value that produces a PWM Carrier Frequency, F, such that F/2MHz is a 

rational fraction between 0 and 1 (Note: 2MHz is the desired PWM Carrier Frequency).  The “Fractional Period Multiplier” is set to this 

rational fraction.   
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PWM Frequency Selection Issues: 

11 

Interference with Mechanical System Frequency:  Generally dominant mechanical frequencies are in the 200Hz or less range.  PWM 

frequency should be selected at least 10x the dominant mechanical frequency.  This is normally not a limiting factor.   

 

Power Loss:  In a motor, torque is proportional to the average current.  Consider a motor with a torque constant k  driven by a constant 

current source, 𝐼𝑐𝑜𝑛𝑠𝑡 and by a PWM current source that ranges from 0 to 𝐼𝑝𝑒𝑎𝑘 and has a Duty Cycle, DC.  To achieve the same 

torque, the following is true: 

The PWM driven motor requires 

more current than the constant 

current motor to develop the 

same torque.  

𝑇 = 𝑘 × 𝐼𝑐𝑜𝑛𝑠𝑡 = 𝑘 × 𝐷𝐶 × 𝐼𝑝𝑒𝑎𝑘 

𝑃 = (𝐼𝑝𝑒𝑎𝑘 × 𝐷𝐶)2× 𝑅 

Heat:  In a motor winding there is always a small resistance, R.  As current is passed through the winding resistance, 𝐼𝑅𝑀𝑆
2 𝑅 watts of 

energy is transferred from electrical to heat energy. For a PWM current signal with a period, T, on-time, tOn, Duty Cycle, DC, and 
ranging from 0 to 𝐼𝑝𝑒𝑎𝑘  , the 𝐼𝑅𝑀𝑆 value is calculated as:  

𝐼𝑝𝑒𝑎𝑘 =
1

𝐷𝐶
× 𝐼𝑐𝑜𝑛𝑠𝑡  

𝐼𝑅𝑀𝑆 = 
1

𝑇
 𝐼𝑝𝑒𝑎𝑘

2 𝑑𝜏
𝑡𝑂𝑛

0

→ 𝑖𝑅𝑀𝑆2 =
1

𝑇
𝐼𝑝𝑒𝑎𝑘
2 𝑡 

0

𝑡𝑂𝑛
= 𝐼𝑝𝑒𝑎𝑘

2 𝑡𝑂𝑛

𝑇
→ 𝐼𝑅𝑀𝑆 = 𝐼𝑝𝑒𝑎𝑘

𝑡𝑂𝑛

𝑇
 

𝐼𝑅𝑀𝑆 = 𝐼𝑝𝑒𝑎𝑘𝐷𝐶 
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PWM Frequency Selection Issues: 

12 

For a 0 to 𝐼𝑝𝑒𝑎𝑘 PWM signal, power loss through a resistor, R,  is calculated as: 𝑃 = 𝐼𝑝𝑒𝑎𝑘
2 × 𝐷𝐶 × 𝑅 

𝑃 = (𝐼𝑝𝑒𝑎𝑘 × 𝐷𝐶)2× 𝑅 For a constant current signal of value DC × 𝐼𝑝𝑒𝑎𝑘, power loss through R is: 

As DC decreases, more and more power is lost through the 

resistance to heat when using a PWM signal compared to a 

constant signal of the same average value. 

Switching Losses: An ideal switch is either fully on or off which means it never dissipates any power.  Real switches don’t switch 

instantaneously, they have a transition time during which they dissipate power.  The transition time is usually fixed per edge.  For 

example, using a switch that requires a 1 microsecond transition time in a 25kHz PWM (40 microsecond period) means that the transition 

time is 1/40 of the total.  If the PWM frequency were increased to 250kHz (4 microseconds), this ratio would increase to ¼ which would 

significantly and adversely affect performance.  

Vibration and Noise:  An electric motor uses wire coils to produce magnetic force.  Every length of wire in the motor undergoes lateral 

movement proportional to the current being passed through it.  When the current is cycled, i.e. a PWM signal, the movement becomes a 

regular vibration audible to the human ear.  Since the range of human hearing is generally considered to be 20Hz to 20kHz, PWM 

frequency is often selected to be 20kHz or greater to eliminate audible noise being produced.     

Resolution:  Normally a resolution of 10 bits (1/1024 = .001) is adequate.  Based on your CPU speed and PWM period, confirm your 

resolution is adequate.  If not consider using the “High Resolution Timer”, adjusting the PWM period, overclocking, or moving to a faster 

CPU.   
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Advanced Time Base Module Configuration: 

13 

TBPHS:  is a count offset value (to 

produce a phase shift) 

 

TBCTR = TBPHS on SYNC1 pulse:  When 

checked, the TBPHS count offset value is 

added to TBCTR when a SYNC1 pulse 

occurs.  

 

Change Phase Dynamically: Adds an input 

pin to the PWM block which accepts a 

fractional value that is multiplied by the 

“Timer Period” and assigned to “TBPHS”. 

The advanced “Time Base” Module features of the ePWM (“Embedded/F280x”) block are located in the “Time Base” frame of the 

ePWM properties window 

Specify the condition when to load the CMPA 

and CMPB values. Choices are [Zero, Period, 

Period or Zero, and Immediate].  Normally “Zero” 

is selected.  
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Advanced Time Base Module Configuration - Synchronization: 

14 

The operation of PWM modules can be synchronized to operate as a single system when needed using hardware pins 

named EPWMSYNCI (input) and EPWMSYNCO (output). 

There are 4 selectable synchronizing actions that can be applied to the 

EPWMSYNCO output signal: 

 

EPWMSYNCI:  This sets EPWMSYNCO = EPWMSYNCI 

TBCTR = zero:  This sets EPWMSYNCO = 1 when the TBCTR (time based  

                           counter) = 0 

TBCTR = CMPB: This sets EPWMSYNCO = 1 when the TBCTR = CMPB 

None:  This sets EPWMSYNCO =0 always 

… 

Input pin 
Output pin 
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sTE PWM – Time Base Setup Example 1 
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Example 1:   

 

Setup the PWM to produce a 10kHz carrier frequency with “Count Mode” set to “Up.  The CPU Speed is 80MHz.  

Step 1:  Experiment with “Timer Period” until 10kHz Carrier Frequency is 

obtained.   

 

NOTE:  CPU Speed = Timer Period * Carrier Frequency 

 

NOTE:  there are 8000 discrete levels of duty cycle in this configuration 
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sTE PWM – Time Base Setup Example 2 (1/3) 
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Based on the ON and OFF times provided, the Carrier Period is calculated as 500nsec OR equivalently, the Carrier Frequency is 

2MHz.  

Example 2:   

 

Setup the PWM to produce a 25nsec ON and 475nsec OFF signal with “Count Mode” set to “Up/Down”.  The CPU Speed is 90MHz.  

“Timer Period” MUST be an integer 

value, we cannot achieve the desired 

2MHz Carrier Frequency.   
 To solve this problem, use the “Change Period Dynamically” option 

which allows you to define a “Fractional Period Multiplier” and send 

to the “ePWM” block through the “Period” input pin.  

 

Operation: 
Carrier Frequency

Fractional Period Multiplier
 New Carrier Frequency 

= 
New Timer Period = Timer Period ∗ Fractional Period Multiplier 

Setting the “Fractional Period Multiplier” = .1125, these settings 

become: 

 

New Carrier Frequency = 225kHz/.1125 = 2MHz 

New Timer Period = 200 * .1125 = 22.5 
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sTE PWM – Time Base Setup Example 2 (2/3) 

17 

sTE model using the F28069M LaunchPad running at 90MHz.  PWM setup for a Carrier Frequency = 2MHz using Up/Down Counter.  

 

Source Model: 

PWM Setup: 

Source Model 

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
ePWM28069 TI RK.vsm
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sTE PWM – Time Base Setup Example 2 (3/3) 

18 

Debug Model: 

Debug Model 

Plot x-Range Calculation: 

200 points are recorded in the buffer.   

PWM frequency = 2MHz = 500nsec 

Fractional Period Multiplier = .1125 

xMax = 200 * 500e-9 * .1125 = 1.125e-5 seconds 

Simulation Setup: 

TimeStep = .01 seconds 

End = 20 seconds 
Sample Rate = 225kHz 

NOTE:  the actual sample rate is 225kHz/.1125 = 

2MHz 

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
ePWM28069 TI RK-d.vsm
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PWM Events & Actions 

19 

time 

TBCTR  
(counts) 

CMP value 

5 

4 

3 

2 

1 

0 

TBPRD value 

Zero (Z) 

Event:  

TBCTR = 0 Up Event:   

TBCTR = CMP while increasing 

Period (P) Event:  

TBCTR = TBPRD 

Down Event:   

TBCTR = CMP while decreasing 

At each Event, any of four Actions can be performed.  These actions provide a means to define the PWM edges: 

X = Do Nothing 

0 = Force the PWM value to 0 (Off Value) 

1 = Force the PWM value to 1 (On Value) 

T = Toggle the PWM value  

      if the PWM value = 1, Toggle will set it = 0 and if the PWM value = 0, Toggle will set it = 1 

The Duty Cycle input value is converted to a 

CMP value.   

 

As the TBCTR pulse counter increments from 0 

to TBPRD, it passes through the CMP value.   

 

Similarly, when the TBCTR is reset to 0, it also 

passes through the CMP value.   These four 

Events, Z, Up, Down, and Period are shown 

(right): 
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sTE ePWM – Action Qualifier Module 

20 

The “Action Qualifier” Module features (Events, Actions, and PWMA and PWMB output pins) are configured “Action Qualifier” frame of 

the ePWM properties window. 

User select: Action dropdown: 

X = Do Nothing 

0 = Force PWM output to 0 

1 = Force PWM output to 1 

T = Toggle PWM output 

Events: 

Z = When TBCTR = 0 

up = When TBCTR = CMP while increasing 

down = When TBCTR = CMP while decreasing 

P = When TBCTR = TBPRD 

Output Pin numbers 

assigned to PWMA and 

PWMB. 

PWMA Action, 

Event, & Pin 

Settings 

PWMB Action, 

Event, & Pin 

Settings 
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PWM Examples 

21 

Count Mode 

Example 

1 

Count Mode Count Mode 

Example 

2 

Example 

3 

CMP  

value 

TBCTR 

PWM time 

time 
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PWM Deadband 
An H bridge is an electronic circuit consisting of 4 switches.  One use of an H bridge is to provide bidirectional rotation 

control of a DC motor.   

When switches S1 and S4 are closed (and S2 and S3 

are open) a positive voltage is applied across the 

motor (M) causing it to rotate in one direction. Closing 

S3 and S2 and opening S1 and S4 reverses the 

voltage polarity across the motor causing it to operate 

in the reverse direction.   

S1 

S2 

S3 

S4 

+ 

Vd

c 

- 

M 

The four switches are controlled by a complimentary 

pair of PWM signals, PWMA and PWMB.  PWMA 

controls S1 and S4 and PWMB controls S2 and S3. An 

ideal pair of PWM control signals is shown to the right: 

Closed PWM

A 

PWM

B 

Closed 

Open 

Open 

Ideal switches require 0 time to switch 

between states (Open and Closed).  If 

the switches are ideal, two current flow 

patterns are possible: 

S1 

S2 

S3 

S4 

S1 

S2 

S3 

S4 
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PWM Deadband – Shoot Through 

23 

PWMA commanded 

S1 and S4 to Open 

but due to their longer 

switch “turn Off” times, 

they remain closed 

while S3 (commanded 

by PWMB) closes 

because of it’s shorter 

“turn On” time*. 

Real switches (Thyristors, FET’s, …) do not behave in an ideal manner.  They have a finite “turn On” and “turn Off” switch transition time 

which, in general, are not equal.  When these switches are used in an H bridge under PWM control, these transition times can cause a 

catastrophic failure of the switches called “Shoot Through”.  For example, a thyristor application may have a “turn On” = .2 milliseconds 

and “turn Off” = 2.8 milliseconds.  

 

In the following sequence of switch conditions, PWMA transitions from ON (Closed) to OFF (Open) and PWMB from OFF to ON.  The 

sequence uses non-ideal switches, each with a “turn Off” time > “turn On” time.   

Closed PWM

A 

PWM

B 
Open 

Closed PWM

A 

PWM

B 
Open 

Closed 

PWM

A 

PWM

B 

Open 

S1 

S2 

S3 

S4 

S1 

S2 

S3 

S4 

S1 

S2 

S3 

S4 

PWM signal generators have a feature called “Deadband” which provides a method for independently adding delay to the PWMA and 

PWMB edges (both rising and falling edges) to accommodate switch transition times and prevent a Shoot Through situation from 

occurring.  
* S2 was excluded in this explanation for clarity, it too could be in a closed state. 
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PWM

B 

PWM

A 

DbB 

DbA 

PWM

B 

PWM

A 

sTE ePWM – Deadband Module 

24 

The “Deadband” Module allows delays to be added to rising and/or falling edges of the PWM signals.  

 

The input signals to the “Deadband” module are the PWMA and PWMB output signals from the “Action Qualifier” module. Internally, the 

“Deadband” module creates the signals “DbA” and “DbB” for channel A and B based on the “Input Select” settings.  The “Delay Mode” and 

“Polarity” settings are then applied to the “DbA” and “DbB” signals to produce the PWMA and PWMB output signals (below): 

Action Qualifier 

Module 

Deadband Module 

Input Select Delay Mode  

And Polarity 

The “Deadband” Module of the ePWM 

(“Embedded/F280x”) block is located in the 

"Deadband" frame of the ePWM properties 

window.   
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sTE ePWM – Deadband Module 

25 

• Off 

• Deadband is applied to PWMA rising edge 

• Deadband is applied to PWMB falling edge 

• Deadband is applied to PWMA rising edge and  

                PWMB falling edge 

Delay Mode:  Specifies the 

PWM Deadband mode to be 

used for Deadband 

operations, there are four 

options: 

• Off 

• Invert rising edge delay on PWMA 

• Invert falling edge delay on PWMB 

• Invert rising edge delay on PWMA and invert 

falling 

                edge delay on PWMB 

Polarity:  The polarity control 

allows you to specify whether the 

rising-edge delayed signal and/or 

the falling-edge delayed signal is 

to be inverted before being sent 

out of the Deadband module. 

There are four options 

• PWMA In is the source for both falling-edge and rising-edge 

delay. This is the default mode. 

• PWMA In is the source for falling-edge delay, PWMB In is the 

source for rising-edge delay. 

• PWMA In is the source for rising edge delay, PWMB In is the 

source for falling-edge delay. 

• PWMB In is the source for both falling-edge and rising-edge 

delay. 

Input Select:  Specifies the PWM source signals to be used for ChA and ChB deadband operations.  These signals are named “DbA” and 

“DbB”.   Four configuration options are available 
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sTE ePWM – Deadband Module Examples 

26 
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sTE ePWM – Deadband Module Examples 

27 
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sT-Embed ePWM – Event Time Module 

28 
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sT-Embed ePWM – Fault Handling 

29 
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PWM Example – Solenoid Control 

30 

Solenoid Model (Top Level): 

Solenoid Model (Details): 
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PWM Example – Solenoid Simulated Response 

31 

Solenoid Model Simulation Response: 

Vin = 5 volts applied at 0.2 seconds 

fLoad = 10 Newtons applied at 0.5 seconds and removed at 0.7 seconds 

Simulation Update Time = 1e-5 seconds 

Solenoid Model 

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
SolenoidModel.vsm
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PWM Example – Solenoid PWM Generator 

32 

PWM Model (Top Level): 

PWM Model (Details): 
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PWM Example – Solenoid PWM Generator Simulation 

33 

PWM Model Simulation Results: 

PWM Carrier Frequency = 10kHz 

Duty Cycle Slider swept from .8 to .15 during the .002 second simulation 

Simulation Update Time = 1e-5 seconds 

 

PWM Generator Model 

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
PWMControl.vsm
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PWM Example – Solenoid w/PWM Control Simulation 

34 

Solenoid w/PWM Control Simulation Results: 

PWM Carrier Frequency = 10kHz 

Duty Cycle Slider swept randomly between 0 and 1 during the 10 second simulation 

Simulation Update Time = 1e-5 seconds 

Solenoid Model with PWM Control 

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
SolenoidWithPWMControl.vsm
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PWM Example – Solenoid Approximate Transfer Function 

35 

Solenoid Approximate Fixed Point Transfer Function 

Vin = 5 volts 

Fload = 0 Newtons 

Simulation Update Time = 1e-5 seconds 

Solenoid Approximate Transfer Function Model 

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
SolenoidTransferFunction.vsm
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PWM Example – Solenoid PIL – Source Model 

36 

PIL Source Model (Top Level): 

Simulation Update Time = 1e-5 seconds 

PIL Source Model (Details): 

PWM Driving Solenoid TF Source Model 

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
PWMDrivingSolenoidTF.vsm
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PWM Example – Solenoid PIL PWM Configuration 

37 

PWM Configuration 

Carrier Frequency = 10kHz 

GPIO0 = PWM 1A output 

GPIO1 = PWM 1B output  
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PWM Example – Solenoid PIL – Debug Model 

38 

PIL Debug Model (Top Level): 

Simulation Update Time = .01 seconds 

PWM Driving Solenoid TF Debug Model 

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
PWMDrivingSolenoidTF-d.vsm
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PWM Example – Solenoid PIL – Debug Model 

39 

PIL Debug Model (Details): 

Simulation Update Time = .01 seconds 

PWM Driving Solenoid TF Source Model 

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
PWMDrivingSolenoidTF.vsm
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PWM Example – Motor Control 

40 

It is important to understand how the PWM Carrier Period (and Frequency) is selected.   

 

To do this we will create a basic motor model, identify its fundamental time constant, and then select 

the PWM Carrier Period short enough to produce an acceptable level of motor velocity fluctuation.  

 

 

Basic Motor Model: Where: 

The equivalent motor block diagram becomes: 
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Motor Dynamics – Electrical Time Constant 

41 

Using the following example values; 

The Electrical Time Constant is calculated as: 

To calculate the Mechanical Time Constant, the following simplifications are applied;  

Tload = 0 (no load torque) 

Motor friction, B = 0 

And the electrical dynamics are replaced by their dc-value; 

Applying these assumptions, the motor model block diagram simplifies to: 
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Motor Dynamics – Mechanical Time Constant 

42 

The closed loop transfer function of the simplified motor model is calculated as: 

And the Mechanical Time Constant is calculated as: 

In successful applications, the Mechanical Time Constant should be the fundamental (or dominant) 

time constant, typically 100 to 1000 times slower than the electrical time constant.   
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PWM Carrier Period & Frequency 

43 

The PWM Carrier  Period, Tpwm, and Frequency, Fpwm, is calculated to produce an acceptable 

value of motor velocity fluctuation.    

 

As an example, assume that a 0.05% velocity fluctuation is the goal. 

 

If the initial motor velocity, w(0) = 1, and the dominant time constant of the motor = mechanical time 

constant is 0.2 seconds, 

Then the problem is that of solving the mechanical 

time constant for the Tpwm (PWM Carrier Period): 

Fpwm = 1/Tpwm = 10KHz.  

The typical range for the PWM Carrier Frequency is 10KHz <= Fpwm <= 40KHz.  Using frequencies 

less than 10KHz result in unacceptable motor velocity ripple and values greater than 40KHz tend to 

increase the transistor switching frequency (in the H Bridge) to a level that causes them to heat up 

and prematurely fail.   
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Motor Speed Response to PWM 

44 

This example illustrates the response of a motor transfer function model to a PWM signal 

implemented on the F28069M LaunchPad target.  Values from the previous “Motor Dynamics”  

example are used. 
The motor model is defined as a unity gain first order transfer 

function with a mechanical dominant time constant = .2 seconds 

(right) 

The PWM Carrier Frequency is set to 10KHz. Using the following settings:   

F28x Properties: CPU Speed 

(MHz) = 80MHz 

ePWM Properties: 

Rate Scaling = 1/2 

Count Mode = up/down 

Timer Period = 2000 

Since the PWM Carrier Frequency is 10KHz, the target model update frequency is selected to 

be 20 times faster (200KHz), this is equivalent to a target update time = 1/200KHz = 5e-6 sec.  

PWM Carrier Frequency 

if counting “up” and TBCTRB goes thru 

CMPB, set EPWMB = 1 

if counting “down” and TBCTRB goes 

thru CBMPB, set EPWMB = 0 

if counting “up” and TBCTRA goes thru 

CMPA, set EPWMA = 0 

if counting “down” and TBCTRA goes 

thru CMPA, set EPWMA = 1 

Rising and Falling edge deadbands 

(time delays) normally set to the same 

value (units are ticks) 
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Motor Speed Response – Motor Model  

45 

The motor model transfer function is converted to a fixed point discrete 

transfer function, format 4.32, using an update time = 5e-6 sec (right) 

Format 4.32, same as the transfer function 

The motor model transfer function receives the PWMA signal from 

GPIO0 (below) NOTE:  PWMB is not used in this example.  

Monitor Buffers are used to record 100 elements of PWM data (into Monitor Buffer 0) and Motor 

speed (into Monitor Buffer 1) – (below): 

The trigger signal “:trig” is pulsed every time a PWM cycle begins (10KHz) 

View source model in sT-Embed 

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
MotorRippleDueToPWMCarrierFrequency.vsm
MotorRippleDueToPWMCarrierFrequency.vsm
MotorRippleDueToPWMCarrierFrequency.vsm
MotorRippleDueToPWMCarrierFrequency.vsm
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Motor Speed Response – Source Model 

46 

The completed Source model becomes 

(right):  

Format 1.16 required as the duty cycle command value for the ePWM block 

C Code is generated for “ePWM” and compiled into “MotorRippleDueToPWMCarrierFrequency.out” 

by applying the “Code Gen…” option under the “Tools” menu.  

The source model is captured in a 

compound block named “ePWM” (below): 

The Debug model is created from the 

Source model by replacing the “ePWM” 

compound block with a “TargetInterface” 

block configured to read the “.out” file 

produced by the Source model.  The 

“TargetInterface” is configured to 

execute at a “Sample Rate (Hz):” = 

200KHz rate (right): 



© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.  47 

Motor Speed Response – Debug Model 

47 

The sT-Embed Debug model, which includes the “TargetInterface” block, is configured to execute at a 

0.01 second update time allowing the JTAG interface adequate time to transfer the Monitor Buffer 

contents.  

 

The competed Debug model and results showing the PWM signal and the motor speed buffers are 

presented below:  

Fixed Point motor model 

transfer function % CPU 

utilization. 

  
NOTE:  this model would not 

execute at the 200KHz rate if 

Fixed Point were NOT used.  

NOTE:  Debug model settings:  dt = 0.01 

seconds, "End(sec)" = 25; "Run in Real Time" 

checked, "Auto Restart" checked, and "Retain 

State" checked.  View debug model in sT-Embed 

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency-d.vsm
MotorRippleDueToPWMCarrierFrequency-d.vsm
Models and Videos - Section 3/MotorRippleDueToPWMCarrierFrequency-d.vsm
Models and Videos - Section 3/MotorRippleDueToPWMCarrierFrequency-d.vsm
Models and Videos - Section 3/MotorRippleDueToPWMCarrierFrequency-d.vsm
Models and Videos - Section 3/MotorRippleDueToPWMCarrierFrequency-d.vsm
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Motor Speed Response – Speed Jitter Results 

48 

The Debug model was allowed to restart several times with the “MotorSpeed*” fixed at .795 to 

determine if the Motor Speed Jitter was within the +/- 0.0005 unit limits (below, right)   

Motor Speed response to PWM is within 

the +/- 0.0005 unit limits 
View debug model in sT-Embed 

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency-d.vsm
MotorRippleDueToPWMCarrierFrequency-d.vsm
MotorRippleDueToPWMCarrierFrequency-d.vsm
MotorRippleDueToPWMCarrierFrequency-d.vsm
MotorRippleDueToPWMCarrierFrequency-d.vsm
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Record ePWM timing using eCap Block (1/5) 

49 

The “eCap” block (Embedded/Piccolo/eCap) provides the ability to record the “on” and “off” times of 

PWM signals.  Let’s create a sT-Embed model that outputs a PWM signal on GPIO0 and an “eCap” 

block that records the “on” time and “period” of the PWM signal for display.   

 

The following model is constructed.  We have also included a “Monitor Buffer” to display the PWM 

waveform in a “plot” block 
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Record ePWM timing using eCap Block (2/5) 

50 

The “PWM” and “eCap” blocks are configured as follows: 

PWM output (channel A) set to GPIO0 

eCap input  

set to 

GPIO5 

Event 1  

Triggers here & 

timer is rest Event 2  

Triggers here 

Record the 

first 2 

events 
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Record ePWM timing using eCap Block (3/5) 

51 

The “eCap” block is configured to output the values of the first 2 events.  The following figure 

illustrates how the event values are calculated.  

Event 1  

Triggers here & 

timer is rest 

Event 2  

Triggers here 

time 

Timer count 

Period 

On time 
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Record ePWM timing using eCap Block (4/5) 

52 

For the “eCap” block to operate, we need to jumper the pins that correspond to GPIO0 and GPIO5. 

The pin definitions for the F28069M LaunchPad are presented below.   

The jumper is positioned as 

show to the right connecting 

pins 35 (GPIO5) and 40 

(GPIO0) 
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Record ePWM timing using eCap Block (5/5) 

53 

Results are shown below: 

View source model in sT-Embed 

View debug model in sT-Embed 

VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
RKCAPePWMwidth280x.vsm
RKCAPePWMwidth280x.vsm
RKCAPePWMwidth280x.vsm
RKCAPePWMwidth280x.vsm
VisSimEmbeddedTrainingModels/MotorRippleDueToPWMCarrierFrequency.vsm
RKCAPePWMwidth280x-d.vsm
RKCAPePWMwidth280x-d.vsm
RKCAPePWMwidth280x-d.vsm
RKCAPePWMwidth280x-d.vsm
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Record ePWM timing using eCap Block (4/5) 

54 

For the “eCap” block to operate, we need to jumper the pins that correspond to GPIO0 and GPIO5. 

The pin definitions for the F28069M LaunchPad are presented below.   

The jumper is positioned as 

show to the right connecting 

pins 35 (GPIO5) and 40 

(GPIO0) 
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Pin Out definitions for F28069 ControlStick 

55 

Using the PWM and “eCap” 

settings from the previous 

example, the jumper settings for 

the F28069 ControlStick 

positioned as show to the right 

connecting pins 15 (GPIO5) and 

17 (GPIO0) 
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End of Section 

56 


