Algebraic, Differential, & Difference
Equations and Transfer Functions

sT-Embed Training

Ric Kolk
Altair Engineering

mailto:rkolk@altair.com

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 2

Topics:

» Algebraic Equations
» Static Explicit
» Static Implicit, using the sT-Embed built in solver

 Differential Equations
» Specifying Initial Conditions
* Modeling Linear Differential Equations
» Using an integrator to differentiate
* Creating a rate limiter

» Difference Equations
* Unit Delay, Sample Hold, Pulse Train Blocks
* Modeling Linear Difference Equations

» Transfer functions
e Continuous
» Discrete
* Continuous to Discrete Transformation

* sT-Embed Filter Design Option
* IR, FIR
* Continuous, Discrete

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Algebraic Equations

™

solidThinking

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 4

Static Explicit Equations
Static Explicit Equations: Equations of the form y=Y(x1, x2, x3, ...).
input variables = x1, x2, X3, ...
output variable(s) =y
linear or Nonlinear relationship =Y(x)

Can be modeled & solved using simple arithmetic, Boolean, and other blocks

Example: Incompressible fluid flow through a restriction

====== Parameters ======
[IE] Cc Dizcharge Coef
29.AP -
=C,A £ 012 e £ Area
Q d 0.05 i dF Pressure drop
P 2 h densit
tha ensity
Q = flowrate, ft®/s
C, =dischargecoef, unitless
Cc e 2]
A=area, ft’
) o -
, Ed 77l L A, 0137037
AP = pressuredrop, Ib, / ft o Ll sart

o = density, Ib, / ft?
g, = gravconversion factor = 32.2

Incompressible Fluid Flow Example

EMBED solidThinking’

VisSimEmbeddedTrainingModels/Incompressible Fluid Flow Example.vsm
Incompressible Fluid Flow Example.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 5

Static Implicit Equations - Basics

Static Implicit Equations: Equations of the form y=Y(y).
input variables =y
output variable(s) =y
linear or Nonlinear relationship =Y(y)

In these equations, the output variable is also an input variable. Linear implicit equations are simple to solve analytically, nonlinear equations generally
require root finding.
For both linear and nonlinear, the built in sT-Embed Newton Raphson Optimizer and two sT-Embed blocks are used for their solution;

Unknown Block: in the Block/Optimization menu — represents an unknown value to be determined by the optimization.

Constraint Block: in the Block/Optimization menu — represents a constraint with a value to be driven to 0, the constraint equation must be written
in “error” form with the error signal applied to the constraint.

The unknown block works in conjunction with constraint blocks to solve equations for unknowns using Newton-Raphson iteration. For
each unknown, there should be a constraint block that is fed directly or indirectly by the unknown.

The maximum iteration count, error tolerance, and perturbation are established under the Implicit Solver tab in the dialog box for the
System > System Properties command.

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 6

Static Implicit Equations - Linear

When the “unknown” and “constraint” blocks are present, sT-Embed will ask if you want to use the built in Newton Raphson “implicit solver”, you accept
this.

The implicit solver does not require the simulation to transition in time, it makes its calculations at a time interval within a sT-Embed “Time Step”
The setup for the implicit solver is located under “System/System Properties/Implicit Solver”

Example — Linear Equation:;

y+12=5.y inpic Sler
@) None
Initial Guess for p “ Newton-Raphson
[1.08 F—w{ urknown (] © User Defined

[Suppress Converge Wamings

i Max lteration Court: 0
Emor Tolerance: 0.0001
Relaxation: 1

Perturbation:

[ok || cancel Apply

Static Implicit Linear Equation Example

EMBED solidThinking’

VisSimEmbeddedTrainingModels/Static Implicit Linear Equation Example.vsm
Static Implicit Linear Equation Example.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 7

Static Implicit Equations - Nonlinear

Example — Nonlinear Equation::

12 system Propertcs MMM i
y=-g(y" +8) i Sver
(©) None
m @ Newton-Raphson
n (7 User Defined

[7] Suppress Converge Wamings

Max tteration Count: 10

Emor Talerance:

A.77636e015

Relaxation:

Perturbation:

Static Implicit Nonlinear Equation Example

VisSimEmbeddedTrainingModels/Static Implicit Nonliner Equation Example.vsm
Static Implicit Nonliner Equation Example.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Differential Equations

™

solidThinking

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 9

Differential Equations — Integration Operator

1
sT-Embed uses the “1/s” operator to represent time integration: f y(rddr = ped

sT-Embed provides three Integration blocks in the (“Blocks/Integration”) menu. Each integrator block and its unit step response behavior is
presented below.

1i5 —
[= . . .
: Eph}t = " » et [o |[@] =] The integrator output is reset to
Integrator Block . + 10 the reset (“r’) value when the
= Reset Integrator * | boolean input (*b”) goes High.
PR s 10 Block f;) /‘ nge, the boolef';m signal is created
» Time (sec) # 0 5 10 with a “pulseTrain” block
™ Time (sec} configured:
pulseTrain Properties
= LE f — Time Delay(sec): [@
[0] » Elpiet [= |[E][] '
= 10 . . . Time Between Pulses: 39
Limited Int i = The integrator output is limited to lie
Bllmlke ntegrator g1 =r f between the lower limit value (“I") and ot
oc i Lk : T The upper limit value (“u”). '
> Time (sec) ’ Cancel] ’ Help

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 10

Integration — Specifying the Initial Condition

Integrator initial conditions can be implemented using any of three methods:
integrator Properties.
Method 1: “right click” on the integrator to expose its properties menu and enter

the “Initial Condition” value Checkport State: 0
Label:

[ok | [cence | [Heb

Method 2: Define a global variable with the integrator initial condition. “right [31.2 —]{ InitialCondition'alue |—
click” on the integrator to expose its properties menu and enter the global '@
Variable name as the “Initial Condition” . This method is often used when the [‘”“'E'C"”‘““I’;f :]”“‘E‘C""d“"’""ﬁ‘“e‘
Initial conditions must be varied. Checkpoint Stats: 0
Label:

(o] [lcmed | [Hop
Method 3: The initial condition, either a variable or constant value, is added to =
the integrator output. The “Initial Condition” value in the integrator is set to 0. = T

This method is often used when the initial conditions must be varied.

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 11

Differential Equations — Derivative Operator

d
sT-Embed uses the “s” operator to represent time differentiation: ’

Frimt it
sT-Embed provides one differentiation block in the
(“Blocks/Integration”) menu.
In the following block diagram, a 1 rad/sec unity amplitude sinusoid %l Plot B (= [@]=]
input signals is applied to a “derivative” block. The “Input Signal” time e
history is displayed in the lower plot (“green”0, the “Derivative Signal” LB] \/\/
time history in the upper plot (“red”), and the “Integrated Derivative - 4L
Signal” time history in the center plot (“blue”). The “Integrated : i -
Derivative Signal” time history is identical to the “Input Signal” time 2| T eoraied Bervative Sona
history as expected. o, /\/\
= -1
-2
2| —Input Signa
o1k
0 /__/\
4L
-2 L L L L
0 2 4 & 3 10
> Time (sec)

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Modeling a Differential Equation (1/2)

Model & solve the differential equation: ¥ +2y =2—e™*;y(0) =1

12

Step 1. Identify the order, n, of the equation, for this equation, n = 1.

Step 2. Serially place and connect n- “integrators” (“Blocks/Integration”), use “variables”

(“Blocks/Annotation”) to label the states (integrator outputs) from right to left beginning with “y” , also label
the input to the leftmost integrator even though it is not a state.

[v]

Step 3. Solve the differential equation for the largest derivative of the output variable as a function of the
input(s) and states. Incorporate the solution into the step 2 diagram. Use a unit “ramp” for time.

J—PEF

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 13

Modeling a Differential Equation (2/2)

integrator Properties

Step 4. “right click/Integrator Properties” to set the y(0) =1 initial condition:

Checkpoint State: 0

Label:

[Cancd | [Heb

Step 5. Connect y to pin 1 of a “plot” block, Click the “Go” button or press “F5” or “System/Go* to run the simulation.

K plot = =)=
1.00
95

90

85

_80 1 1 1
0 245 5 74h 10

Time (sec)

Wﬁ?*%

Modeling a Differential Equation

VisSimEmbeddedTrainingModels/DifferentialEquationExample.vsm
DifferentialEquationExample.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 14

Linear Differential Equation with Input Dynamics (1/3)

Control system design often deals with linear differential equations. Although most physical system equations are non-linear, it is frequently possible to
linearize them over an envelope of operating conditions. The resulting linear differential equations are usually of the same order but with coefficients that
vary over the operating conditions.

Model & solve the differential equation (initial conditions = 0) and the input, u, set to a unit step attime = 2V + 4V + 6y + 8y = ii + 21 + 3u
1.25 seconds.

Since the equation is linear, it can be rewritten as two differential equations based on a

: : ' . o . . State Equation: 2 4 6 8x =
newly introduced variable named the state and its derivatives. Normally the state variable is q X axdox+8x =u
assigned as “x”. The two equations are called (1) the state equation and (2) the output o . .

i Output Equation: vy = % + 2% + 3x
equation.
The steps to create the block diagram model introduced previously are slightly generalized.

Step 1. Identify the order, n, of the state equation, for this equation, n = 3.

1/8 1/8 1/8
xDDDot — xDDot |— xDot |-

Step 2. Serially place and connect n- “integrators” (“Blocks/Integration”), use “variables”
(“Blocks/Annotation”) to label the states (integrator outputs) from right to left beginning with
“x” . also label the input to the leftmost integrator even though it is not a state.

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 15

Linear Differential Equation with Input Dynamics (2/3)

Step 3. Solve the state equation for the largest derivative of the state variable as a function of the input(s) and states. Incorporate the solution into
the step 2 diagram.

*DDDot |- xDDot |-
Step 3a. Incorporate the output equation into the step 3 diagram.
3
2
xDDDot |- xDDot |— xDot -

Step 4. “right click/Integrator Properties” to set the initial condition, note that any output initial conditions will need to be transformed to state initial
conditions.

Modeling a Differential Equation with Input Dynamics

EMBED solidThinking’

VisSimEmbeddedTrainingModels/DifferentialEquationWithInputDynamicsExample.vsm
DifferentialEquationWithInputDynamicsExample.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 16

Linear Differential Equation with Input Dynamics (3/3)

Step 5. Configure the “step” block (“Blocks/Signal Producer”) with a “Time Delay (sec)” = 1.25 seconds. Connect y to pin 1 of a “plot” block, Click
the “Go” button or press “F5” or “System/Go* to run the simulation.

1 L
7 . —
+ Bl Plst | = |@
6

*DDDat xDDot - xDot |- : Ak
B 2T
4 0 L
pl 0 5 10
> Time (sec)

Time Delaylsec): 1.25
Amplitude: 1

Label:

| canesl | [Heb

17

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Van der Pol Oscillator & Strip Charts

. d? dx
The Van der Pol oscillator obeys the second order differential algebraic equation d—tf—u(l—xz)E +x=0
Where:
X = position
dx _ _ .
e xDot = velocity

d?x .
preie xDDot = acceleration

u = damping coefficient

x(0) = 1 = Initial position

We will use sT-Embed to model the oscillator and plot its behavior while varying the damping, u, between 0.01 to 4.

Van der Pol Oscillator Example & Strip Chart

solidThinking’

Models/VanDerPolVideo2.mp4
VisSimEmbeddedTrainingModels/VanDerPol.vsm
VanDerPol.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

Difference Equations

™

solidThinking

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 19

Difference Equations — Unit Delay Operator

Difference equations are based on sequences instead of signals. A sequence takes on values at discrete instances on time.
Often the sequence time interval is constant and called the “discrete update time”, At.

Continuous time, t, is related to the discrete update time by the relationship: t = kAt; k= 0,1,2,3.. Where: k is the sequence index
Sequences with constant discrete update times are written using only the sequence index; ¥

The “z” operator is used to represent one unit of time advance (one unit of discrete update time); ¥Vi+1 = 2V

1
Similarly, the “1/z” “operator is used to represent one unit of time delay. ¥x-1 = E}fk

sT-Embed uses the “unitDelay” block (“Blocks/Time Delay”) to model the unit delay. The “unitDelay” block can be used for both constant and
variable discrete update times.

The sT-Embed “unitDelay” block, below, accepts two inputs; a boolean input “b”, ,used to trigger the delay and a sequence or signal input, “x”;

Pulse input used to trigger the unitDelay

\ 17z Vg —
Vi X Ye—1

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 20

Difference Equations — Unit Delay & Pulse Train (1/2)

When the discrete update time is constant, the sT-Embed “pulseTrain” operator (“Blocks/Signal Producers”) is used to trigger the “unitDelay”. The
behavior of a “PulseTrain” configured with a 0.01 second “Time Between Pulses” is shown below:

(i) (:
y 16l o[
L)
pulseTrain Properties S ’
AT UL L]
Time Between Pulses: 0.01 * a
£
P -1 ' ' ' '
Label: 0 .02 .04 .06 .08 A
P Time ({sec)
| Cancel | | Hep

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 21

Difference Equations — Unit Delay & Pulse Train (2/2)

The following block diagram illustrates the behavior of the “unitDelay” block operating on a unit “ramp” input and triggered by a “pulseTrain”
configured with a 0.1 second “Time Between Pulses”. The “unitDelay” is configured with a 0 valued initial condition.

Output % 2ol 7

LUt = > . (=]

Initial ~ Output= Output = r— | et [Eri=]
Condition x(0) x(1) :

0 0.1 0.2 0.3

Sample Sample Sample Sample , , ,

Input, Input , Input, Input , . 4 6 8 1

x(0) x(1) x(2) X(3) » Time (sec)

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 22

Difference Equations — Unit Delay & Sample Hold

The “sampleHold” block (“Blocks/Nonlinear”) is similar in behavior to the “unitDelay” block except it does not apply a delay to the input signal or
seqguence.

The following block diagram illustrates the behavior of the “sampleHold” and “unitDelay” blocks when a unit ramp signal is input to both blocks and
triggering is performed using a “pulseTrain” configured with a “Time Between Pulses” = 0.1 seconds.

.'- —» 5] Plot [:_|@

1.50| ——ramp Input

S&H [——Sample Hold Output
125 —Unit Delay Output

ﬁ

1L

HE

1.00

N

B0

25

U | 1 | |
0 2 4 6 8 1

- Time [sec}-

Unit Delay and Sample Hold Example

EMBED solidThinking’

VisSimEmbeddedTrainingModels/UnitDelay SampleHold Example.vsm
UnitDelay SampleHold Example.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 23

Linear Difference Equation with Input Dynamics (1/3)

Model & solve the difference equation (initial conditions = 0) and Viers F 2Vieq + 8V = 2Upsn + 2Upey + Uy
the input, u, set to a unit step at time = 1.25 seconds. The digital
update time is 0.01 seconds.

Since the equation is linear, it can be rewritten as two difference equations based State Equation: Xies2 T -2Xiss T 8X = Uy

on a newly introduced variable named the state and its derivatives. Normally the) 5)
state variable is assigned as “x”. The two equations are called (1) the state Output Equation: Yk = 2Xp4p +.2Xp T Xy

equation and (2) the output equation.

The steps to create the block diagram model are identical to those used for the Linear Differential Equation with
Input Dynamics except the discrete update time is defined in step 1a.

Step 1. Identify the order, n, of the state equation, for this equation, n = 3.

Step la. Create the discrete update time as the variable “trigger” defined by a “pulseTrain” block configured with the “Time
Between Pulses” = 0.01 seconds.

Step 2. Serially place and connect n- “unitDelays” (“Blocks/Integration”), use “variables” (“Blocks/Annotation”) to label the
states (unit delay outputs) from right to left beginning with “x(k)” . also label the input to the leftmost unitDelay even though it
is not a state.

trigger . trigger x| 12
17
Il

X L

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 24

Linear Difference Equation with Input Dynamics (2/3)

Step 3. Solve the state equation for the largest time advance of the state variable as a function of the input(s) and states. Incorporate the solution into
the step 2 diagram.

b
{trigger |

, x| 1z

Step 3a. Incorporate the output equation into the step 3 diagram.

ag

B
- qq :
trigger = xu| V2
Lal

> Xy 12
q L

v

=lralna

Step 4. “right click/unitDelay Properties” to set the initial condition, note that any output initial conditions will need to be
transformed to state initial conditions.

Difference Equation Example

EMBED solidThinking’

VisSimEmbeddedTrainingModels/DiscreteEquationExample.vsm
DiscreteEquationExample.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 25

Linear Difference Equation with Input Dynamics (3/3)

Step 5. Configure the “step” block (“Blocks/Signal Producer”) with a “Time Delay (sec)” = 1.25 seconds. Connect y(k) to pin 1 of a “plot” block,
Click the “Go” button or press “F5” or “System/Go* to run the simulation.

[trigger |
- Ay
e B
, P2 1 Plot = ==
x| 17Z 2
P 2.0
B s
* 101
i 5
o S
U 1 1 1 1 1
=0 5 1 15 2 25 3
» Time (sec)

Time Delay(sec): 1.25
Amplitude: 1

Label:

| Cancel | | Heb

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 26

Transfer Functions

To here

solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 27

Transfer Functions

Linear Differential and Difference Equations can be represented by transfer functions. Transfer functions provide an
efficient way or representing a Plant, Controller, or Control System. A transfer function is a ratio of the systems

output/input expressed as the ratio of two polynomials, a numerator and a denominator, represented as coefficients of
descending powers of either “s” (continuous) or “z” (discrete).

Example: Continuous System, u = input, X = output ¥+2x+3x=7u+3u
s2x+2sx+3x =7su+3u
x(s2+2s+3) =ulZs+ 3)

X
- =T(s) Transfer Function

General Form of a Transfer Function:

num(s)
Continuous T(s) =k den(s)
. numerator polynomial
T() = gain - -
num(z) denominator polynomial

Discrete T(z)=k

den(z)

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 28

Continuous Transfer Functions

Continuous Transfer functions are defined using the sT-Embed “transferFunction” block located in “Blocks/Linear
System”

1.23(7s+ 3
Example: T(s)= ()

s3+2s+3

Transfer Function

Specffication Method mat/m File
@ Polynomial IR Filter File:

() mat File
- Convert S5->Z

[T Tapped Delay [Use 32 bit precision
[Discrete dT: |0.01
[F1 Poles and Zeros [Use scaled fixed point
Radix Point: |0 Ts43
Display Filter Method ‘word Length: [16 123 ——
nee s'4+25+3

Initial Value: 0|
Gain: 123 (lowest order state on right)

Polynomial Coefficients
Numeratar: 73
Denominator: 1023

[ok | [cancel | [Hep |

Transfer Function Example

VisSimEmbeddedTrainingModels/Transfer function example.vsm
Transfer function example.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 29

Using an Integrator to Differentiate

Since it is numerically more stable and accurate to solve differential equations using numerical integration methods
rather than differentiation., differential equation models will be constructed using integrators.

In situations where differentiation is necessary, the following approximation to g =

5
. - i - ast— 0
differentiation can be used (right). 1 zs+1

The “Approximate Derivative” block diagram model (using “tau” x

in place of “1”) is written as (right). For stability, “tau” should be
set as tau >= “Time Step” * 2

——— xDot

In the following block diagram, a 1 rad/sec unity amplitude sinusoid input signals is applied to the “Approximate
Derivative” model. “derivative” block. Tau is set equal to 2*Time Step. The “Input Signal” time history is
displayed in the lower plot (“green”0, the “Derivative Signal” time history in the upper plot (“red”), and the
“Integrated Derivative Signal” time history in the center plot (“blue”). The “Integrated Derivative Signal” time
history is identical to the “Input Signal” time history as expected.

! +
- @ 7 . e 0 =1
P 5] plot S ==
2| —Derivative Signal
(5] 1
= ’_/_/
P

—Integrated Derivative Signal

o

.
-

(2> tau

o st

o et
w

Differentiator Approximation Example

o

fmeee solidThinking’

VisSimEmbeddedTrainingModels/Differential Approximation.vsm
Differential Approximation.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 30

How to create a Rate Limiter

We can extend the “Approximate Derivative” block developed previously to create a rate limiter block.

A limit block (“Blocks/nonlinear”) is added upstream of the integrator to implement the rate limit action. The Lower
Bound and Upper Bound values are set the rate limit values in units/sec.

In the following example, a unit amplitude sin wave is passed through a rate limit set to +/- 0.8units/sec

{ul StimeStep [2> tau

] Plot = =
[u] + 200 —Input Signal
e I s 1751 —Rate Limit Signal
¢
= 150
P 125
1S
(] 1001
Rate Limiter- by 75
50
A Limit block is added 250
upstream of the integrator. 0
The Lower Bound and -25F
Upper Bound values in the gk
limit are the rate limit
values in unitsfsec T
1.00 L
» 0 1 2 3 4

Time {sec)

Rate Limiter Example

solidThinking’

VisSimEmbeddedTrainingModels/Differential Approximation.vsm
RateLimiterExample.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company

DiscreteTransfer Functions

Discrete Transfer functions are defined using the sT-Embed “transferFunction” block located in “Blocks/Linear System”

1.8(2z% + .62% + .12)

.Example: DiscreteTransfer Function with digital update time = .1 seconds T(z) = PR p—
Make sure you check “Discrete” and enter
the dT (discrete update time)
.mat/.m File
File:
Select File...
[Use 32 bit precision
[Use scaled fixed point 223_'_ 522+ 1z+0
160——Mm— T - - —
z-1z+3

Display Fitter Method

Initial Value:

Gain: 18

Polynomial Coefficients
2610

Radix Foint: (0

“Wwiord Length: |16

(lowest order state on right)

Numerator:

Denominator: ~ 10-1.3

31

solidThinking’

VisSimEmbeddedTrainingModels/discrete transfer function example.vsm
discrete transfer function example.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 32

Continuous to DiscreteTransfer Function Conversion

The “transferFunction” block can be used to convert continuous transfer functions to discrete form.

.Example: Convert T(s) to T(z) using a discrete update time = .01 sec
and compare the unit step responses using Simulation Time Step =
.001 sec and End = 10 sec

1.23(7s +3)
T =
(s) s3+2s+3

Step 4. click “OK” and see
the discrete transfer function ,
click “OK” again

Step 2. right click on the
lower “transferFunction” block
to reveal “Transfer Function

Step 3. click “Convert
S->7”, enter the
“Discrete Update Time”

Step 1. Copy
and Paste the
T(s) transfer

. P .

function so Properties value in seconds.

there are two

o ies Transfer Function Properti Sampling Rate Transfer Function Properti

p . || Speofication Method mat/m s Tt T || soeciication Method mat/m Fie
File: ustin franstorm hymomizl File:
Discrete Samping Rate: T .
mat e
12 Ts+3 Select Fie © m e Select Fie
B B B (Cor 55
5 +25+3 ETauued Del?.rr - E] Use 325t precision [Tapped Delay [E] Use 2bit precision
Discrete 00 [V Dsorete dT: 001
— [Poles and Zeros iz e Sl 7] Uss scaled fixed poirt
5+, Riadis Point Raciix Poirt
» 123 93{29{3 — Display Fiter Method “werd Lengtht [16 Display Fiter Method ‘word Length: [16
it Value: il Value:
Gain 12 (e el Gain 0.000215700384083157 flowest order state on right)
Polynomial Coefficients Polynomial Coefficients
Numerstor. 73 Nomerator: 1 1.0043287524105 - 38737526 101814 - 39964776283879
Derominator. 1023 Denominator: 1 1
« » ; —
Connect a “Step” input e ol

(“Blocks/Signal Producers”) to
both transfer functions and
plot their outputs using Time
Step = .001 sec and End = 10.

0.000215700384093197

2*+1 0043287924106z 987375261018142- 99984776283879 #
2°-2.99974551802682"+2.9995970204512-.99994850265113 BN

ion Example

200

-100

-200
0

Time (sec)

solidThinking’

VisSimEmbeddedTrainingModels/Continuous to Discrete.vsm
Continuous to Discrete.vsm

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 33

Filter Design Option

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company. 34

Filter Design Option - Features

The Filter Design option is located in the “Blocks/Linear Systems/Transfer Function” Block. Two filter types are
supported:

IIR = Infinite Impulse Response (filter with feedback)
FIR = Finite Impulse Response (sometimes called a tapped delay filter)

Transfer Function Properti

Specification Method .mat/.m File
Filters can be configured as: 2 Sononi IR Fier ik
Low Pass © m Fie Gk Select Fie... o
High Pass [Tapped Delay et 522 — Analog (S-Domain) filters

can be converted to

Band Pa.ss EE‘::::‘:‘ Z:r‘:s Ll [7] Use scaled fixed point A . .
Band Reject N Discrete (Z-Domain) filters
Display Filter Method
Initial Value: g
Gain: 1 st order state on right)

Polynomial Coefficients
Numerator: 1

Denominator: 1

] (G ([[mEs]

Discrete Filters can be
converted to Fixed Point for
improved Real Time
Performance

EMBED solidThinking’

© 2016 solidThinking, Inc. Proprietary and Confidential. All rights reserved. An Altair Company.

End of Section

™

solidThinking

