
4 Building Blocks 
of a Streaming 

Data Architecture
Whitepaper



Streaming data is becoming a core component of enterprise data architecture. 

Streaming technologies are not new, but they have considerably matured over 

the past year. The industry is moving from painstaking integration of 

technologies like Kafka and Storm, towards full stack solutions that provide an 

end-to-end streaming data architecture.

What is Streaming Data Architecture?

A streaming data architecture can ingest and process large volumes of 

streaming data from multiple sources. While traditional data solutions focused 

on writing and reading data in batches, a streaming data architecture consumes 

data immediately as it is generated, persists it to storage, and may perform real-

time processing, data manipulation and analytics. 

Why Streaming Data Architecture? Benefits of 

Stream Processing

Stream processing is becoming an essential data infrastructure for many 

organizations. Typical use cases include clickstream analytics, which allows 

companies to track web visitor activities and personalize content; eCommerce 

analytics which helps online retailers avoid shopping cart abandonment and 

display more relevant offers; and analysis of large volumes of streaming data 

from sensors and connected devices in the Internet of Things (IoT). Stream 

processing provides several benefits that other data platforms cannot:

2



• Able to deal with never-ending streams of events—some data is naturally 

structured this way. Traditional batch processing tools require stopping the 

stream of events, capturing batches of data and combining the batches to 

draw overall conclusions. In stream processing, while it is challenging to 

combine and capture data from multiple streams, it lets you derive 

immediate insights from large volumes of streaming data. 

• Real-time or near-real-time processing—most organizations adopt stream 

processing to enable real time data analytics. While real time analytics is also 

possible with high performance database systems, often the data lends itself 

to a stream processing model. 

• Detecting patterns in time-series data—detecting patterns over time, for 

example looking for trends in website traffic data, requires data to be 

continuously processed and analyzed. Batch processing makes this more 

difficult because it breaks data into batches, meaning some events are 

broken across two or more batches.

• Easy data scalability—growing data volumes can break a batch processing 

system, requiring you to provision more resources or modify the 

architecture. Modern stream processing infrastructure is hyper-scalable, able 

to deal with Gigabytes of data per second with a single stream processor. 

This allows you to easily deal with growing data volumes without 

infrastructure changes.

3



The Components of a Traditional 
Streaming Architecture
1. The Message Broker 

This is the element that takes data from a source, called a producer, translates it 

into a standard message format, and streams it on an ongoing basis. Other 

components can then listen in and consume the messages passed on by the 

broker. 

The first generation of message brokers, such as RabbitMQ and Apache 

ActiveMQ, relied on the Message Oriented Middleware (MOM) paradigm. Later, 

hyper-performant messaging platforms emerged which are more suitable for a 

streaming paradigm. Two popular streaming brokers are Apache Kafka and 

Amazon Kinesis Data Streams.

4



Unlike the old MoM brokers, streaming brokers support very high performance 

with persistence, have massive capacity of a Gigabyte per second or more of 

message traffic, and are tightly focused on streaming with no support for data 

transformations or task scheduling. You can learn more about message brokers 

in our article on analyzing Apache Kafka data.

2. Stream Processor / Streaming Data Aggregator

The stream processor collects data streams from one or more message brokers. 

It receives queries from users, fetches events from message queues and applies 

the query, to generate a result. The result may be an API call, an action, a 

visualization, an alert, or in some cases a new data stream.

5



A few examples of stream processors are Apache Storm, Spark Streaming and 

WSO2 Stream Processor. While stream processors work in different ways, they 

are all capable of listening to message streams, processing the data and saving 

it to storage. Some stream processors, including Spark and WSO2, provide a SQL 

syntax for querying and manipulating the data.

3. Data Analytics Engine 

After streaming data is prepared for consumption by the stream processor, it 

must be analyzed to provide value. There are many different approaches to 

streaming data analytics. Here are some of the tools most commonly used for 

streaming data analytics.

6

Analytics Tool Streaming Use Case Example Setup

Amazon
Athena Distributed SQL engine

Streaming data is saved to 
S3. You can setup ad hoc SQL 

queries via the AWS 
Management Console, 
Athena runs them as 

serverless functions and 
returns results

Amazon Redshift Data Warehouse

Amazon Kinesis Streaming 
Data Firehose can be used to 

save streaming data to 
Redshift. This enables near 
real-time analytics with BI 
tools and dashboard you 

have already integrated with 
Redshift



4. Streaming Data Storage 

With the advent of low cost storage technologies, most organizations today are 

storing their streaming event data. Here are several options for storing 

streaming data, and their pros and cons.

7

Elasticsearch Text Search

Kafka Connect can be used 
to stream topics directly 

into Elasticsearch. If you use 
the Avro data format and a 

schema registry, 
Elasticsearch mappings with 

correct datatypes are 
created automatically. You 

can then perform rapid text 
search or analytics within 

Elasticsearch.

Cassandra Low latency serving of 
streaming events to apps

Kafka streams can be 
processed and persisted to a 

Cassandra cluster. You can 
implement another Kafka 
instance that receives a 
stream of changes from 

Cassandra and serves them 
to applications for real time 

decision making.



8

Streaming Data 
Storage Options Pros Cons

In a database or data 
warehouse- for example, 
PostgreSQL or Amazon 

Redshift

Easy SQL-based data analysis
Hard to scale and manage. If 

cloud-based, storage is 
expensive

In the message broker- for 
example, using Kafka 

persistent storage

Agile, no need to structure 
data into tables. Easy to set 

up, no additional 
components

Data retention is an issue 
since Kafka storage is up to 

10x more expensive 
compared to data lake 

storage. Kafka performance 
is best for reading recent 

(cached) data (cached)

In a data lake- for example, 
Amazon S3

Agile, no need to structure 
data into tables. Low cost 

storage

High latency, makes real 
time analysis difficult. 

Difficult to perform SQL-
based analysis



A data lake is the most flexible and inexpensive option for storing event data, 

but it has several limitations for streaming data applications. Upsolver provides 

a data lake platform that ingests streaming data into a data lake, creates 

schema-on-read, and extracts metadata. This allows data consumers to easily 

prepare data for analytics tools and real time analytics. 

Modern Streaming Architecture 

In modern streaming data deployments, many organizations are adopting a full 

stack approach. Vendors are providing technology solutions, most of them 

based on Kafka, which can. take streaming data and perform the entire process, 

from message ingestion through ETL, storage management and preparing data 

for analytics. 

9



Benefits of a modern streaming architecture: 

• Can eliminate the need for large data engineering projects 

• Performance, high availability and fault tolerance built in 

• Newer platforms are cloud-based and can be deployed very quickly with no 

upfront investment 

• Flexibility and support for multiple use cases

The Future of Streaming Data in 2019 and Beyond 

Streaming data architecture is in constant flux. Three trends we believe will be 

significant in 2019 and beyond: 

• Fast adoption of platforms that decouple storage and compute—streaming 

data growth is making traditional data warehouse platforms too expensive 

and cumbersome to manage. Data lakes are increasingly used, both as a 

cheap persistence option for storing large volumes of event data, and as a 

flexible integration point, allowing tools outside the streaming ecosystem to 

access streaming data.

• From table modeling to schemaless development—data consumers don’t 

always know the questions they will ask in advance. They want to run an 

interactive, iterative process with as little initial setup as possible. Lengthy 

table modeling, schema detection and metadata extraction are a burden.

10



• Automation of data plumbing—organizations are becoming reluctant to 

spend precious data engineering time on data plumbing, instead of activities 

that add value, such as data cleansing or enrichment. Increasingly, data 

teams prefer full stack platforms that reduce time-to-value, over tailored 

home-grown solutions.

You can read more of our predictions for streaming data trends here.

Want to enhance your streaming architecture? Upsolver's streaming data 

platform processes event data and ingests it into data lakes, data warehouses, 

serverless platforms, elasticsearch, and much more. Furthermore, it enables real 

time analytics, using low-latency consumers that read from a Kafka stream in 

parallel. It is a fully integrated solution that can be set up within hours. 

By using Upsolver, you get the best of both worlds—low cost storage on a data 

lake, easy transformation to tabular formats, and real time support. Begin your 

free trial to start building a next-gen streaming data architecture.

11

https://www.upsolver.com/blog/top-7-trends-in-streaming-data-for-2019
https://www.upsolver.com/free-trial

