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Many organizations gravitate towards data lakes as a means to 

reduce friction and complexity in their IT infrastructure, and to 

store large volumes of data without the need for lengthy data 

transformation on ingest. 

However, simply pouring all of your data into object storage such 

as Amazon S3 does not mean you have an operational data lake 

quite yet; to actually put that data to use in analytics or machine 

learning, you will need to build ETL flows that transform raw data 

into structured datasets you can query with SQL.

There are many different options for data lake ETL - from 

open-source frameworks such as Apache Spark, to managed 

solutions offered by companies like Databricks and StreamSets, 

and purpose-built data lake ETL tools such as Upsolver. When 

evaluating such tools, it’s important to understand the unique 

https://www.upsolver.com/blog/popular-stream-processing-frameworks-compared
https://www.upsolver.com/
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challenges of data lake ETL compared to traditional database 

ETL, and to choose a platform that will be able to address 

these specific hurdles.

Let’s look at the top 6 factors you should consider when 

evaluating a data lake ETL platform - whether open-source, 

proprietary, or custom-developed.

Building a data lake? Get some inspiration by checking out 4 Examples of Data 

Lake Architectures on Amazon S3.

1. Ability to perform stateful 
transformations - ETL vs ELT

The ability to perform joins, aggregations and other stateful 

operations plays a crucial role when analyzing data from 

multiple sources, and is a basic feature available in traditional 

https://www.upsolver.com/wp/data-lake-examples
https://www.upsolver.com/wp/data-lake-examples
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Executive Summary

ETL frameworks.  However, in a decoupled architecture this 

core functionality is often difficult to implement. 

In data warehousing, a common approach is to rely on an ELT 

(extract-load-transform) process in which data is sent to an 

intermediary database or data mart.  Stateful 

transformations are then performed using the database’s 

processing power, SQL and historical data already 

accumulated, before being loaded to the data warehouse 

table.

In a data lake, we wouldn’t want to rely on a database for 

every operation, as that defeats the purpose of reducing 

costs and complexity by decoupling the architecture. When 

evaluating data lake ETL tools, make sure to choose a 

transformation engine that can perform stateful operations 

in-memory and support joins and aggregations without an 

additional database.



5

2. Support for evolving 
schema-on-read
Databases and SQL are designed around structured tables. 

However, data lakes are typically used as repositories for raw 

data in structured or semi-structured form (e.g. log data in 

JSON format). 

Since it’s impossible to query data without some kind of 

schema, data lake ETL tools need to be able to extract 

schema from raw data and to update it as new data is 

generated and the data structure changes. One specific 

challenge to keep in mind in this regard is the ability to query 

arrays with nested data, which many ETL tools struggle with.

3. Optimized object storage for 
improved query performance

A database optimizes its file system to return query results 

quickly, but trying to read raw data directly from a data lake 

will often result will result in terrible performance (up to 
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100-1000x higher latencies). Data needs to be stored in 

columnar formats such as Apache Parquet and small files 

need to be merged to the 200mb-1gb range in order to 

ensure high-performance, and these processes should be 

performed on an ongoing basis by the ETL framework you 

have in place.

Traditional ETL tools are built around batch processes in 

which the data is written once to the target database; a data 

lake ETL tools should write the data to the lake multiple times 

in order to continuously optimize the storage layer for query 

performance.

4. Integration with metadata 
catalogs

One of the main reasons to adopt a data lake approach is 

because we want to store large amounts of data now and 

decide how to analyze it later. Data lakes are meant to be

https://www.upsolver.com/blog/small-file-problem-hdfs-s3
https://www.upsolver.com/blog/small-file-problem-hdfs-s3
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flexible and open in order to support a wide variety of 

analytics use cases (see Understanding Data Lakes and Data 

Lake Platforms).

A core element of this open architecture it to store metadata 

separately from the engine that queries the data. This makes 

it easy to replace query engines or to use multiple engines at 

the same time for the same copy of the data. 

For example, we might use Hive Metastore or AWS Glue Data 

Catalog to store metadata, which we would then query using 

Apache Presto, Amazon Athena and Redshift Spectrum - with 

all queries running against the same underlying data.

A data lake ETL tool should support this open architecture by 

being closely integrated with the metadata catalog - so that 

metadata is both stored in the catalog and continuously 

synced with every change (location of objects, schema, 

partition), so that data remains easily queryable by various 

services. 

https://www.upsolver.com/blog/understanding-data-lakes-and-data-lake-platforms
https://www.upsolver.com/blog/understanding-data-lakes-and-data-lake-platforms
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5. Enabling ‘time-travel’ on object 
storage
One of the advantages of storing raw data in a data lake is the 

ability to ‘replay’ a historical state of affairs. This is hard to 

achieve in databases as they store data in a mutable state, 

which makes testing a hypothesis on historical impossible in 

many cases - e.g., if we choose to reduce costs by 

preprocessing or pruning the data before loading it into the 

database. Even when it is possible, the performance stress and 

costs of running such a query could make it prohibitive, 

creating tension between operations and exploratory analysis.

Data lakes are based on an event sourcing architecture where 

raw data is stored untouched. When a hypothesis presents 

itself, historical data is streamed from object storage for quick 

validation. Data lake ETL should reduce the friction of 

orchestrating such ad-hoc workloads and make it easy to 

extract a historical dataset, without creating large operational 

overhead.
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6. Ability to update tables over time
While databases typically support updates and deletes to 

tables, data lakes are composed of partitioned files which 

predicates on an append-only model. This can create 

difficulty in storing transactional data, implementing CDC in a 

data lake, or deleting specific records for GDPR compliance.

Modern data lake ETL tools should provide the means to 

bypass this limitation by enabling upserts in the storage layer, 

as well as in the output tables being used for analytic 

purposes.

Want to learn more about Data 
Lake ETL?
● Schedule a demo of Upsolver to see the power of modern data lake ETL 

in action.

● Check out our guide to improving the performance of Amazon Athena.

● Read a case study of how Sisense transforms 70bn records into usable 

data.

https://www.upsolver.com/solutions/implement-change-data-capture-your-aws-data-lake
https://www.upsolver.com/solutions/implement-change-data-capture-your-aws-data-lake
https://www.upsolver.com/schedule-demo
https://www.upsolver.com/blog/aws-athena-performance-best-practices-performance-tuning-tips
https://www.upsolver.com/case-studies/sisense-s3-data-lake
https://www.upsolver.com/case-studies/sisense-s3-data-lake

