
Guide to Building
Design Systems
With Web
Components

Whitepaper

For more Ionic white papers, visit: ionicframework.com/resources2

Design systems have been a hot topic in the design world for a few years now, but many in
the development space are just getting acquainted with them.

In fact, when we first set out to build Stencil—an open source Web Component compiler
used to build custom component libraries—to support Ionic Framework (our other open
source project), design systems were pretty far from our minds.

Since then, we’ve witnessed a large and growing community of developers using Stencil
to build custom component libraries to support global design systems for companies like
Upwork, Volkswagen, Mastercard, and Porsche. We eventually built a version of Stencil,
along with additional software, services, support, and training, specifically designed to
address the needs of design systems.

Through the many large-scale design projects our team has

worked on, we’ve started to recognize the ways that developers

can best support their team’s design systems goals, and identify

where and how things can go wrong along the way.

We’ve also received lots of great questions about how Web Components can help teams
build design systems, and why you would use a component compiler like Stencil instead
of relying on a pre-existing component library like Bootstrap or Ionic.

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources
https://stenciljs.com/?utm_source=stencil%20site&utm_medium=white%20paper&utm_campaign=design%20systems%20white%20paper&utm_content=stencil
https://ionicframework.com/?utm_source=stencil%20site&utm_medium=white%20paper&utm_campaign=design%20systems%20white%20paper&utm_content=ionic%20framework
https://stenciljs.com/design-systems?utm_source=stencil%20site&utm_medium=white%20paper&utm_campaign=design%20systems%20white%20paper&utm_content=version%20of%20stencil

For more Ionic white papers, visit: ionicframework.com/resources3

The goal of this guide is to share our experiences and best

practices with developers who are embarking on a design

systems journey and have similar questions.

We’ll start with some of the basics of design systems for anyone who’s new to the topic,
and then we’ll look at why they’re valuable, why design systems projects fail, and the
benefits of Web Components and Web Component compilers, before investigating
Stencil more closely.

We hope you find this guide valuable. Get in touch if you have questions, feedback, or just
want to chat more about your design systems goals and challenges.

Yours,

The Stencil Team

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources
https://stenciljs.com/?utm_source=stencil%20site&utm_medium=white%20paper&utm_campaign=design%20systems%20white%20paper&utm_content=stencil

For more Ionic white papers, visit: ionicframework.com/resources4

contents

Introduction to design systems

Why design system projects fail

page 6

pages 7-9

Formula for success

Why Web Components

Limitations of Web Components

Web Components vs. Frameworks

Introduction to Stencil

Pairing WCs with JS frameworks

Who’s using WCs today

Conclusion

How to get started

Stopping at design

Building a HTML and CSS library

Limited component-building expertise

Betting on a single technology

Framework agnostic

Highly customizable

Deploy across mobile, desktop, web

Angular

React

Vue

page 10

page 11-13

page 14

page 16

page 15

pages 17-21

pages 22-23

pages 24-25

pages 26

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources5

If you’re building a handful of apps in a startup or small business, delivering a consistent
user experience across teams and projects is relatively easy. But enforcing a consistent
set of design standards is much more challenging if you’re part of a larger organization—
especially one with many distributed teams and concurrent projects, or hundreds of
developers and designers. The problem is amplified when you consider the diversity of
technologies and frameworks in use in most enterprises today, which makes it challenging
to find a single approach that works for everyone on the team.

This is a problem that we hear about frequently. One way to solve it is by implementing a
design system using custom, framework-agnostic Web Components.

In this whitepaper, we’ll take a detailed look at design systems

implementation with Web Components, and step through:

What design systems are

Why design system projects fail

Ensuring design system success using Web Components (WCs)

An introduction to Stencil, our Web Component compiler

A look at the Web Component ecosystem and how they pair with JS
frameworks like Angular, React, and Vue

Examples of companies using Web Components today

By the end of this paper, you will have a solid idea of what you need to get started with
Web Components and design systems, and some helpful tactics to ensure your project’s
success.

1

2

3

4

5

6

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources6

“That’s the beauty of building a design system. By

deciding on a detail once, you free up your entire product

development team to focus on solving actual customer

problems.”

- The Hubspot team on why design systems are valuable

Introduction to
design systems
A design system addresses how all of the properties around your apps and websites
look, feel, sound, and act. Implementing them involves developing a centralized library
of UI components that can be shared across teams and projects to simplify design
and development and avoid duplication of effort, while ensuring consistent brand
experiences, performance, and accessibility, all at scale.

When done right, implementing a design system means that developers no longer need
to spend time thinking about how to build components or how to tackle repeat problems
that are common to every app, such as application search, calendar widgets, or data table
grids. Instead, a rich library of custom UI components shared across all projects allows
developers to focus on what matters most: solving customer problems and delivering
value.

However, many design systems fail to realize their full potential. Too many projects begin
with great passion and enthusiasm, yet fizzle out due to lack of enterprise-wide adoption
— often after tremendous investments of time and money have already been sunk into the
endeavor.

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources7

Why design system
projects fail
The complete list of causes is unique to every business, but a few common practices
often contribute to most failed design system projects.

1. Stopping at design

The first bad practice is stopping at the design stage. Without a working
component library available to development teams, design consistency is never
fully realized because development teams either aren’t aware of the design
requirements, aren’t good at implementing design standards, or simply ignore
them.

Stopping at the design stage also fails to address the deep problems around
developer re-work and parallel development efforts across projects—where one
team is building a component that 20 other teams have already built.

2. Building a HTML and CSS library

The second bad practice is building a design system using pure HTML and CSS
components that developers then copy and paste into their respective projects.
There are a few challenges with this approach.

For one thing, pure HTML and CSS components lack any dynamic functionality. You
can create and share a date-picker, for example, but each team that uses it will still
need to program the logic required to make it function.

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources8

On top of that, it is nearly impossible to track and maintain proper version control
of copy & paste code. And if you want to use your components with any JS
frameworks like Angular, React, or Vue, you’ll need to add—and maintain—separate
libraries and wrappers for each framework that you want to use them in.

Thus, this approach often results in a brittle implementation that negates a lot
of the promised benefits around avoiding rework while increasing time and cost
savings.

3. Limited component-building expertise

For designers and developers that go beyond HTML and CSS to build real-code
components from scratch, they often come up against what UI library makers have
known for years: this stuff is hard. A single feature might take months to perfect
into something that looks and feels great on any platform or device, and performs
like your users expect under a wide variety of circumstances.

Lacking in-house component building expertise can slow down design systems
development and limit adoption if the custom UI components don’t deliver on the
required functionality, accessibility, platform compatibility, and performance.

3. Betting on a single technology

The final misstep is building a design system on top of a single technology. A
common scenario is when one team builds a component library based on their
framework of choice, and then meets friction when they attempt to roll it out
company-wide. While the original team might have built their library in React, a
third of the organization is using Angular, and another third is building with Vue.

This problem is particularly acute in large, globally distributed organizations, where
it’s nearly impossible to get all teams to standardize on a single framework—never
mind a specific version of a single framework—or development technology.

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources9

“[N]ascent design systems teams fall into a trap of coupling

a UI with a specific tech stack. Creating a technology

dependency in order to achieve a specific UI style

inherently limits where that UI can go. That might not

be an issue if your design system only serves one or two

applications that share the same technology stack, but this

becomes a big issue for organizations that manage tons of

applications built on a smorgasbord of technology. ”

- Brad Frost, Managing Technology-Agnostic Design Systems

While these scenarios address some of the major reasons design systems projects
fail, there are still many more that you may encounter along the way. From creating
a library but failing to get other teams in the organization to adopt it, to lack of
executive sponsorship or issues related to company culture, there are almost as
many reasons for projects to fail as there are projects.

The question then becomes, how do you ensure that: 1) your design systems
project succeeds, and 2) you gain a full understanding of all the benefits they have
to offer?

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources10

Formula for success

To ensure successful implementation and adoption of your

design system, we believe that the right solution must include:

1.	 Real-code components. Dynamic, working components that can be shared
throughout an organization with proper tracking and version control.

2.	 Access to component-building expertise. Access to expertise that can
help you build completely custom components from scratch, or an existing
component library that you can borrow from and customize to meet your
unique design specifications and brand standards.

3.	 Technology-agnostic. Your component library will work with any framework or
technology, and can be deployed anywhere.

1

2

3

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources11

Why Web
Components?
In our experience, the best way to ensure success when implementing your design
system is to build a library of custom Web Components—using a Web Component
compiler like Stencil—that can be shared and consumed across your organization, in any
project, in any tech stack.

Web Components use a set of standardized APIs that are

natively supported in all modern browsers, and supported in

older browsers using polyfills. WCs are uniquely suited to the

needs of a universal design system for a number of reasons.

1. They’re framework agnostic

One of the most appealing benefits of Web Components is the fact that they
give your development teams the flexibility to choose the underlying tools and
frameworks—and versions of those frameworks—that they prefer. As we pointed
out earlier, one of the great challenges of implementing a universal design
system is getting all of your development teams to standardize on just one set
of technologies. Using Web Components, each team can use what works best
for them, giving them complete freedom to use the tools they love—today and
tomorrow.

This liberates teams from the highly volatile landscape of JavaScript frameworks
and tooling. By using a consistent set of web standards, Web Components don’t
depend on a specific framework like Angular, React, or Vue. You can use Web
Components with any of these frameworks—and we encourage you to do so to take
advantage of the many benefits they provide—but the great thing is that you won’t
depend on that framework for your components to work.

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources12

After all, as much as we love the hot frameworks of today, who knows what
tomorrow will bring? By choosing Web Components, you insulate yourself from the
threat of tech churn, so you’ll no longer have to worry whether you’re picking the
right horse.

2. They’re highly customizable

By definition, a design system implies a customized collection of UI components
that match your specific brand standards and style guidelines. While there
are no limits to what your designers can conceptualize, implementing those
customizations in some development environments and frameworks can be tricky.

Web Components can be styled and customized to match any design pattern you
want to achieve. With the simple use of HTML, JavaScript, and CSS, you can build a
library of UI components that match whatever your designers dream up.

3. Deploy them across mobile, desktop, web

Another great advantage is that your component library will work across all
projects, not just desktop web apps.

For example, using a hybrid mobile framework like Ionic, you can deploy Web
Components across just about any platform or device, from native iOS and Android
apps, to Electron and desktop web apps, and even Progressive Web Apps.

You can also open up the design of your WCs to change based on the platform
that the component is running on. If you’d like a more native style when running on
Android or iOS, you can slightly change the design (or structure) your component

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources13

Ionic Framework is a UI component library used by over 5
million developers worldwide. Throughout the past 6+ years,
we’ve spent a lot of time perfecting our components so
they’re extremely performant, accessible, and customizable.

However, Ionic’s earlier versions were built on top of
Angular. With the evolution of JavaScript frameworks, and
the rise of React and Vue, we realized that continuing to
build on top of Angular severely limited the amount of
developers we could support.

On top of that, Ionic needs to ensure that we can deliver
updates to components without breaking apps, and that
our components feel like they’re completely native to the JS
framework that each developer is using.

Web Components began to help us solve the JS and
maintenance problems, and we built Stencil to take the
developer experience across the finish line.

Even though we built Stencil to solve our own problems
building a component library used at scale, we decided to
make it available to everyone by making it a free, MIT Open
Source project. Stencil gained a large amount of traction
in the Design Systems community at large enterprises
(who face the exact same problems we do), and the rest is
history!

- Adam Bradley, Director of Open Source Engineering at Ionic

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources14

Limitations of Web
Components
Now that we know the value that Web Components have to offer, we should also note that
there is a catch: Web Components, on their own, are not enough. They currently run on
a fairly primitive set of standards, so you may need a little extra help to get them to meet
your objectives. Some of the limitations include:

When you try to use pure vanilla Web Components in an application,
functionality like server-side rendering and progressive enhancement is not
supported by default

Some out-of-date clients don’t support the Web Components standard

WCs technically work with any framework, but there are some limitations like
lack of type support and input bindings, and challenges passing properties to
components

The good news is that, with help from open source tools like

Stencil, you can overcome all of these challenges.

Let’s dive deeper into how it works.

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources15

Introduction to Stencil
Stencil is a compiler that generates Web Components (more

specifically, Custom Elements), and combines the best

concepts of the most popular frameworks into a simple build-

time tool.

Since Stencil generates standards-
compliant Web Components, they can
work with many popular frameworks right
out of the box, and can be used without
a framework. Stencil also enables key
capabilities on top of Web Components,
particularly pre-rendering, and objects-as-
properties (instead of just strings).

Compared to using Custom Elements
directly, Stencil provides extra APIs that
make it simpler to write fast components.
APIs like Virtual DOM, JSX, data-binding,
and async rendering (inspired by React
Fiber) make fast, powerful components
easy to create, while still maintaining 100%
compatibility with Web Components.

Stencil was created by the Ionic Framework
team to help build faster, more capable
components that worked across all
major frameworks. Web Components
offered a solution to both problems,
pushing more work to the browser for
better performance while targeting a
standards-based component model that all
frameworks could use.

However, Web Components by themselves
weren’t enough. Building fast web apps
required innovations that were previously
locked up inside of traditional web
frameworks. Stencil was built to pull these
features out of traditional frameworks
and bring them to the fast emerging Web
Component standard.

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources16

Web Components vs.
Frameworks
The Web Component ecosystem has a diverse set of

players, each with a different long-term vision for what Web

Components can and should do.

Some think Web Components should
replace third-party app frameworks, while
others think that Web Components are
more suited for leaf/style/design nodes
and shouldn’t get in the business of your
app’s component system. There are
also many app framework developers
that either don’t see the point of Web
Components or consider them to be an
affront to frontend innovation.

At Ionic, our vision is somewhere in the
middle. In the long term, we see app
development teams continuing to use
their framework of choice. We envision
these frameworks continuing to get
better, smaller, and more efficient, with

increasingly good support for targeting
and consuming Web Components—and as
companies continue to embrace them for
shared design systems, big teams will be
consuming an increasing amount of Web
Components.

At the same time, we believe that an
indispensible feature for Web Components
is solving those component distribution
and design system problems. We also
believe, however, that 90% of the market
doesn’t have those problems to begin with,
calling into question the productivity of the
current debate about the merits of Web
Components.

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources17

Pairing WCs with JS
frameworks

Stencil is a compiler that generates Web Components (more

specifically, Custom Elements), and combines the best

concepts of the most popular frameworks into a simple build-

time tool.

Angular

At a glance: Angular provides decent out-of-the-box support for Web Components, but
there are some notable limitations that you’ll run into if you’re trying to build dynamic
applications with Web Components and Angular. That includes a lack of two-way data
binding, limited type support, and an inability to access Angular-specific properties in
your components.

Here’s an example of a slider Web Component in Angular without bindings:

<range-slider
 min=”0”
 max=”1000”
 [value]=”rangeValue”
 (change)=”selectValue = $event.details.value”>
</range-slider>

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources18

The good news is that, with Stencil bindings, you can use Web Components in your
Angular project as if they were actual Angular components, complete with two-way data
binding, type support, and access to Angular properties.

Here’s the full list of what you get with Stencil bindings:

Web Components become available as Angular components

Get types for your components

Can use Angular-specific properties on components

Two-way data binding with ngModel

Developers import actual Angular Library

Feels like interacting with Angular components

In the example below, we’re using the same slider Web Component in Angular, but this
time with the Stencil bindings:

You can see that it includes two-way data binding with ngModel.

<range-slider
 min=”0”
 max=”1000”
 [(ngModel)]=”selectValue”>
</range-slider>

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources19

React

At a glance: React has very limited out-of-the-box support for Web Components. While
their documentation shows a few very simple examples of working with WCs in React,
you will quickly grow past those basic use cases if you’re building any sort of dynamic
application.

For example, React can only pass strings and numbers to Web Components and it cannot
listen to custom events.

Here’s a code sample of a Web Component in React without bindings:

const userDetailRef = useRef(null);

React.useLayoutEffect(() => {
 const { current } = userDetailRef;
 current.user = {
 userId: 1234,
 userName: ‘jthoms1’,
 age: 38
 };
 current.addEventListener(‘onUserSelect’, (customEvent) =>
 selectUser(customEvent);
);
}, [userDetailRef]);

return (
 <user-details ref={userDetail}></user-details>
);

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources20

The Stencil bindings allow you to use Web Components in your React project with the full
range of functionality that you would expect. That includes:

Web Components become available as React components

Get types for your components

Developers import actual React Library

Feels like interacting with React components

Support for complex property types

Support for events

Here’s the sample Web Component in React, this time with Stencil bindings:

As you can see, the components appear as though they are React components and all
properties get passed correctly including functions, objects, and arrays. The bindings
also account for custom events by creating a prop called “on<EventName>”. These
allow React developers to interact with the Web Components as though they are React
components.

return (
 <UserDetails
 user={{ userId: 1234, userName: ‘jthoms1’, age: 38 }}
 onUserSelect={selectUser}
 ></UserDetails>
);

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources21

Vue

At a glance: Vue has done a nice job of integrating with Web Components out-of-the-box,
but there are a few issues with the developer experience.

For example, you will not be able to use v-model on inputs, as shown in the code sample
below.

Adding Stencil bindings will enable you to use Web Components in your project as
though they were actual Vue components.

Web Components become available as Vue components

Get types for your components

Can use v-model on inputs

Developers import actual Vue Library

Feels like interacting with Vue components

Using a Web Component with Stencil bindings in Vue:

<range-slider
 min=”0”
 max=”1000”
 v-bind:value=”rangeValue”
 v-on:onChange=”selectValue = $event.details.value”>
</range-slider>

<range-slider
 min=”0”
 max=”1000”
 v-model=”selectValue”>
</range-slider>

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources22

Who’s using WCs
today

If you’re considering using Web Components, one thing

you want to see is production examples. Here are a few that

demonstrate the value that Web Components bring to the table.

Ionic Framework (versions 4 and up) has
been a very successful Web Component-
based design system/UI framework. Web
Components are now in thousands of app
store apps, and nearly 4 million new Ionic
Framework projects are being created
every year. And one great thing about it
is that many Ionic Framework developers
probably don’t even know they are
using Web Components—they integrate
seamlessly in Angular as well as our
upcoming React and Vue support.

There are a mix of startups and large
enterprises building with Web Components
today.

On the startup side, popular workout app
Sworkit recently rolled out their new PWA
and Native app using Ionic Framework 4,
using Web Components both on the web
and in the app stores.

On the enterprise side, Salesforce recently
moved their Lightning components to Web
Components and has been a pioneer in
Web Component-based design systems.

Upwork, a publicly held company that
helps match freelancers to jobs, recently
shipped Web Components on their
homepage that were built with Stencil.
There are many other enterprise examples,
from Amazon and Adidas to Panera,
Porsche, and more.

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources23

“At Porsche, we have a heterogenous ecosystem of products
built with Angular, React or without any framework. As a
design system team with a small number of developers,
to give us the flexibility we needed and keep pace with
our development roadmap, we wanted to standardize on
one set of UI components that would work across any
product. Building a custom design system based on Web
Components has enabled us to do that.”

- Marcel Bertram, Design Systems Lead at Porsche

Public sector organizations are also getting on board. The State of Michigan recently
rolled out a design system based on Web Components and Stencil.

Stencil is driving an increasingly large portion of our business at Ionic. Enterprise
customers continue to get on board, and the major driver is that Stencil and Web
Components help solve their component distribution and creation problems, across
their many properties and teams, which often don’t have a prescribed set of frontend
technologies in use.

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources24

Conclusion
In this guide, we set out to show how design systems help companies deliver a consistent
user experience by enforcing design standards across their apps. By implementing design
systems to solve these problems, teams save time, save money, and can focus on what
matters most: solving customer problems.

But too many design system projects fail at the outset or never

realize their full potential.

There are a few common reasons for that:

They leave implementation to each individual product team

They build HTML & CSS components without JS functionality

They lack the in-house expertise to build fully functional components

They bet on a single technology like Vue, React, or Angular

The goal of design systems is to have one set of actual

code-based components that work everywhere, across all

technologies. Web Components are the way to achieve this.

They work with any framework

They work on mobile, desktop, and web (PWA)

They are super fast and light

They are open and standards-based

1

1

2

2

3

3

4

4

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources25

Unfortunately, Web Components can’t get us all the way to our goals on their own.
Sometimes Web Components need a little help to realize their full potential.

So what’s the answer? How do we complete successful design systems projects using
Web Components for every situation? Tools like Stencil help complete the last mile that
you need to make Web Components perfect for design systems.

Now that we have the high-level details down, you can ensure your design system project
is a success by:

Building your design system on Web Components

Using a Web Component compiler like Stencil

Generating framework bindings to work with your JS framework(s) of choice

1

2

3

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources

For more Ionic white papers, visit: ionicframework.com/resources26

How to get started
Stencil’s out-the-box features will help you build your own

library of universal UI components that will work across

platforms, devices, and front-end frameworks. Check out the

documentation to learn more.

Additionally, the Ionic team (makers of Stencil) offers Stencil

Enterprise, an enterprise-ready version of Stencil that includes

comprehensive assistance and tooling for enterprises embarking

on their design systems journey. If this is your first time building

a design system, or if you’re new to Stencil, get in touch with one

of our Solutions Engineers for a free consultation on how to meet

your goals and get the most out of the platform.

Learn more at https://stenciljs.com/design-systems

Guide to Building Design Systems With Web Components

http://ionicframework.com/resources
https://stenciljs.com/docs/introduction?utm_source=stencil%20site&utm_medium=white%20paper&utm_campaign=design%20systems%20white%20paper&utm_content=documentation
https://stenciljs.com/?utm_source=stencil%20site&utm_medium=white%20paper&utm_campaign=design%20systems%20white%20paper&utm_content=stencil
https://stenciljs.com/?utm_source=stencil%20site&utm_medium=white%20paper&utm_campaign=design%20systems%20white%20paper&utm_content=stencil
https://stenciljs.com/design-systems?utm_source=stencil%20site&utm_medium=white%20paper&utm_campaign=design%20systems%20white%20paper&utm_content=solutions%20engineers
https://stenciljs.com/design-systems

