

Table
of
Contents

Introduction

1. Welcome (not
included
in
preview)

2. Understanding the Ionic Ecosystem (not
included
in
preview)

3. An Introduction to StencilJS (not
included
in
preview)

4. The Ionic Web Components (not
included
in
preview)

5. Native Builds and Functionality with Capacitor (not
included
in
preview)

Basics

6. Lesson 1: StencilJS & Ionic Basics

7. Lesson 2: JSX and TypeScript

8. Lesson 3: Environment Configuration (not
included
in
preview)

9. Lesson 4: Generating & Understanding StencilJS Projects (not
included
in
preview)

10. Lesson 5: Using Async/Await (not
included
in
preview)

11. Lesson 6: Decorators and Lifecycle Hooks (not
included
in
preview)

12. Lesson 7: Navigation and Routing (not
included
in
preview)

13. Lesson 8: Services and Helpers (not
included
in
preview)

14. Lesson 9: Fetching Data with HTTP Requests (not
included
in
preview)

15. Lesson 10: Data Storage (not
included
in
preview)

16. Lesson 11: User Actions and Events (not
included
in
preview)

17. Lesson 12: Handling Forms & User Input (not
included
in
preview)

18. Lesson 13: Styling & Shadow DOM (not
included
in
preview)

19. Lesson 14: Using External Libraries (not
included
in
preview)

2

Example:
Weather
App

18. Lesson 1: Introduction & Requirements (Weather not included in preview) (not

included
in
preview)

19. Lesson 2: Getting Ready (Weather not included in preview) (not
included
in
preview)

20. Lesson 3: Creating the User Interface (not
included
in
preview)

21. Lesson 4: Implementing Geolocation & Saving Data (not
included
in
preview)

22. Lesson 5: Handling User Input & Settings (not
included
in
preview)

23. Lesson 6: Integrating the Weather API (not
included
in
preview)

24. Lesson 7: Improving User Experience and Styling (not
included
in
preview)

25. Weather App Conclusion (not
included
in
preview)

Reusable
Web
Components

26. Lesson 1: Why Build Reusable Web Components (not
included
in
preview)

27. Lesson 2: Creating a Collection of Web Components (not
included
in
preview)

28. Lesson 3: Publishing and Using a Collection of Web Components (not
included
in

preview)

Example:
Chat
App

34. Lesson 1: Introduction & Requirements (Live Chat not included in preview) (not

included
in
preview)

35. Lesson 2: An Introduction to Firebase and NoSQL (not
included
in
preview)

36. Lesson 3: Getting Ready (Live Chat not included in preview) (not
included
in
preview)

37. Lesson 4: Setting up Firebase (not
included
in
preview)

38. Lesson 5: Implementing the User Interface (not
included
in
preview)

39. Lesson 6: Adding Authentication (not
included
in
preview)

3

40. Lesson 7: Protecting Routes (not
included
in
preview)

41. Lesson 8: Creating and Reading Data with Firestore (not
included
in
preview)

42. Lesson 9: Implementing Firestore Security Rules (not
included
in
preview)

43. Lesson 10: Improving Styling (not
included
in
preview)

44. Chat App Conclusion (not
included
in
preview)

State
Management

43. Lesson 1: What is State Management? (not
included
in
preview)

44. Lesson 2: Stencil State Tunnel (not
included
in
preview)

45. Lesson 3: An Introduction to Redux (not
included
in
preview)

Example:
Storefront
App

51. Lesson 1: Introduction & Requirements (Storefront not included in preview) (not

included
in
preview)

52. Lesson 2: Getting Ready (not
included
in
preview)

53. Lesson 3: Implementing the User Interface (not
included
in
preview)

54. Lesson 4: Integrating Redux (not
included
in
preview)

55. Lesson 5: Loading Products (not
included
in
preview)

56. Lesson 6: Implementing Searching and Filtering (not
included
in
preview)

57. Lesson 7: Creating a Shopping Cart (not
included
in
preview)

58. Lesson 8: Persisting State (not
included
in
preview)

59. Lesson 9: Styling and User Experience (not
included
in
preview)

60. Storefront App Conclusion (not
included
in
preview)

Testing
and
Debugging

4

59. Testing & Debugging (not
included
in
preview)

Building
and
Submitting

60. Preparing Assets (not
included
in
preview)

61. Building for iOS and Distributing to the Apple App Store (not
included
in
preview)

62. Building for Android and Distributing to Google Play (not
included
in
preview)

63. Creating iOS Certificates on Windows (not
included
in
preview)

64. Publishing as a PWA (Progressive Web Application) with Netlify (not
included
in

preview)

Conclusion

66. Conclusion (not
included
in
preview)

5

Basics

StencilJS
&
Ionic
Basics

The first section of this book is dedicated to understanding the basic concepts and syntax

you will need to build Ionic applications with StencilJS. The main goal is to introduce you

to the basic theory, and then we will implement that theory with real-world examples later

in the book. You are welcome to implement the code from the basics section in your own

test application as we go if you like, but it is not required. Again, the main goal is just to

start getting you familiar with the basic concepts.

Depending on your learning style, you may want to approach this section differently. It is

rather long and contains a lot of theory (although there is a lot of theory to consume, it is

important to understand). You may want to go through the Basics section in a linear

fashion from start to finish before tackling any example applications, or you may prefer to

read bits and pieces of the Basics section as required and instead jump ahead to the "fun"

stuff before finishing all the theory. It is totally up to you, but if you do want to skip ahead, I

would recommend reading the Basics section up until at least the lesson on Navigation.

We will walk through many examples and scenarios in the Basics section, and it will likely

serve as a good point of reference for when you are building your own applications in the

future.

6

Lesson
1:
Basic
Building
Blocks

Before we even get into the basics of generating a new project and the various files and

folders that an Ionic/StencilJS project contains, I wanted to cover a few important

concepts.

Your projects will mostly consist of a bunch of different web
components. Each individual

web component will represent a small chunk of your application (like an individual page),

but together the web components will power your entire application.

Since the vast majority of what you will be doing to build Ionic applications with StencilJS

is creating these components, I think it is important to understand the basic building

blocks of these components right out of the gate. If we were to be working on the

component for the home page, the file that is responsible for generating the

page/component would be:

src/components/app-home/app-home.tsx

You will find some other files inside of app-home, but this is the important one. We are

building applications with JavaScript, so you might expect that we would be working with

an app-home.js file not an app-home.tsx file. There is a good chance you may not have

even seen a .tsx file before.

We are going to get into all the specifics of this in just a moment, but first, let's take a look

at what is actually in that file. A basic Ionic/StencilJS component might look something like

this:

7

import { Component, h } from "@stencil/core";

@Component({

 tag: "app-home",

 styleUrl: "app-home.css"

})

export class AppHome {

 public firstName: string = "Josh";

 componentDidLoad() {

 // perform logic when the component loads

 }

 someMethod() {

 // a method that could be triggered by another function

 // or bound to some action (e.g. a click) in the template

 }

 render() {

 return [

 <ion-header>

 <ion-toolbar>

 <ion-title>Example</ion-title>

 </ion-toolbar>

 </ion-header>,

 <ion-content class="ion-padding">

 <p>Hi, {this.firstName}</p>

8

 </ion-content>

];

 }

}

All three important "building blocks" that we are going to discuss in this lesson and the

next are present here: Classes, JSX, and TypeScript. We are going to discuss each of

these in-depth, but to give you a quick over:

Classes provide the structure/logic/methods/variables for our component

JSX is the syntax we use to define our templates and display data

TypeScript is an extension to JavaScript that allows us to add "types" to our code

(and it also allows us to use newer JavaScript features that are not yet supported by

browsers, by transpiling our "modern" code into code that today's browsers do

understand)

This is where the .tsx extension comes from. We would typically use a .js extension for

standard JavaScript, a .jsx extension for code that uses JSX, and a .ts extension for

code that uses TypeScript. Therefore, if we are using JSX and TypeScript we use a .tsx

extension.

In this lesson, we are going to focus on the concept of Classes and in the following

lesson, we will cover JSX and TypeScript. Classes are a rather generic concept to

programming in general, and depending on your previous experience (whether with

JavaScript or another language) you may already be quite familiar with some of these

concepts.

9

If you are already comfortably familiar with these concepts:

Classes/Objects

Scope and the this keyword

Modules/Importing/Exporting

You can safely skip straight to the Classes
in
Ionic/StencilJS section in this lesson,

which will give you a brief introduction to the basics of creating a component in StencilJS

before moving on to the next lesson.

Classes

If you are not already familiar with classes, let's take a step back first and explain what a

class is as a general programming concept, as it is not something that is specific to Ionic,

StencilJS, or even JavaScript.

Classes are a concept from Object Oriented Programming (OOP) and they essentially

behave as blueprints for creating "objects". An object would provide variables and

methods/functions related to a particular "thing".

You can define a class, and then using that class you can create, or "instantiate", objects

from it. In general, our program/code/application would consist of a bunch of different

"objects". To use a non-programming analogy, we could have a class for generating

humans. That class might specify properties like eyeColor and height and perhaps

provide methods like eat() and sleep(). An object would be an individual instance of

that class: a human. We might create a human object with green eyes and a height of

150cm, but we could also create another individual human/object from that same class

10

with brown eyes and a height of 200cm.

These analogies usually aren't all that great for explaining how classes are actually used in

a programming context, but it does help to explain the general concept of classes/objects.

In an Ionic/StencilJS context, our classes will generally be used to generate the

components used within our application (but also sometimes other things like

helpers/services).

If classes are a completely new concept to you, it would be worth doing a little bit of your

own research before continuing, but let's take a look at a simple example.

class Person {

 constructor(name, age){

 this.name = name;

 this.age = age;

 }

 setAge(age){

 this.age = age;

 return true;

 }

 getAge(){

 return this.age;

 }

 setName(name){

11

 this.name = name;

 return true;

 }

 getName(){

 return this.name

 }

 canDrive(){

 return this.age > 16;

 }

}

This class defines a Person object. The constructor is run whenever we create an

instance of this class (an object is an instance of a class), and it takes in two values: name

and age. These values are used to set the member
variables (or class
members) of the

class, which are this.name and this.age.

These values can be accessed from anywhere within the object by using the this

keyword. The this keyword in JavaScript refers to the current scope of wherever this is

used, so what it evaluates to depends on where you use it, but if you use it within a class

(and not within a callback function or anything else which would change the scope) this will

refer to the class/object itself.

If you imagine yourself as this and your location in the physical world as the scope,

consider the following example: if you are in a house, your "scope" may include the room

you are in, all of the areas of the house, and even the entire world. These are areas you are

12

free to explore and access. In a programming sense, if you are inside of a function you can

access things inside of that function (your room), other properties/methods of the class

that contains that function (other rooms/items in the house), or the entire global scope of

the application (the world around the house). When you are anywhere inside of the house,

this would be a reference to the house (except in special circumstances). Although you

can access anything inside of your own house, you can not access things in other peoples

houses (unless you have permission to do so).

In the analogy above, we could use the this keyword to access other methods/variables

of the class (rooms/items of the house). If we were inside of one function, but want to

trigger another in the same class, we would do something like:

this.someOtherFunction().

If you're not familiar with the this keyword, I'd recommend reading this. It is a tricky

concept to get your head around, fortunately, this is one of those things that isn't critical to

building applications with Ionic. Context and understanding always help you improve as a

developer, but it's not going to stop you from progressing. In general, you will only use

this when you need to refer to other methods or variables of the class that you are in. But

it is important to understand that you can't just freely access variables and methods of

other classes.

Once we have our class defined which acts as a blueprint for creating objects, we could

create a new Person object like this:

let john = new Person('John', 32);

13

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/this

The two values I've supplied here will be passed into the constructor of the Person

class to set up the member
variables. Now if I were to run the following code:

console.log(john.getName());

John's name would be logged to the console. Similarly, we could also call the getAge

function to retrieve his age or we could even change his name or age using the set

functions. Getters and setters are very common for classes, but we've also defined a more

interesting function here which is canDrive(). This will return true if the Person is over

16 years old, which is the case for John.

Perhaps the most important concept to remember is that the class is just a "blueprint", an

object is kind of like an individual copy of a class. We can have multiple objects created

from the same class, e.g:

let john = new Person('John', 32);

let louise = new Person('Louise', 14);

let david = new Person('David', 22);

console.log(john.canDrive());

console.log(louise.canDrive());

console.log(david.canDrive());

In the code above, John, Louise, and David are all individual objects of the Person class

14

and maintain their values separately. If we ran the code above, it would only return false

for Louise (since she is under 16 years old).

Classes
in
Ionic/StencilJS

With a basic understanding of classes/objects in general, let's now consider what we use

classes for in Ionic/StencilJS applications. We took a sneak peek at a typical

Ionic/StencilJS page/component earlier in this lesson - let's take another quick look at an

even more simplified version, just focusing on the basic structure:

import { Component, h } from "@stencil/core";

import { MyService } from "../../services/my-service"

@Component({

 tag: "app-home",

 styleUrl: "app-home.css"

})

export class AppHome {

}

The first thing you will notice is the import statements. Anything that is required by the

class that you are creating will generally be imported. In this case, we are importing

Component from @stencil/core which allows us to use the @Component decorator.

We are also importing MyService which is a object of our own creation (i.e. not something

15

provided to us by StencilJS/Ionic). The path for this simply follows the directory structure

of your project, in this case, we have the MyService object defined inside of a folder called

services which is one two levels above the current file. The import should link to wherever

the file is for the class/object, but it is not necessary to include the file extension. If the file

is in the same folder as the file you are coding in, you can reference it with ./the-file. If

you need to go up folders to link to the file you just use ../, so if the file was up three

folders, and then inside of a folder called cool-stuff you would do this:

../../../cool-stuff/the-file.

Next up we have the decorator, which we use to define the "selector" or "tag" for the

component (i.e. the name this component will have in our DOM (Document Object Model))

and the URL to the file we are using for CSS styles. This decorator is important, as it is

what will allow us to actually "use" this component in our application - i.e. it will take the

functionality we define in our class and bundle it up into a custom HTML element called

<app-home></app-home>. We are going to talk about decorators in more detail in

another lesson.

Once we get past the decorator, we finally arrive at the class itself:

export class AppHome {

}

Everything inside of this class is what will make up the template and functionality of our

components, but we will be looking more into that in the next lesson.

16

Notice, though, that the class is preceded by the export keyword. The export keyword

works in tandem with the import keyword - we export classes that we want to import

somewhere else. One final thing that you may find missing from this class is the

constructor. As we discussed before, the constructor initialises an object from a

class and is often used to do "setup" style work, but you will find that we don't often use a

constructor inside of most of our StencilJS components. Typically, if we want to do

some "work" right away we would use the "lifecycle hooks" that StencilJS provides, e.g:

import { Component, h } from "@stencil/core";

@Component({

 tag: "app-home",

 styleUrl: "app-home.css"

})

export class AppHome {

 componentWillLoad(){

 // do something automatically when component is about to

load

 }

 componentDidLoad() {

 // do something automatically after component loads

 }

}

17

Lifecycle hooks are another thing we are going to touch on more a little later.

With what we have discussed in this lesson, we should have a basic understanding of a

class and how they can be used to create components in an Ionic/StencilJS application.

However, at this stage, our components wouldn't be anything more than empty shells - we

need to give them a template and some logic to actually be of any use.

In the next lesson, we are going to discuss JSX and TypeScript which play a critical role in

building StencilJS components for our Ionic applications.

18

Lesson
2:
JSX
and
TypeScript

With a basic understanding of how classes are used as the basis for constructing our

components, we get to the pair that makes up our .tsx extension: JSX
+
TypeScript.

JSX is a syntax extension to standard ECMAScript (JavaScript) that allows XML style

syntax in JavaScript code - or in easier to understand terms, it allows you to write HTML

directly in your JavaScript (not as strings, but as literal HTML syntax). It was created by

Facebook and popularised by its usage in the React framework, but JSX can also be used

outside of React. If you are already familiar with React then you are going to have a big

head start here, but we are going to walk through many aspects of JSX in-depth in this

lesson.

TypeScript is also an extension to standard ECMAScript (JavaScript) that adds the ability

to add "types" to our code. A type basically just enforces that a particular variable or

method has a particular "type" (e.g. number, string, boolean). As I mentioned,

TypeScript also handles transpiling "modern" code that isn't supported by browsers yet

into code that is, but we won't be focusing on that aspect since it is all handled

automatically for us.

JSX

For the most part, using JSX is about mixing JavaScript into your HTML for templates. As

you will see from the demonstrations in this section, anything we want to achieve with our

templates - whether that is looping over data, conditionally rendering elements, invoking

functions, and so on - we do with mostly regular JavaScript (rather than framework specific

19

methods for performing these operations).

The weird thing about JSX is that, of course, we are mixing HTML into it and that's not

really normal. This, for example, would look wrong to most people unless they were

familiar with JSX:

render() {

 return <div><p>Hello</p></div>;

}

We are attempting to return a chunk of HTML, and this just looks like it is going to cause

an error - surely that should be returning a string and is missing its quotations? However,

this is perfectly valid syntax with JSX.

With that basic understanding, let's briefly go over how we would do all the typical

template stuff with JSX, and then we will move on to discussing TypeScript.

A
Basic
Template

When building an application with StencilJS, we will have various components that make

up our application. These components will each define a render function that specifies

the template for the component. When necessary (e.g. when certain data has been

updated), the render function will be calling again to recreate our template (evaluating

any JavaScript in the process).

20

The render function simply needs to return the template (using JSX) that we want to

display for that component. This will look something like this:

import { Component, h } from '@stencil/core';

@Component({

 tag: 'app-home',

 styleUrl: 'app-home.css'

})

export class AppHome {

 render(){

 return (

 <div>

 <p>Hello</p>

 </div>

)

 }

}

Whatever we return is what is used for the template, but since we are in JavaScript land

we can do more than just return simple HTML. We could build whatever logic we like in

here. For example, we could render local or member variables inside of the template:

21

import { Component, h } from '@stencil/core';

@Component({

 tag: 'app-home',

 styleUrl: 'app-home.css'

})

export class AppHome {

 private firstName: string = "Josh";

 render(){

 const myMessage = <p>welcome to my app!</p>;

 return (

 <div>

 <p>Hi {this.firstName}, {myMessage}</p>

 </div>

)

 }

}

and the resulting template would be:

<div>

22

 <p>Hi Josh, welcome to my app!</p>

</div>

There is a
lot more we could do, and we are going to cover some of those now.

Multiple
Root
Nodes

The render function must return a single root node, that means that this is will work:

return (

 <div></div>

)

and this will work:

return (

 <div>

 <p>Hello</p>

 <div>

 <p>there.</p>

 </div>

 </div>

)

23

but this will
not:

return (

 <div>root one</div>

 <div>root two</div>

)

To address this scenario you can either wrap the two nodes inside of a single node:

return (

 <div>

 <div>Root one</div>

 <div>Root two</div>

 </div>

)

or you can return an array of nodes instead, like this:

return ([

 <div>Root one</div>,

 <div>Root two</div>

24

])

Notice the use of square brackets to create an array, and that each node would be

followed by a comma as in an array. Although it may look a little strange to use HTML

syntax in an array like this, it is the same idea as doing this:

return ([

 'array element 1',

 'array element 2'

])

Expressions

Expressions allow us to do things like execute logic inside of our templates or render out a

variable to display on the screen. We've already seen this in the code above, but we can

do more than just render out variables, for example:

render(){

 return (

 <div>

 <p>{ 1 + 1 }</p>

 </div>

)

25

}

This example would execute the 1	+	1 operation, and display the result inside of the

paragraph tag. In this case, it would, therefore, render the following out to the DOM:

<div>

 <p>2</p>

</div>

We could also use expressions to make function calls:

calculateAddition(one, two){

 return one + two;

}

render(){

 return (

 <div>

 <p>{this.calculateAddition(1,5)}</p>

 </div>

)

}

26

and much more, some of which we will touch on later.

Styles

If you attempt to add a style to an element in JSX like this:

render(){

 return (

 <div style="background-color: #f6f6f6; padding: 20px;">

 <p>Hello</p>

 </div>

)

}

You will be met with an error that reads something like this:

Type 'string' is not assignable to type '{ [key: string]: string;

}'.

But what's the deal with that? Aren't we allowed to use standard HTML syntax? Not quite,

there are a few differences. With JSX, inline styles must be supplied as an object, where

the properties of that object define the styles you want:

27

render(){

 return (

 <div style={{

 backgroundColor: `#f6f6f6`,

 padding: `20px`

 }}>

 <p>Hello</p>

 </div>

)

}

We are assigning an expression (which we just discussed) to style that contains an object

representing our style properties. That is why there are two curly braces - one set to

contain the expression and one set to contain the object we are creating. You will notice

that we are using camelCase - so instead of using the usual hyphenated properties like

background-color or list-style-type we would use backgroundColor and

listStyleType.

Conditionals

There are different ways to achieve conditionally displaying data/elements with JSX (just as

there are many ways to achieve things with JavaScript in general), so let's take a look at a

few. We covered before how you could make a function call inside of an expression in a

template, and that is one way that you could conditionally display an element:

28

import { Component, h } from '@stencil/core';

@Component({

 tag: 'app-home',

 styleUrl: 'app-home.css'

})

export class AppHome {

 private loggedIn: boolean = false;

 getWelcomeMessage(){

 if(this.loggedIn){

 return 'Welcome back!';

 } else {

 return 'Please log in';

 }

 }

 render(){

 return (

 <div>

 <p>{this.getWelcomeMessage()}</p>

 </div>

)

 }

}

29

You could also achieve the same effect by building some logic directly into the expression

in the template, rather than having a separate function:

render(){

 return (

 <div>

 <p>{this.loggedIn ? 'Welcome back!' : 'Please log

in.'}</p>

 </div>

)

}

You could render entirely different chunks of your template using if/else statements

(remember, whatever we return is what is used for the template):

import { Component, h } from '@stencil/core';

@Component({

 tag: 'app-home',

 styleUrl: 'app-home.css'

})

export class AppHome {

 private loggedIn: boolean = false;

30

 render(){

 if(this.loggedIn){

 return (

 <div>

 <p>Welcome back!</p>

 </div>

)

 } else {

 return (

 <div>

 <p>Please log in.</p>

 </div>

)

 }

 }

}

You can completely remove any rendering to the DOM by returning null instead of an

element:

import { Component, h } from '@stencil/core';

@Component({

 tag: 'app-home',

31

 styleUrl: 'app-home.css'

})

export class AppHome {

 private loggedIn: boolean = false;

 render(){

 if(this.loggedIn){

 return (

 <div>

 <p>Welcome back!</p>

 </div>

)

 } else {

 return null

 }

 }

}

If you don't want to return entirely different templates depending on some condition (this

could get messy in some cases) you could also render entirely different chunks just by

using a ternary operator inside of your template like this:

private loggedIn: boolean = false;

32

render(){

 return (

 <div>

 {

 this.loggedIn

 ?

 <div>

 <h2>Hello</h2>

 <p>This is a message</p>

 </div>

 :

 <div>

 <h2>Hello</h2>

 <p>This is a different message</p>

 </div>

 }

 </div>

)

}

If you aren't familiar with the ternary operator, we are basically just looking at this:

this.loggedIn ? 'logged in' : 'not logged in';

33

which is a simplified version of:

if(this.loggedIn){

 return 'logged in';

} else {

 return 'not logged in';

}

We can also simplify the ternary operator more if we don't care about the else case. For

example, if we only wanted to show a message to a user who was logged in, but we didn't

care about showing anything to a user who isn't, we could use this syntax:

private loggedIn: boolean = true;

render(){

 return (

 <div>

 {

 this.loggedIn &&

 <div>

 <h2>Hello</h2>

 <p>This is a message</p>

 </div>

34

 }

 </div>

)

}

This will only render out the message if loggedIn is true. The methods I have mentioned

here should be enough to cover most circumstances, but there are still even more you can

use. In the end it's all just JavaScript, there is no specific "framework" way of doing

something (because we aren't using a framework!).

Looping
Data

We will often want to create templates dynamically based on some array of data like an

array of todos or posts and so on. Once again, with StencilJS and JSX, we just use

standard JavaScript syntax/logic embedded directly into the template to achieve this.

We can use the map method on an array of data to loop through the data and render out a

part of the template for each iteration. Let's take a look at an example from the

documentation:

render() {

 return (

 <div>

 {this.todos.map((todo) =>

35

 <div>

 <div>{todo.taskName}</div>

 <div>{todo.isCompleted}</div>

 </div>

)}

 </div>

)

}

In this example, we would have a class member variable named todos that we are looping

over. Notice once again that we have our curly braces for expression surrounding the

JavaScript we want to execute. The map method of the todos array will iterate over each

element in the array, and for each todo we will render this out:

<div>

 <div>{todo.taskName}</div>

 <div>{todo.isCompleted}</div>

</div>

The {todo.taskName} and {todo.isCompleted} expressions used here will be

executed and the values for the particular todo in that iteration of the map method will be

used. The end result would be a template that might look something like this:

36

<div>

 <div>

 <div>Get apples</div>

 <div>true</div>

 </div>

 <div>

 <div>Clean shed</div>

 <div>false</div>

 </div>

 <div>

 <div>Exercise</div>

 <div>true</div>

 </div>

</div>

In order for StencilJS to be able to perform as efficiently as possible, it is important that if

you intend to change this data (e.g. you can add/remove todos) that you give each todo

that is rendered out a unique key property. You can attach that key to the root node of

whatever you are rendering out for each iteration, e.g:

render() {

 return (

 <div>

 {this.todos.map((todo) =>

 <div key={todo.id}>

37

 <div>{todo.taskName}</div>

 <div>{todo.isCompleted}</div>

 </div>

)}

 </div>

)

}

Event
Binding

The last thing we are going to cover is event binding, which we will use mostly to handle

users clicking on buttons or other elements. We can handle DOM events by binding to

properties like onClick. For example, if we wanted to run a method that we created

called handleClick when the user clicks a button we might do something like this:

<ion-button onClick={this.handleClick(event)}>Click me</ion-

button>

This is fine and would invoke our handleClick method, but the downside of this

approach is that it won't maintain the scope of this. That means that if you were to try to

reference a member variable like this.loggedIn inside of your handleClick method it

would not work - because this would no longer refer to the class of your component.

You can solve this issue in either of the following ways. You could manually bind the

38

function to the correct scope like this:

<ion-button onClick={this.handleClick(event).bind(this)}>Click

me</ion-button>

or you could use an arrow function like this (which is the more popular approach):

<ion-button onClick={(event) => this.handleClick(event)}>Click

me</ion-button>

You can use different approaches depending on the scenario if you like, but in general, we

will always just use the last example. Even though it may not be required in every

circumstance (e.g. we might not need this to refer to the current class) I think it helps just

to keep things nice and consistent.

As well as onClick you can also bind to other DOM events like onChange and

onSubmit. With Ionic, you can also bind to any of the events that the Ionic web

components emit.

That brings us to the end of our primer on JSX, but we will, of course, get to practical

examples later. For now, let's move on to TypeScript!

TypeScript

39

For the most part, the way in which we actually use TypeScript in our projects doesn't

really add anything "functional". Unlike JSX, where we need to understand the concepts in

order to effectively achieve our goals, you could just about ignore the existence of

TypeScript and still be able to build an application. The goal of this section is to convince

you that you should pay attention to TypeScript, and try to use it effectively in your

projects.

TypeScript is something that seems like more of a pointless annoyance to begin with, until

you've been using it for a while and start appreciating the benefits it offers. In a nutshell,

using TypeScript means adding types to our code. For example, instead of declaring a

member variable like this:

public firstName;

we would instead do this:

public firstName: string;

This gives the firstName variable a type of string meaning that we can only ever

assign string values to the variable. If we attempted to set the firstName variable to

the number 1 it would cause an error.

We are going to talk a lot more about what TypeScript is exactly, but in my mind, the two

40

biggest benefits of paying attention to using TypeScript properly (i.e. adding appropriate

"types" to your variables/methods) are:

It will catch many bugs/issues before you do

When using a code editor that supports TypeScript and code completion, you can

save a huge amount of time with type information at your fingertips

If our variables have appropriate types, if we run into a situation in our code where we

accidentally assign the wrong type of data to a variable we are going to know right away

(rather than having to let our code fail before going back and fixing the issue). Sometimes

the error you run into without types might be obvious and quick enough to fix, but

sometimes just having an appropriate type set up could save you a lot of time trying to

debug an issue.

Also, consider a situation where you are calling a method you created and using it in some

way in your code. Maybe the purpose of this method is to return a list of characters in a

show: getCharacters(). Perhaps you try to use this method like this:

let characters = someService.getCharacters();

console.log(characters);

But what if getCharacters() doesn't just return the characters directly, it's an

asynchronous function that returns a promise that resolves with the characters (we will talk

more about asynchronous code and promises soon). Our code wouldn't work in this case,

and again we wouldn't know about it until we ran our code and it failed. If we had given our

41

getCharacters() an appropriate return type, then we would have known immediately.

Even if we don't make the mistake, and instead take the time to look up what

getCharacters() returns, TypeScript still saves us time because if we are using a code

editor with TypeScript support (e.g. Visual Studio Code) we can just hover over the service

or method to see what it returns.

Let's look at the different types we might use in a typical application and where we can use

them. First of all, let's consider the sorts of types we have. Commonly used types include:

any (can be useful in some situations, but best avoided where possible as it doesn't

add any value)

number

string

boolean

Function

Object

Then we have some slightly more advanced types like:

Promise<boolean>

string[]

These might look a little more intimidating, but it is still pretty straight-forward. The

Promise<boolean> type just means it is a Promise that resolves with a boolean value.

You can just change the <boolean> part to reflect whatever type the Promise will

resolve with. The string[] type indicates an array of strings, e.g: ['apple',

'banana',	'grape']. It is an array filled with string values. Again, you can change this

42

to reflect whatever type of data will be in your array, e.g. number[].

We can also use interfaces to create our own custom types. For example, let's say we

had an array filled with these objects:

this.myArray = [

 {title: 'apple', amount: 1},

 {title: 'banana', amount: 1},

 {title: 'grape', amount: 1},

 {title: 'milk', amount: 1}

];

I could give this.myArray a type of Object[] indicating that it is an array of objects:

public myArray: Object[];

But, like our any type, this doesn't really add any value. We could still add data to that

array that we don't want there. For example, this would be perfectly valid:

this.myArray = [

 {title: 'apple', amount: 1},

 {title: 'banana', amount: 1},

43

 {direction: 'north' time: 3929013, finished: false}

];

However, if we were to create a custom interface like this:

interface GroceryItem {

 title: string;

 amount: number

}

and we applied that custom type to our array:

public myArray: GroceryItem[];

This would now ensure that myArray only contained grocery items that fit the structure of

the type we defined. Now, let's consider where we might use our types.

As we have already seen, we can attach types to our member variables:

public firstName: string;

public myArray: GroceryItem[];

44

We can also attach types to any other variables, for example within a function:

getCharacters(){

 let characters: string[] = [];

}

We could attach types to functions to specify the type of data they should return:

getCharacters(): Promise<string[]>{

}

This would mean that getCharacters should return a Promise that resolves with an

array of strings. The function as it is above now would cause an error because it isn't

returning anything yet (and it needs to return that Promise).

Often, a function doesn't need to return anything, in that case, we can use the void type:

doSomething(): void {

}

45

Even the parameters inside of functions can have a type applied to them:

getCharacters(showTitle: string): Promise<string[]>{

}

This method expects a showTitle to be passed in which much be a string, it will then

return a Promise that resolves with an array of strings.

You could assign a type to just about everything if you like, and technically speaking the

more type information you provide the better off you will be. How much type information

you actually provide is ultimately up to you (or your team). Personally, I mostly just focus

on making sure I have types for member variables and return types for methods. A lot of

the time I don't use types for function parameters, but this is partly to make my examples

look simpler/less intimidating. For example, this:

getCharacters(showTitle){

 let characters = [];

}

Looks quite simple and obvious, whereas this:

getCharacters(showTitle: string): Promise<string[]>{

46

 let characters: string[] = [];

}

would be far more confusing/intimidating to somebody not familiar with types and

TypeScript (even though the function is exactly the same). Nonetheless, the second

example will provide a far greater benefit than the first. It will prevent you from making

errors in your code, and it will make it easier to look up the methods you have created.

As we make our way throughout this book, we will encounter plenty more examples and

have chances to flex our JSX and TypeScript muscles.

47

Continue
reading...

This PDF provided a preview of two of the lessons from Creating Ionic Applications with

StencilJS.

The complete book, as well as its resources, serve as an all-in-one resource for learning

how to use StencilJS to build Ionic applications. It is also a useful reference to continually

come back to as you build applications.

As well as covering all of the basic theory, the complete book also covers building three

example applications:

48

https://www.joshmorony.com/creating-ionic-applications-with-stencil-js/?utm_source=ionic&utm_medium=pdf&utm_campaign=preview

Each of these example applications varies in degree of difficulty and concepts covered.

For more details about the rest of the book, and if you would like to purchase the book,

please click here.

49

https://www.joshmorony.com/creating-ionic-applications-with-stencil-js/?utm_source=ionic&utm_medium=pdf&utm_campaign=preview

	Lesson 1: StencilJS & Ionic Basics
	Lesson 2: JSX and TypeScript

