

In an Agile world, software and IT teams are
under constant pressure to move faster.
Typically, this means decreasing the relative
length of delivery time while continuing to
improve quality on each successive release.
At the same time, there’s always pressure to
minimize testing costs.

Many organizations who have adopted
agile development initiatives have focused
on shortening sprints and incorporating
customer feedback into features faster.
But soon they run into severe quality issues,
and their customers end up suffering.
An emphasis on testing and quality has

made a huge emergence in the software
market, where “move fast and break things”
is no longer viable. A quality assurance
movement known as “shift-left testing” has
come along in response to this mantra.

This e-book will cover 1) why you won’t
survive if you don’t shift, 2) how your
testing processes should change when you
adopt a shift-left testing methodology, 3)
who needs to be involved in this movement
and how, and lastly, 4) we’ll hear from
individuals about how they pioneered the
shift in their teams.

The Complete Guide to Shift–Left Testing 1

3The Complete Guide to Shift–Left Testing

THE NEGATIVE EFFECTS ON CULTURE

THE HIDDEN COSTS

THE BENEFITS OF SHIFT-LEFT TESTING

SHIFT-LEFT TESTING RESHAPES PRODUCT DEVELOPMENT

 Design Phase: Testing feature ideas

 Using tests continually to guide development

 Designing test plans

 Test early and often, automate early and often

 It’s not just about testers

OTHERS HAVE MADE THE SHIFT - AND YOU CAN TOO

RESOURCES FOR CONTINUED LEARNING

4The Complete Guide to Shift–Left Testing

In the past, most software teams employed
a waterfall methodology. The workflow for
these teams resembles a staircase. In this
conventional approach to development, only
the product team works with customers.
They eventually return to internal teams
with user requirements, a roadmap, and an
aggressive schedule. Then, a short meeting
occurs at which developers walkthrough the
new feature proposals. Tasks are assigned
and everyone goes off to their silos to work.
If any testers get access to these early
stages, it’s typically limited to observing
the developer planning session. With little
involvement up to that point, QA is then
asked to give effort/duration estimates on
what it will take to test the new code.

Waterfall Model
www.SoftwareTestingHelp.com

5The Complete Guide to Shift–Left Testing

Testers continue to wait for new builds, and
also wait for developers to declare code-
complete so that regression testing can move
ahead. A lot of time is spent idling or trying to
avoid being idle. But things can be - and must
be - much better! Productivity can increase
significantly when testing is done further
upstream.

On too many projects, and even with too
many agile teams, testing is low-priority
consideration because It’s much easier
to get developers together with product
staff well upstream in the delivery pipeline.
It’s much easier to focus on building the
product. A succession of development

sprints continues, but it’s difficult to convince
product and development to weave testing
into each iteration. Early testing is often a
struggle.

The result is that testing gets squeezed into
a short window prior to customer release. As
many teams will attest, this passive approach
to testing creates quality problems and builds
tension between developers and testers. In
many companies, this is lamentably the way
things are done. For managers that want to
move faster, testing is seen as a bottleneck.
It’s important to realize that testing only
becomes a bottleneck when testing isn’t
approached as a whole-team effort.

6The Complete Guide to Shift–Left Testing

Beyond the cultural burdens that the
traditional waterfall development model
brings, you have the exponential costs of
growing technical debt when fixing software
defects in production. According to the IBM
Systems Sciences Institute, the relative

cost of fixing defects in production or
maintenance phase of the development life
cycle is 100x more than the design stage
when testers can be involved to drive quality
assurance and testing efforts in subsequent
phases of development.

Relative Sosts to Fix Software Defects (IBM Systems Sciences Insitute)

7The Complete Guide to Shift–Left Testing

Shift-left does more than help your team
find bugs earlier. It can also help a team
collaborate better with all stakeholders,
improve collective competency, and craft
more realistic test cases.

Shift-left testing brings with it several cultural
benefits since it places greater emphasis on
these areas (from the well-known principles
of the agile manifesto):

• Customer collaboration is more
important than contract negotiation.

• Responding quickly to change is more
important than strict adherence to a
plan.

• Interactions among individuals are more
important than processes and tools.

• Working software is more important than
comprehensive documentation.

8

In summary, shift-left testing enables:

• More intensive focus on customer
requirements leading to better product
design and user experience.

• Early, progressive, continuous testing
that reduces the number of defects.

• Increased efficiency and reduced
technical debt, reducing costs.

• Improved software team culture,
competency, morale, and employee
retention.

Shifting left means getting everyone on the
delivery team engaged in testing activities.
Testing changes from a scramble right before
release to something your team talks about
and does every day. Let’s look at some
healthy changes you should be making to
your testing processes when you adopt a
continual, holistic testing approach.

The Complete Guide to Shift–Left Testing

Shift-left testing doesn’t mean that no
testing occurs in production, or that testing
is completely shifted to only the design
phase of software development. Shift-
left injects testing into each sprint. Some
testing should still occur at the very end,
but it should be residual. It should be also be
performed relatively faster since most of the
problems should have already been found
and mitigated.

This shift won’t only result in some early
design changes, but the testers will learn
first-hand about the ultimate standard for
testing the release. For example, testers

may realize that it’s much more efficient to
work closely with component and system
developers as they learn about the product
specs. They can ask probing questions, begin
forming testing approaches and formulate
testing scenarios. Other testers might meet
with the API developers and work to create
test stubs for new services.

As testers are actively participating more
in these earlier phases, they are effectively
“shifting left” in the waterfall sequence of
events in the software delivery pipeline. In
practice, testers can progressively test new
features as they are made available.

The Complete Guide to Shift–Left Testing 1

10The Complete Guide to Shift–Left Testing

DESIGN PHASE:
TESTING FEATURE IDEAS

As the product team and delivery teams learn
how their customers use the product and
what value they are still seeking in it, they
get new ideas for features. In Waterfall, the
product design team would wait until they
had a critical mass of new features, then start
a long process of designing them. Testers
might not have even been aware that new
features were underway. In modern software
development, we can test new feature ideas
right away, by asking questions like:

• What’s the purpose of the feature?
What problems does it solve for our
customers? Our business?

• How will we know this feature is
successfully meeting customer needs,
once it is in production?

• What’s the smallest slice of this feature
we can build and use as a “learning
release” to make sure it has value?

• What’s the worst thing that could happen
when people use this feature? What’s
the best?

11The Complete Guide to Shift–Left Testing

USING TESTS
CONTINUALLY
TO GUIDE
DEVELOPMENT

Here’s a typical “shift left”
scenario: Your team has
decided to build a feature.
The product owner has
written an epic for it and the
team has sliced it into small,
testable stories. You’re having
a specification workshop or a
discovery session with a small
group to discuss the stories
before the planning session
with the whole delivery team.

Free Delivery
Free delivery is offered to VIP customers once they purchase a certain number of books.
Free delivery is not offered to regular customers or VIP customers buying anything
other than books.

Customer Type
VIP 5 books Free, Standard

Standard

Standard

Standard

Standard

4 books

10 books

5 dishwashers

5 books, 1 dishwasherVIP

VIP

VIP

Regular

Cart Contents Delivery

Specification by Example: How successful teams deliver the right software, Gojko Adzic, pg. 116

Refining the Specification: An Example

12The Complete Guide to Shift–Left Testing

Kicking this type of discussion off by
asking “How will we test this?” leads to a
productive discussion. The discussion can
help you understand the feature from the
standpoint of individual stories and this will
lead to how to implement tests for those
stories at all levels including unit, service
level/API, UI, or other levels as appropriate.
The team will design testable code, which
leads to more reliable code that is easier to
understand and maintain.

13

DEFINING TEST PLANS

Instead of formal test plans, capture a few
examples of desired and undesired behavior
for each story as they are broken down.
The team can turn those into executable
tests that guide development. Once the
feature is in production, these tests become
living documentation of how it works, and
automated regression tests can make sure
future changes don’t break it. As each feature
is built, more test cases will come to mind to
automate or explore manually, which is one of
the ways to improve your team’s chances to
deliver exactly what your customers want.

For most business domains, the days of
heavyweight test plans are over (it’s

questionable how many people ever read
them anyway!). Many teams find mind maps
are a better solution for planning and tracking
testing. A simple one-page test plan can also
work well, as well as a test matrix written on
a whiteboard. Your team should be given the
freedom to experiment with different formats
to see what works best for them.

Mind mapping on a whiteboard can be an
effective way to discuss user stories

The Complete Guide to Shift–Left Testing

14The Complete Guide to Shift–Left Testing

TEST EARLY AND OFTEN,
AUTOMATE EARLY AND OFTEN

Models such as the test automation
pyramid help guide discussions around
how to automate various types of tests.
Such frameworks provide a vehicle for
discussing how to automate testing for a
particular feature at different levels, which
helps to share the testing burden across
both developers and testers. Developers
may discover that it would be easier for
them to test-drive their code with API-level
tests, or, they may find that they can test
everything at the unit level and no higher-
level tests are needed.

Unit Tests / Component Tests
(Developer tests)

API / Service Layer
Business Rules

Functional Tests

Workflow
Tests

Through the UI

Manual/
Exploratory

Tests

15The Complete Guide to Shift–Left Testing

In agile development, features are built
incrementally which means you can
automate as you go. Even if a capability isn’t
fully built out, you can write the most basic
test for it and build onto both the production
and the test code for this capability in pieces.
By adding and expanding automated tests
with every incremental delivery, you avoid a
scramble to automate tests last minute, and
even better, avoid putting test automation
off until a future iteration, which would add
technical debt.

If some or all of your product isn’t yet
supported by automated tests, that’s another
challenge for the whole team to tackle.
Nobody has time and money to automate
everything, especially in the short term.

It would be beneficial for the team to get
a representative cross-functional group
together and draw the high level system
architecture on a whiteboard (real or virtual),
and identify the riskiest areas to make
intelligent decisions about what to automate
next. A framework for risk-based discussions
is Ashley Hunsberger’s Test Suite Canvas,
pictured on the next page.

When testers, developers and other team
members collaborate to automate tests
as coding proceeds, there’s less waiting
around to get questions answered, more
expertise to write maintainable tests,
and less rework. Quite a contrast to the
handoffs in waterfall processes.

16The Complete Guide to Shift–Left Testing

TEST SUITE CANVAS:

Why

Engagement and failure response Maintainability Effectiveness

Dependencies Constraints Pipelining/Execution Data

What business
question am I trying to
answer with the suite?

What risk does this
suite mitigate?

What systems or tools
much be functional for
this suite to run?

What has prevented us
from implementing this
suite in an ideal way?

What are known
workarounds?

Is the suite part of a
pipeline?

When is it triggered?

How often does it run?

So we mock, query,
inject?

How is test data
setup/managed?

Who created the suite?
Who contributes to it now?
Who is not involved but should be?
In the event of a test failure, who
addresses failures and how?

What is the code review process?
What documentation exists?

How do we know the suite is effective?
What is it finding?
What is it preventing?

 A framework for risk-based discussions, Ashley Hunsberger’s Test Suite Canvas
 can help your team make intelligent decisions about what to automate next.

17

IT’S NOT JUST ABOUT TESTERS

Though we’ve been explaining how testers
need to get involved earlier by shifting left,
the same goes for developers who need
to shift right and get more involved with
testing. Developers need to write tests as
part of writing new features. Testers can work
together with developers to walk through how
to write effective tests, and once written,
tests can be managed and maintained like
code where developers make updates to the
tests along with core product code changes.

BDD (behavior-driven development) is
another strong collaborative process that can
include even non-technical stakeholders in

the design phase of a new feature. BDD gets
the team, including business stakeholders,
to discuss the desired behavior of a unit of
software based on requirements driven by
the business goals, and more importantly,
outlines who the ideal user in mind is. As a
result, benefits that this unit of software
should achieve for the ideal user is top of
mind for everyone. In other words, BDD is an
“outside-in” activity as the business analysts
collaborate with developers, testers, and
product owners to define the behavior of the
feature from the perspective of the business
value it delivers.

The Complete Guide to Shift–Left Testing

18The Complete Guide to Shift–Left Testing

TDD (test-driven development) is about
automating tests and running them early and
often, which often involves automating more
than just the tests. First, the infrastructure
for this needs to be in place. This infrastrcture
needs to automate the deployment of new
builds with continuous integration and
delivery pipeline management, source control,
and issue tracking platforms that work well
together. Equally importantly, find a testing
platform that is going to integrate into all of
the pieces of that pipeline.

Consider implementing a testing-as-a-
service platform such as mabl that can be
easily triggered to kick off end-to-end UI
tests automatically on new deployments,

integrate into Jira and Slack to create issues
when defects are detected, and runs in the
cloud with on-demand resources to reduce
the infrastructure management burden on
your team.

Of course, you can’t expect a well-oiled
machine overnight. Start slow; implement
the shift-left methodology to one small team
first and have regular meetings to discuss
how success is measured. Discuss how to
overcome challenges the team is facing with
the new process implementation. Document
the process once the kinks are ironed out,
then roll it out to the rest of the teams.

Getting involved with testing at all points in
the continuous development cycle can be
daunting, but there are plenty of success
stories from the testing community that
show that it’s possible no matter what your
respective role is.

Andrew Morton, Isabel Evans, and Ken
Talbot wazill reveal what first steps they
took and how they snowballed into a
movement that benefited everyone around
them.

The Complete Guide to Shift–Left Testing 1

ANDREW MORTON

Now the DevBoss of Ministry
of Testing and @TestingChef
on Twitter, Andrew used a
fairly radical approach to “shift
left”. He decided the best way to
show developers how to test was to be
a developer who tested. If you have some
coding experience or are interested in learning,
combining your testing expertise with hands-
on development work is a great option.

“I knew that to be as effective as
possible, I needed to be around when

decisions about a project were being
made, from initial kick off onwards.

To this end, I used to check my colleagues’
calendars each day, and if there was a
meeting scheduled I thought I should be
in, would ask to be invited. This was the

first step in shifting left, as I
was now able to be involved
at the start of a project,

and when features were
released to testing.

However, there was still a
gap that meant I wasn’t testing

throughout the entire development cycle
- and that was the part where code is
being written. In theory, as a tester, this is
not my realm to work in and developers
should be doing things required to check
their own work. However, over the years
I have noticed that most developers are
not taught testing (rather, they pick it up
‘on the job’ and learn from code written by
others in the same situation), and even if
they are, they are not necessarily great at
applying it.

The question became how do we fix that?
The company I was in tried moving testers

20The Complete Guide to Shift–Left Testing

https://twitter.com/TestingChef

out of the dedicated testing role andinto
a test coaching role (i.e. we wouldn’t
do any testing ourselves, but help the
development teams do testing instead).
Whilst this kind of worked, it wasn’t
very satisfying to me, because I had
the feeling (probably erroneously, I
admit) that I wasn’t getting across to
developers because I wasn’t one.

So I changed that. Deciding that the
best way I could show developers
how they could test and develop, was
to become a developer who tested
and developed. I had quite a bit of
programming experience from doing
E2E automation, and had just come
off a project backfilling unit tests to
replace some integration tests that
could be run at the lower level. I was
now in the position of being able to be
part of design, programming, and testing

for features that I was assigned. That
approach has stayed with me for the last
couple of years as I have continued my
developer journey.”

Andrew’s desire to “shift left” led him into a
new role where he could model good testing
practices to other developers, which was
an effective way to help them learn testing
skills. Testers pairing with developers to
automate tests, do exploratory testing, or
write production code can help transfer skills
among team members so that they can
prevent bugs and please customers.

21The Complete Guide to Shift–Left Testing

The first step in shifting left: be around
when decisions about a project are being
made, from initial kick off onwards.

ISABEL EVANS

A well-known software
and quality consultant and
international speaker with more
than 30 years experience in IT,
Isabel has seen testing change... and
not change. She remembers that the actual
correct approach to testing in waterfall was
originally to do testing at each phase, rather
than only at the very end of all the phases,
right before release. Here’s her story about
continuous testing:

“I went to a training day run by Bill
Hetzel and he was talking about the

importance of ‘Test then code’. I went back
to the place I was working and started to
implement it.

As a system tester - the only one in
the company - I wrote a report to the

managing director to
say ‘we could do things
differently and it would

save time, money and
hassle’ and he asked me to

implement it.

I implemented it first with
discussions, through testing requirements,
through testing design stages, to unit tests
designed before coding, and then testing
running through the stages from unit
to integration to system to acceptance
testing. We had a ‘stop and think and test/
review’ at every stage in our projects.

My job was to train them in testing, and
in review/inspection methods, and in how
to tailor those to risk and project size.
I would coach, help etc. Implementing
this took time, and building of trust, and
demonstrating that I could test, and find
useful improvements, and help them ditto.

22The Complete Guide to Shift–Left Testing

I saw my role as serving everyone and
enabling them to succeed.

We (we were a software house) also went
out and taught customers how to test and
how to review so they could join in at all
stages, and report back on anything live.
And we also involved a technical person
in each sales proposal, and proposal
documents were also reviewed and tested.
So in the end, testing started at presales
and went on into post delivery customer
care.

I am still proud of what I achieved there. I’m
still in touch with some of those people. At
his 70th birthday party, Managing Director
made a speech about the effect I’d had on
the company - it was his birthday, but he
chose to speak about the difference end-
to-end testing made.

Nowadays, I am taking the shift even more
seriously - if you are focused on User
Experience (UX), it is even more important
that you start at idea stage with testing
and never stop. Keep retesting your ideas,
your preconceptions of who the users are
and what they are doing, and what the
products provide for customers.”

When Isabel says “end to end testing” there,
she doesn’t just mean some automated
test that encompasses a full user journey
through all layers of an application. She
means testing from the idea end of a product
to the customers using the resulting features
in production - and as well, taking what’s
learned from customers and feeding that
back into the next new product ideas.

23The Complete Guide to Shift–Left Testing

KEN TALBOT

An English and Film graduate
who started out on a path to
be a writer and journalist, Ken’s
interest in exploring tech and
software led him to working on a small
test team where the development followed
a waterfall approach. When the company
transitioned to agile development, Ken was
able to learn much by communicating directly
with developers, system administrators and
database engineers on a daily basis. He was
able to shift away from the waterfall testing-
at-the-end approach by applying his natural
curiosity - and some courage.

“I have found - at two companies
so far - that an inquisitive nature,

coupled with as much confidence you
can muster, enables shifting left/right. I
held a mob testing session with some

new testers and graduate
devs. The devs turned into
inquisitive testers after a

few turns and the testers
were asking questions

about programmatic
design. This is something

they confessed would never have
happened in their project team.

After a recent visit to a local tech expo, our
company’s engineers were evangelising
about the DevOps ecosystem and how
‘everything is a dev problem now’ as cloud
architecture and infrastructure as code
managed by the team no longer requires
the traditional Dev-QA process. This
understandably impacted the confidence
of some of the testers, particularly the
non-technical demographic.

I felt the need to assure teams that not
only was the ‘everything is a dev problem’

24The Complete Guide to Shift–Left Testing

somewhat misinterpreted, but that if we
used that logic then test is a dev concern
and dev is a test concern. Identification
of risk and implementation of test
structures - automated or otherwise - still
requires areas of the team to specialise in
these factors. Seeding of that knowledge
must begin somewhere and this is why
testers must always be involved in
all stages of the development cycle,
especially in the architectural planning of
the shiny new cloud-based world we live
in.

Since then, I believe all of our testers have
continued to not only take an active role
in development, but also start to broaden
their knowledge of newer technologies
to better assess the changing tech
landscape.”

Testers can make their own opportunities
to start collaborating with developers,
operations experts, designers and others
to move into testing ideas on the “left”, and
learning from production use on the “right” -
along with everything in between. Testing is
an integral part of product development, not
a “phase” to be done at one particular time
in the cycle. Don’t be afraid to take your first
steps to a more holistic testing approach.

25The Complete Guide to Shift–Left Testing

An inquisitive nature, coupled with
as much confidence you can muster,
enables shifting left and right.

WHAT MANAGERS
CAN DO
From a management perspective, you may
face multifaceted challenges that can easily
halt your progress or kill your motivation.
But every challenge that you may face will
most likely be rooted in resistance to change.
You can address this with transparency:
proactively by setting the right expectations,
and reactively by instating a channel that
gives the entire team a window into the
results that shifting left has on product
quality. Here’s a few things to consider.

MAKE TESTING A WHOLE-TEAM
RESPONSIBILITY

If you want to be delivering a quality product
at a consistent basis, then everyone needs
to have a stake in the quality of the product.
That includes developers writing unit and
integration tests, quality engineers writing
API tests and UI tests for critical flows, and
then also collaborating with the product
owner and the developer to automate
strategically to make sure we were covering
the highest priority cases.

SET REALISTIC EXPECTATIONS

When your team begins to write more unit,
integration, API, and end-to-end tests, you’re

26The Complete Guide to Shift–Left Testing

going to need buy-in from both product and
engineering to deliver less features in a sprint
in order to ensure that the tests your team
has committed to writing in that sprint are
actually created.

KEEP THE ROI TOP OF MIND

After reducing how many stories or features
should be delivered per sprint, you need to
remind your team of time they’re saving by
having a test-first mindset. Help your team
quantify the ROI of finding bugs earlier on and
addressing them as quickly as possible. Not
waiting until bugs are found during regression
or by a customer ultimately saves them time
which allows them to deliver faster.

METRICS, METRICS, METRICS

The team needs to constantly see how
the shift-left movement is benefitting the
overall quality of products. You can measure
the number of bugs found, but another
way that encourages a test-first mindset
is implementing a quality index scale. Value
is assigned to a bug based on where it was
found (ex: the further along the bug is, the
higher the percentage). As a result, time-
savings can be more easily quantified and
encourages the team to keep improving on
time to resolution opposed to finding an
arbitrary number of bugs.

27The Complete Guide to Shift–Left Testing

28

Shift-left testing is a movement that the
entire software team is involved in. With
transparency, buy-in from all work units that
need to be involved, the right expectations, and
measurements in place, shift-left testing can
bring great success to your team and business.

To summarize, here are some of the
adjustments that each role needs to make to
support the shift-left testing movement.

The Complete Guide to Shift–Left Testing

29

TESTERS: Inject yourselves into the design
phase. Don’t wait for a build to become code
complete to test it. Endeavor to break down
user stories into small testable chunks to
ensure tests are effective and meaningful.

DEVELOPERS: Take part in discussions
around test planning and strategy. Your skills
can be valuable for unburdening the testing
team and reduce technical debt for yourself
later on, too. View your automated test
suites as a core part of the code base and
maintain it.

PRODUCT MANAGERS: Allocate the proper
resources for your teams to collaborate and
facilitate feedback. Adjust your expectations
and set goals that harmonize with the overall

shift-left testing strategy. This may include
expecting less feature-work per sprint and
setting quality goals for the entire team.

INFRASTRUCTURE AND DEPLOYMENT
TEAMS: Testing needs to happen early and
often, which means your deployment pipeline
needs to be available early and have a high
capacity so that tests suites can run in a
timely manner. Consider testing-as-a-service
platforms like mabl for on-demand testing
resources so you can run all your test suites
in parallel.

It’s no longer a question of why, but a
question of when. Why not start the
discussion with your team today?

29The Complete Guide to Shift–Left Testing

30The Complete Guide to Shift–Left Testing

RESOURCES FOR CONTINUED LEARNING

“Shift Left - Why I Don’t Like the Term”,
Janet Gregory, https://janetgregory.ca/
shift-left-why-i-dont-like-the-term/

“Continuous testing in DevOps”, Dan Ashby,
https://danashby.co.uk/2016/10/19/
continuous-testing-in-devops/

Discover to Deliver: Agile Product Planning
and Analysis, Ellen Gottesdiener and Mary
Gorman, https://www.discovertodeliver.com

“The Learning Release”, Ardita Karaj, https://
medium.com/@Ardita_K/the-learning-
release-70374d2450b3

“Are we shifting left or in a continuous
loop?” Augusto Evangelisti, https://
mysoftwarequality.wordpress.
com/2018/04/28/are-we-shifting-left-or-
in-a-continuous-loop/

“Key skills modern testers need”, Interview
with Janet Gregory on StickyMinds https://
www.stickyminds.com/interview/key-skills-
modern-testers-need-interview-janet-
gregory

The Three Amigos Strategy of Developing
User Stories, https://www.agileconnection.
com/article/three-amigos-strategy-
developing-user-stories

Discovery: Explore Behavior Using Examples, Seb
Rose and Gáspár Nagy, http://bddbooks.com/

“The One Page Test Plan”, Claire Reckless,
https://www.ministryoftesting.com/dojo/
lessons/the-one-page-test-plan

“Monitoring and Observability”, Cindy
Sridharan, 2017, https://medium.
com/@copyconstruct/monitoring-and-
observability-8417d1952e1c

https://janetgregory.ca/shift-left-why-i-dont-like-the-term/
https://janetgregory.ca/shift-left-why-i-dont-like-the-term/
https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/
https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/
https://www.discovertodeliver.com
https://medium.com/@Ardita_K/the-learning-release-70374d2450b3
https://medium.com/@Ardita_K/the-learning-release-70374d2450b3
https://medium.com/@Ardita_K/the-learning-release-70374d2450b3
https://mysoftwarequality.wordpress.com/2018/04/28/are-we-shifting-left-or-in-a-continuous-loop/
https://mysoftwarequality.wordpress.com/2018/04/28/are-we-shifting-left-or-in-a-continuous-loop/
https://mysoftwarequality.wordpress.com/2018/04/28/are-we-shifting-left-or-in-a-continuous-loop/
https://mysoftwarequality.wordpress.com/2018/04/28/are-we-shifting-left-or-in-a-continuous-loop/
https://www.stickyminds.com/interview/key-skills-modern-testers-need-interview-janet-gregory
https://www.stickyminds.com/interview/key-skills-modern-testers-need-interview-janet-gregory
https://www.stickyminds.com/interview/key-skills-modern-testers-need-interview-janet-gregory
https://www.stickyminds.com/interview/key-skills-modern-testers-need-interview-janet-gregory
https://www.agileconnection.com/article/three-amigos-strategy-developing-user-stories
https://www.agileconnection.com/article/three-amigos-strategy-developing-user-stories
https://www.agileconnection.com/article/three-amigos-strategy-developing-user-stories
http://bddbooks.com/
https://www.ministryoftesting.com/dojo/lessons/the-one-page-test-plan
https://www.ministryoftesting.com/dojo/lessons/the-one-page-test-plan
 https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c
 https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c
 https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c

The 1st DevTestOps platform
helping software teams shift testing left and right

www.mabl.com

Create a free account

http://mabl.com

