morphotek

Development and Validation of a Pharmacokinetic Assay on the Gyrolab Platform for Use in Phase II/III Clinical Studies

M. Dula, S. Fernando, K. Bendas, Y. Liu, D. Horgan, D. Hanrahan, M. Kuc, D. Chen, M. Deitrich, E. VanVolkenburgh, R. Holland, W. Ebel, P. Sass, N. Nicolaides and J. Wustner Morphotek, Bioanalytical Development

Purpose

Pharmacokinetic sample analysis for large-scale, late phase clinical studies requires significant time and resources to perform. To maximize efficiency, we developed and validated a highly automated ligand binding assay (LBA) to measure farletuzumab (a humanized monoclonal antibody) using the Gyrolab platform, and implemented a high-throughput testing strategy requiring minimal staffing and analysis time.

Methods

The Gyrolab platform was selected due to its relatively highthroughput and level of automation. The method developed is a stepwise sandwich format with a biotin labeled antifarletuzamab F(ab)₂ for capture and Alexa Fluor labeled anti-farletuzamab for detection of the free form of farletuzumab. Given the nature of the assav format and its intended use, critical factors including lot-to-lot variability of labeled detection reagents and sample carry-over were considered during development. In addition to standard LBA method validation parameters, sample stability at ambient temperature during on-instrument processing was evaluated, as well as robustness of the critical reagent labeling process.

Gyrolab images courtesy of Gyros

Development Considerations

Reagent Lot Variability

Reduced lot to lot variability of Alexa-Fluor labeled reagents

- Use pre-packed desalting columns to reduce column variability
- Use a BCA kit to perform protein quantification
- Verify consistent labeling by performing A280
- ✓ Acceptable reagent will have 4-11 moles of dye per molecule

Comparison of 3 lots of Alexa-Fluor Labeled Detection Antibody Each lot prepared by a different analyst

% Difference in

concentration was

sampling (Row B)

is observed

calculated for each sample

No accumulation of analyte

rows C to G from original

Sample Carry Over Evaluation

Sampling Lay Out

Needles	1	2	3	4	5	6	7	8	Experimental Design
A	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8	 Each needle samples
в	Blank	HQC	HQC	MQC	MQC	LQC	LQC	ULOQ	
с	ULOQ								
D	LQC	 Perform assay as usual 							
E	ULOQ								
F	HQC	QCs and a blank							
G	Blank	 Alternate high and low samples for each needle. 							

% Difference from original sampling

Needles 1 2 3 4 5 6 7 8 Results в c -1.1 -0.1 -4.1 2.5 3.1 3.0 7.6 1.0 D -4.2 3.9 0.2 -3.0 -2.1 -2.5 -2.2 0.5 E -1.7 0.5 -0.1 -5.2 1.3 -2.6 4.4 -3.4 F -2.7 -6.0 -3.8 -0.2 -2.9 -4.6 -11.0 -1.8 G 0 0 0 0 0 0 0 0

late phase clinical study, Bioaffy 200 CDs were used due their larger sample capacity. The resulting LBA has a quantification range of 0.4 -16µg/mL at an MRD of 1:10. A 5parameter regression model was used for the standard curve and QC samples were established at 0.8, 2 and 8µg/mL. Method validation confirmed suitable assay performance for regression model fit, selectivity, accuracy, precision, MRD, quantification range, dilutional linearity, negative prozone, sample stability and assay robustness.

Results

Since higher throughput was prioritized over sensitivity for a

Validation Results

Representative Standard Curve

QC samples appear in red

- Assay parameters include MRD of 1:10
- Assay range of 0.4µg/mL-16µg/mL
- QCs at 0.8, 2 and 8µg/mL.

Standard Curve Analysis from 17 Validation Runs											
	STD1	STD2	STD3	STD4	STD5	STD6	STD7	STD8			
Nominal Conc. (µg/mL)	20	10.99	6.04	3.32	1.8	1	0.55	0.3			
Mean Concentration	19.2	11.9	6.1	3.1	1.8	1.1	0.6	0.3			
% Recovery of Mean	96.1	108.4	100.7	94.6	98.9	106	110.9	86.7			
Cumulative % CV	0.8	1.4	1	1	1.7	1.7	3.2	5			

Prozone Assessment - No Prozone Detected								
Nominal Concentration (µg/mL)	Dilution Level	Mean Signal	ULOQ Mean Signal					
100	10 fold	730	626					
25	40 fold	671	636					

Dilutional Linearity - 1mg/mL MORAb-003 in pooled serum

Nominal Conc. (µg/mL)	Dilution Level	Measured. Conc. (µg/mL)	Back Calc. Conc. (µg/mL)	% Bias	Cumulative % CV
12.5	80 fold	14.1	1128	12.8	
6.3	160 fold	6.5	1032.0	3.2	
3.13	320 fold	3.0	947.2	-5.3	7.0
1.56	640 fold	1.5	966	-3.4	
0.78	1,280 fold	0.8	1003.5	0.4	

Validation Results (Cont.)

(ng/mL)	n	Mean	SD	%CV	% Recovery	
16,000	2	16925.0	272.3	1.7	105.8	Pooled Repeatability
10,000	12	16925.0	730.0	4.6	105.8	Intermediate
8.000	2	8541.7	96.0	1.2	106.8	Pooled Repeatability
8,000	12	8541.7	613.0	7.7	106.8	Intermediate
2.000	2	1942.5	34.0	1.7	97.1	Pooled Repeatability
2,000	12	1942.5	157.1	7,9	97.1	Intermediate
000	2	861.8	8.1	1.0	107.7	Pooled Repeatability
800	12	861.8	93.2	11.6	107.7	Intermediate
500	2	485.7	13.5	2.7	97.1	Pooled Repeatability
500	12	485.7	70.4	14.1	97.1	Intermediate
400	2	386.3	11.0	2.8	96.6	Pooled Repeatability
400	12	381.9	77.9	19.5	95.5	Intermediate

20 Individuals (3 disease states and normal	MORAb-003 Concentration	% Passing		
	80µg/mL	100		
serum)	8µg/mL	100		

Additional Platform Specific Validation Parameters

- Critical Reagent lot variability ✓ Assay performs well with multiple lots of critical reagents
- Sample Stability during processing ✓ Diluted sample stability confirmed for 20 hours
- Bioaffy 200 stability ✓ Opened Bioaffy CD stored at 2-8 C, stability confirmed for 10 days

High Throughput Workflow

- 410 samples processed per day or 2050 samples per week.
- Developed and Validated an Excel spreadsheet for more efficient run evaluation and sample assessment

Conclusion

Once standards, QCs and samples are prepared off-line, approximately 200 samples can be analyzed in five hours. While the first set is being analyzed in the instrument, a second set of samples can be prepared for analysis on the same day, resulting in over 400 sample values per day. To date, assay performance has been highly consistent with an overall passing rate of 95.6% and a total of 430 valid runs, resulting in over 16,000 valid PK results. Trending analysis of the valid runs indicates good precision for the standard calibrators (≤4.7%) and QC samples (≤13.1%).

Assav Performance Statistics

Standard Curve Analysis from 430 Runs										
	STD1	STD2	STD3	STD4	STD5	STD6	STD7	STD		
Nominal Conc. (µg/mL)	20	10.99	6.04	3.32	1.8	1	0.6	0.3		
Mean Concentration	19.3	12.0	6.1	3.2	1.8	1.1	0.6	0.3		
% Recovery of Mean	96.6	109.5	100.3	94.9	98.2	106.6	107.8	89.6		
Cumulative % CV	1.3	2.8	1.9	1.8	2.2	2.3	4.7	4.3		

	QCA	nalysis fr	om 430 R	uns			
	HQC1 HQC2		MQC1 MQC2		LQC1	LQC2	
Nominal Conc. (µg/mL)		8		2	0.8		
Mean Concentration	8.4	8.3	1.9	1.9	0.84	0.86	
% Recovery of Mean	105.3	104.2	96.5	96.3	106.1	106.9	
Cumulative % CV	6.4	6.3	13.1	7.0	6.8	6.1	

Platform Assessment

- ✤ 450 runs performed, 95.6% passing rate.
- Trending of standards and QCs indicate highly consistent and accurate method performance
- ✤ Over 16,000 valid sample results generated in approximately 6 months
- Good in-study intermediate precision across multiple analysts/days, reagent lots, consumables
- Negligible analyte carry-over determined in method validation, monitored through in-study data trending Caveats:
 - · High throughput requires significant data processing
 - · Requires frequent system maintenance (trained user & vendor field personnel) to sustain performance/throughput
 - Biological sample matrices require centrifugation step
 - Limited user customizations during method
 - development
 - · High cost of consumables