FLON,

=e et P

What is a Business Object?

FlowWright business object (BO) is an object that gives design and real time access to business objects
from other systems/application. Think of it as a proxy for business objects. Business objects are
implemented using a simple interface “deIBusinessObject”.

1 Business Objects

Business Objects

o0 TvEDe 8

Create Import Remove ypdate Export Table Auto Properties Inputs Usage
Detect
Edit View Statistics

v
clsPersonBO

Business objects are configured with a class name, namespace and the DLL file they belong to. Once
configured, they become available within the workflow designer for defining objects that are business
object type.

After defining these business objects, these business objects can be used within processes to get and set
their property values. By using the step “getBusinessObject”, the business object can be retrieved at
runtime and then its properties used within other computations. Let’s say the “Person1” BO has a
property called “age”. This property can be referenced within other steps such as the “Decision” step to
perform a comparison such as the following: int.Parse("cDevBO.Personl.age") == 15

TV RIGHT

Writing a custom Business Object
A custom BO can be implemented using a the interface “deIBusinessObject”. Below is the sample
code the clsPersonBO business object.

using System;

using System.Collections;

using System.Collections.Generic;
using System.IO;

using FlowWright.cDevDecisionEngine;

namespace FlowWright.cDevBusinessObjects

{

public class clsPersonBO : deIBusinessObject

{

public object getObject(clsEngineContext oEngineContext, Hashtable oInputPar
ameters)

{

clsPerson oPerson = new clsPerson(oInputParameters["name"].ToString(), int.P
arse(oInputParameters["age"].ToString()));

return (oPerson);

}
public List<string> getInputParameterKeys()
{
List<string> oList = new List<string>();
oList.Add("name");
oList.Add("age");
return (olList);
}
public Type getObjectType()
{
return (typeof(clsPerson));
}
public List<string> getDynamicPropertylList()
{
List<string> oList = new List<string>();
oList.Add("alpha");
oList.Add("beta");
return (olList);
}

public string getDynamicPropertyValue(clsEngineContext oContext, string key)
{

return (key + 1.ToString());

Vet

public bool setDynamicPropertyValue(clsEngineContext oContext, string key, s
tring val)

{
File.AppendAllText(@"c:\temp\eventdata\dyna.txt", key + " - " + val);
return (true);
}
}
public class clsPerson
{
public string name { get; set; }
public int age { get; set; }
public clsData oData { get; set; }
public clsPerson(string name, int age)
{
this.name = name;
this.age = age;
Random rnd = new Random();
this.age = rnd.Next(1, 100);
this.oData = new clsData() { numl = 5, num2 = 7 };
}
}
public class clsData
{
public int numl { get; set; }
public int num2 { get; set; }
}

FLON
WRIGHT

Camar B b SO ok
Once the custom BO is built, place the DLL file within the FlowWright’s “bin” folder and use the auto
detect feature to auto configure the BO.

) Business Objects

Business Objects

OB ' wiL BO £

Create Import Remove ypdate Export Table Auto Properties Inputs Usage
Detect
Edit View Statistics

Configure Auto Detected
2 Business Objects

v
clsPersonBO

Using the Business Object within a Workflow process
First make sure the above described “clsPeronBO” BO is configured within the Business Objects section
of FlowWright’s Configuration Manager. Create a new Workflow Definition called “TestBO Def”.

Create Definition

Enter Definition Name:*

TestBO Def|

Open Designer

FLOW,

RIGHT

Crasred D CORn WOk

Next open the new “TestBO Def” definition within the graphical designer.

- 0.
=% cDevWorkflow v8.7 Welcome, Admin User <= &

Dashboard
o > & Definitions

Definitians Cefinitions
Get — J Add
CeAE1BEORC -~ & E Q
i, Instances # set 1113 B o
e & Create Master Do | Rename Remove Ren Copy Snapshots Update Get Render Report | . History
Variables stances Waiting [
Instances XML BEMN View Favorites
Opens the designer for the
Last 10 Updated | Last| selected definition vorites | All
B Forms
Search:

B Business Intelligence Created On Created By updated On Used By Instances

Definition Name

12/11/2015 11:39:26 AM 12/11/2015 11:39:26 AM

/ Steps

Using the designer toolbar button “Manage Business Objects”, let’s define a business object to be used
within the process.

Show Labels - TestBO Def - v8.7
b4 All Steps Home ul
8 e o M=T W [[9™ Q)
. s ; B
Show Grid Define Manage Validate Import Import Export Save Snapshot Undo Redo Delete 5 Search
omment

I' L’ Index Variables | Business Objects Step Variables ~ PNG Definition Management
- ~ Design Edit

~ ®
B«

Manage Business Objects Ul will render within the right pane as follows:

Manage Business Objects

Add BO

Type:

clsPersonBO v

Used By Steps ﬂ

FLO
WDIGHT

e Dy OO ru o kLo

Let’s create a process level Business Object called “Personl” that is type “clsPersonBO”.

UL SIS 150 Manage Business Objects

Add BO Add BO

‘ Person1 ’

Type: Type:
clsPersonBO v

:> clsPersonBO v
m
Remove

Person1:clsPersonBO

Used By Steps
Used By Steps Save

Now that the Business Object is defined, let’s start using the BO within the process. First, is to get the
BO using the step “getBusinessObject”.

@

start

*

getbusinessobject

FLON

W RIGHET

Click the “getbusinessobject” step to configure its properties:

Step Properties

Incoming Connections: 1
Outgoing Connections: 0

Name

get Personl BO

Description

parms to the business object*

time to live amount
time to live type

load properties on demand

Log Message

Documentation

You can also configure few other properties such as whether to load properties on demand and the time
to live (ttl) for business object. By configuring time to live or ttl, business object will automatically
update itself after the expiration period. So, if you have a BO that has an expiration of 10 minutes,
whenever the processes accesses that business object, it will check when the last time the BO was
updated, if it has expired, it will refresh itself automatically to provide the latest information to the

process.

Since this BO has a property called “age” let’s use that property to make a decision. Let’s drag a decision

[cobra/cdevworkflow/deBoProps.aspx?fieldName =boPropsatcols=Param Name Param Value - Google Chrome -

O

x

cobra/cdevworkflow/deBoProps.aspx?fieldName=boProps&cols=Param%20Name,Param%20Value

Select Business Object: Personi:clsPersonBO v
Name Value

name Je T

age 45\

@\lar\ahles

step on to the designer canvas and connect to the “getbusinessobject” step.

@ — ¢

start

~@

get Person1 BO check age is > 18

FLO
&//RIGHT

oreasred Dy CORn Aok

Let’s use the decision step to figure out if the Personl.age is great than 18 years. Click the “decision”

step and configure the properties.

Step Properties

"/ i g

Incoming Connections: 1
Outgoing Connections: 0

Name

check age is > 18

Description

condition to evaluate®

int.Parse(cDevBO.Personl.age) > 18

Log Viessage

Documentation

4

Let’s save the changes to the definition and get ready to execute an instance based on this definition.

Home ul

7] - r

® O EC
e L
Show Grid Define Manage Validate Import

Index Variables Business Objects Step

Design

TestBO Def - v8.7

M =

Import
Variables

Export
PNG

wl
Save
Definition

0 B

Snapshot Undo Redo Delete
Management

Search

(7

Comment
Edit

FLOW,
WRIGHT

Crasred D CORn WOk

Navigate to the Workflow Instances menu item and create a new Instance.

Create Instance

Select Definition:

TestBO Def v

® By Last Modified By Name

Enter Instance name:

TestBO Inst

Execute:

® None Execute Execute with params

Once the Instance is created, select the Instance and execute the Instance.

& Instances

Instances Utils
I el § B L +
U / @ wt u e 2 | Remove
Create Run Refresh Reset Reset To Step Remove aport Execute [Execute Get Execution Render Report View View Krehive
Engine Page Params View Subworkflows Instance
Reset Execfte XML View Favorites

Last 10 Updated | My Instances = Favorites | By Status ~

search:

A A

Instance Name $ Created On $ Started On $ Ended On Status Wait Steps $ Definition Name

TestBO Inst 12/11/2015 12:16:16 PM NotStarted TestBO Def

After executing the Instance, the Instance should have a status of “finish”. Click the “Render” button on
the toolbar to render the executed Instance.

Instances Utils
y) - "
Create Run Refresh Reset Reset To Step Ly ¥ bort Execute Execute Get Exect Render eport View View R
Engine Page Params View Subworkflows Instance
Reset Execute XML View Favorites

FLO
&//RIGHT

Creasree Dy CORR WOk

The rendered Instance will look as follows:

22, Instances Render Instance

Render Instance

o " U w46

H$+O0O0

Execution Execution Task View Tasks Forms Users Log Business History Get Step Execution
Only View View Instance Messages Data
Render XML Count
TestBO Inst

stat oet Persan1 BO

) R IR >

check age s> 18

Click the “check age is > 18” step to drill down into the step information.

2, Instances ~ Render Instance

Render Instance

U U w4686

Execution Execution Task View Tasks Forms Users Log Business
Only View View Instance Messages Data
Render

H$+4O0O0

History Get Step Execution

XML Count

TestBO Inst

= g

check age s> 18

FLON
&/”RIGHT

Crasred D CORn WOk

The decision step should render as follows:

@ Step Properties
Step Properties
- 009 8

Execution Execution Variables Business Pproperties Tasks Errors
Iteration Info Object

TestBO Inst: Execution Information

Step Name check age is > 18

Step Type decision

Step Status complete

Step Return Value True

Step Started At 12/11/2015 12:21:18 PM
Step Ended At 12/11/2015 12:21:19 PM

In reference to the above graphic, the decision step evaluated the expression
‘int.Parse(“cDevBO.Personl.age”) > 18’ and returned a value of “True” for the return value of the step.
Click the “Properties” button to view the properties for the step.

TestBO Inst: Properties

Refresh Properties from Design Refresh Non-Executed Steps from Design

condition E\\ int.Parse(cDevBO.Personl.age) > 18

documentation
itemDescription
itemName check age is > 18

logMessage

FLO
&//RIGHT

Creasree Dy CORR WOk

Click the little icon next to the condition to view the expression with BO replacement values:

TestBO Inst: Properties

Refresh Properties from Design Refresh Non-Executed Steps from Design

condition E{ int.Parse("42") > 18

documentation
itemDescription
itemName check age is > 18

logMessage

