

What is a Business Object?
FlowWright business object (BO) is an object that gives design and real time access to business objects
from other systems/application. Think of it as a proxy for business objects. Business objects are
implemented using a simple interface “deIBusinessObject”.

Business objects are configured with a class name, namespace and the DLL file they belong to. Once

configured, they become available within the workflow designer for defining objects that are business

object type.

After defining these business objects, these business objects can be used within processes to get and set

their property values. By using the step “getBusinessObject”, the business object can be retrieved at

runtime and then its properties used within other computations. Let’s say the “Person1” BO has a

property called “age”. This property can be referenced within other steps such as the “Decision” step to

perform a comparison such as the following: int.Parse("cDevBO.Person1.age") == 15

Writing a custom Business Object
A custom BO can be implemented using a the interface “deIBusinessObject”. Below is the sample

code the clsPersonBO business object.

using System;
using System.Collections;
using System.Collections.Generic;
using System.IO;
using FlowWright.cDevDecisionEngine;

namespace FlowWright.cDevBusinessObjects
{
 public class clsPersonBO : deIBusinessObject
 {

 public object getObject(clsEngineContext oEngineContext, Hashtable oInputPar
ameters)
 {

 clsPerson oPerson = new clsPerson(oInputParameters["name"].ToString(), int.P
arse(oInputParameters["age"].ToString()));

 return (oPerson);
 }

 public List<string> getInputParameterKeys()
 {
 List<string> oList = new List<string>();
 oList.Add("name");
 oList.Add("age");
 return (oList);
 }

 public Type getObjectType()
 {
 return (typeof(clsPerson));
 }

 public List<string> getDynamicPropertyList()
 {
 List<string> oList = new List<string>();
 oList.Add("alpha");
 oList.Add("beta");
 return (oList);
 }

 public string getDynamicPropertyValue(clsEngineContext oContext, string key)
 {

 return (key + 1.ToString());
 }

 public bool setDynamicPropertyValue(clsEngineContext oContext, string key, s
tring val)
 {

 File.AppendAllText(@"c:\temp\eventdata\dyna.txt", key + " - " + val);
 return (true);
 }
 }

 public class clsPerson
 {
 public string name { get; set; }
 public int age { get; set; }

 public clsData oData { get; set; }

 public clsPerson(string name, int age)
 {
 this.name = name;
 this.age = age;

 Random rnd = new Random();
 this.age = rnd.Next(1, 100);

 this.oData = new clsData() { num1 = 5, num2 = 7 };
 }
 }

 public class clsData
 {
 public int num1 { get; set; }
 public int num2 { get; set; }
 }
}

Once the custom BO is built, place the DLL file within the FlowWright’s “bin” folder and use the auto

detect feature to auto configure the BO.

Using the Business Object within a Workflow process
First make sure the above described “clsPeronBO” BO is configured within the Business Objects section

of FlowWright’s Configuration Manager. Create a new Workflow Definition called “TestBO Def”.

Next open the new “TestBO Def” definition within the graphical designer.

Using the designer toolbar button “Manage Business Objects”, let’s define a business object to be used

within the process.

Manage Business Objects UI will render within the right pane as follows:

Let’s create a process level Business Object called “Person1” that is type “clsPersonBO”.

Now that the Business Object is defined, let’s start using the BO within the process. First, is to get the

BO using the step “getBusinessObject”.

Click the “getbusinessobject” step to configure its properties:

You can also configure few other properties such as whether to load properties on demand and the time

to live (ttl) for business object. By configuring time to live or ttl, business object will automatically

update itself after the expiration period. So, if you have a BO that has an expiration of 10 minutes,

whenever the processes accesses that business object, it will check when the last time the BO was

updated, if it has expired, it will refresh itself automatically to provide the latest information to the

process.

Since this BO has a property called “age” let’s use that property to make a decision. Let’s drag a decision

step on to the designer canvas and connect to the “getbusinessobject” step.

Let’s use the decision step to figure out if the Person1.age is great than 18 years. Click the “decision”

step and configure the properties.

Let’s save the changes to the definition and get ready to execute an instance based on this definition.

Navigate to the Workflow Instances menu item and create a new Instance.

Once the Instance is created, select the Instance and execute the Instance.

After executing the Instance, the Instance should have a status of “finish”. Click the “Render” button on

the toolbar to render the executed Instance.

The rendered Instance will look as follows:

Click the “check age is > 18” step to drill down into the step information.

The decision step should render as follows:

In reference to the above graphic, the decision step evaluated the expression

‘int.Parse(“cDevBO.Person1.age”) > 18’ and returned a value of “True” for the return value of the step.

Click the “Properties” button to view the properties for the step.

Click the little icon next to the condition to view the expression with BO replacement values:

