
How to Choose the Right
Version Control Software
Version control protects source code and facilitates collaboration—a single source of truth
for a project’s code. But which version control software should you buy? Well, that depends.
Keep reading to learn more about the selection process.

What to Consider
At a high level, you’ll need to think about your development process, the size and types of
files your team works with, and organizational priorities (e.g., security vs. speed). Here are a
few considerations that must be made when selecting a VCS tool.

Collaboration/ease of use
Collaboration is at the core of version control. Being able to facilitate collaboration for
your team should be a key component when choosing a version control system. As
we discuss the different types of version control, you’ll see that collaboration can be
facilitated in many ways.

Security
Some version control systems are
better than others at inherent security
features. A classic crux of this debate
when it comes to version control is
distributed versus centralized version
control systems. We’ll discuss this more
in depth later on. For some teams, it
is necessary to have access control
down to the file level and not just
the repository or space. The level of
granularity with which you can control
these factors can vary across different
version control systems.

File type and data size
Some version control platforms are better suited for handling large, binary files than
others. If the types of projects that your work focuses on require a number of binary
files (e.g., graphic assets and text files), it’s necessary to make sure your version control
system works as well as possible with those types of files.

Your team’s expertise/bandwidth to handle setting up and maintaining
Regardless of the above factors, how a version control system molds to your team’s
expertise is an important question that will help you better calculate cost.

Security is one key consideration when choosing the best

version control tool for your team.

Types of Version Control Software
Before we discuss individual version control systems, it’s important to discuss one of the
primary categories used to describe them: distributed versus centralized systems. Neither of
these categories is inherently better than the other, but depending on business needs, one
may be preferable in any given organization.

Centralized Version Control
Centralized version control systems have one server
containing all of the relevant data and files to a repository.
For developers to work on part of a project in a centralized
system, they must “check out” the file, kind of like a library
book. Popular centralized version control systems include
CVS, Perforce (both centralized and distributed), and SVN.

Distributed Version Control
Distributed version control systems work quite differently
as all users check out a full history of the repository, as opposed to just one piece of
it. If something happens to a digital book, no one else’s experience is interrupted.
That’s how distributed version control systems work—every check out is a copy of the
full version and history of the repository. Git and Mercurial are popular examples of
distributed version control systems.

Each of these models has inherent strengths and weaknesses. Centralized repositories
allow for tighter security and line of sight over data. Distributed systems allow for
concurrent workflows that can speed up the overall development process.

SVN, Git, and Perforce
In this guide, we’ll focus on three of the most popular VCS options: Git, SVN, and Perforce.
Each of these options has its own inherent assets and can be best suited for different types
of projects.

SVN
SVN is the veteran VCS option, introduced in 2000 by CollabNet. SVN became part of
the Apache family in 2009. SVN is a centralized version control system.

SVN is a favorite of industrial companies and older enterprises who have a mix

SVN is one example of

centralized version control.

of old and new code. Over the last few months, the team at Assembla has made
improvements to SVN to make it more modern and cloud-friendly.

Although SVN’s established nature can be its strength, some critique SVN for its older
features. Last year, we invested in improvements to SVN. You can read more about the
updates we’ve made here.

Benefits of SVN
Security of a centralized repository
One of the biggest strengths of SVN is that it’s
a centralized repository. Depending on an
organization’s workflow, this can be ideal or
hold the team back. A centralized repository
keeps the history of changes on a central
server from which everyone requests the
latest version of the work and pushes the
latest changes to. This means that everyone
sharing the server also shares everyone’s
work.

This model also allows for more access
control because the server is central and
admins can restrict users to certain files,
something that is virtually impossible in a
distributed system. Depending on the goals of
your project, this can be a benefit.

File locking and support for large,
binary files
One of SVN’s primary advantages is the ability to lock files. A locked file means that
users cannot make a commit to the file until it is unlocked. This feature is useful for
security and access purposes in an organization where management needs to keep a
close eye on what’s being committed.

File locking is also very useful when it comes to working with binary files (e.g., word
documents and graphics). Binary files cannot be merged in Git. But with file locking in
SVN, there’s a suitable workaround: lock-modify-unlock. For this reason, SVN is often
preferred by designers or companies that rely heavily on graphic assets (gaming, visual
effects, etc.)

Assembla has invested in improvements to SVN so

that you can more easily take advantage of its many

benefits for your team.

https://www.assembla.com/subversion?utm_medium=PPC&utm_source=Google&utm_campaign=18_Q3_ChooseVCS_Content&ls=Content&ssd=Choose_Your_VCS_Content_Download_GPPC_LP

Permissions and managerial control
SVN supports more granular repository permissions than some other VCS options.
It’s important to note that there can be variations in functionality depending on your
version control provider/host. With SVN, administrators can grant developers access
to certain parts of a repository. Combined with file-locking capabilities, administrators
can keep a tight rein on access to certain parts of a repo or file

Less to keep track of
Centralized version control solutions require you to effectively keep track of only two
data repositories: the SVN server and files in your local working copy. On the other
hand with Git, you would have to worry about infinitely more repositories as all users
are effectively working on a full copy. This can be problematic in terms of security of
those repositories.

Git
Another type of version control is Git. Git has been around
since 2005 and has become a very popular solution for
developers. Unlike Subversion, Git is a distributed version
control system and is free/open source.

When it was originally created, some of the goals for Git
included speed, simple design, and a fully distributed model.
[Git SCM]

Benefits of Git
Distributed version control
Just as many of the benefits of SVN stem from its centralized nature, the same is true
for Git and its features that are related to its distributed nature. Git is ideal for agile
teams with a distributed workforce. Because developers get a full history of their local
repository, the workflow is ultimately faster.

Branching
One of the biggest advantages of Git is the ability to branch. This is part of the benefit
of being distributed. A branch allows users to work on some lines of code without
interfering with the production code.

Git’s distributed nature makes

it a great fit for teams with

distributed workforces.

Need to talk through your options?
Reach out to Assembla at sales@assembla.com or by phone at (800)405-4408.

Speed
Depending on the makeup and priorities of your team, having a distributed version
control system can increase speed and efficiency because every developer has access
to a local repository. Granted, this must be balanced out by your security and access
needs.

Perforce
A favorite of gaming and VR/AR studios, Perforce is often
considered industry standard. Perforce has many strengths as
a version control system.

Benefits of Perforce
Supports both centralized and distributed workflows
Because both systems have inherent strengths, this level of
flexibility is something other version control systems simply
don’t offer.

Performance and scalability
Speed is a major strength of Perforce. Perforce repositories hold millions of files and
many terabytes of data. Their case studies indicate that “Perforce is 5 to 10 times faster
than SVN when syncing large numbers of files.” It’s no question that Perforce is very
powerful, especially for industries that depend on large files.

Industry standard for gaming studios
Like SVN, Perforce handles binary files well. This is part of the reason it is so popular
with gaming studios. Additionally, Perforce integrates directly with the two premier
gaming engines: Unity and Unreal Engine.

Perforce is the industry

standard version control tool

for gaming studios.

mailto:sales%40assembla.com?subject=
https://www.assembla.com/overview

	Try It Free:

