

Special Elite Engineers Webinar Sequence An Insider's Perspective Structural Challenges for Construction at Hudson Yards, East End Access & Harlem River Lift Bridge

Our Elite Engineer of the Month: Russell J. Jeck P.E.

Wednesday, May 20th, 2015 3:00 PM – 4:00 PM EST

Special Elite Engineers Webinar Sequence

An Insider's Perspective

Copyright Materials

This presentation is protected by US and International Copyright laws.

Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© MIDASoft Inc., 2015

Speaker Information

Russell J. Jeck, P.E.

Senior Design Engineer | Licensed PE in NY, CT, VA and MD

EXPERIENCE

Proven ability to supervise and coordinate the design and construction of large capital projects including bridges, buildings, stations, tract, and power facilities.

PROJECT

- Hudson Yards
- Verrazano Bridge
- MTA East Side Access
- Taconic Parkway over Croton Reservoir
- Yankee Stadium Station

- Harmon Rail Yard
- Moodna Viaduct
- Hudson Stations
- Hudson /Harlem Bridges

Learning Objectives

At the end of this course, participants will be able to understand:

- 1. Using Midas Civil to meet and analyze structural elements to account for
 - 1) fabrication tolerance
 - 2) member imperfection
 - 3) partial yielding of the cross-section
 - 4) boundary conditions that are not fully idealized
- 2. Using Midas Civil to model loads on structures from excavators, cranes, and other construction equipment

Hudson Yards Overview

- Construction Engineering
- Part Design Part Load Rating
- Designs of structural members for SOE's, crane runways, column restraints, anchor bolts, etc.
- Comparative Engineering
 - Sometimes better to show construction loads are less than design loads rather than providing calculations for member capacity based on a limited understanding of analysis assumptions that went into the design
 - Use of shoring and cribbing to spread loads

Two Projects in One for Tutor Perini Corporation

Construct Gateway Tunnel Extension - Amtrak

Construct "Platform" – Lower Level for Hi-Rise and Mall

Tunnel – Structural Design - Parsons Brinkerhoff

Platform and Overbuild – Structural Design - Thornton Tomasetti

Crane Engineering – Howard Shapiro and Associates

Access – Construction in an Active Railroad Yard

Hudson Yards stores trains for LIRR daily Operations – Penn Station

Strict Outage Requirements weekends and nights

Column Foundations are in between Yard Tracks – 6 ft. Clearance

Column Foundations are on Tunnel Roof

Several Column Loads are 15,000 to 30,000 kips

Calculations - Boundary Conditions

- AASHTO and AISC formulas meant for every engineer except for the ones that work for Contractors
- Must be aware of limitations of code formulas
- What is "K"?
- AISC Direct Analysis Method

Equipment - One Crane vs. Two Crane Picks

- One crane picks cog of member to be lifted is critical
- Max 70% Capacity of Chart

User Defined Properties

aterial Data				— ×-]	Material Data
General						General
Material ID 3		Name	A588-50			Material ID
Elasticity Data						Elasticity Data
Type of Design Steel	•	Steel				Type of Desir
		Standard	ASTM09(S)	-		Type of besig
		DB	A588-50	-		
		Concrete				
Type of Material		Standard				
Isotropic	Orthotropic		Code			I ype of Mat
· · ·		DB				© 1300 0p
Steel	2 0000- 1004					User Define
Modulus of Elasticity :	2.90000004	kips/in^2				Modulus of E
Poisson's Ratio :	0.3					Poisson's Rat
Thermal Coefficient :	6.5000e-006	1/[F]				Thermal Coe
Weight Density :	0.000284	kips/in^3				Weight Dens
Use Mass Density:	7.356e-007	kips/in^3/g				Use Mass
Concrete						Concrete
Modulus of Elasticity :	0.0000e+000	kips/in^2				Modulus of E
Poisson's Ratio :	0					Poisson's Rat
Thermal Coefficient :	0.0000e+000	1/[F]				Thermal Coe
Weight Density :	0	kips/in^3				Weight Dens
Use Mass Density:	0	kips/in^3/g				Use Mass
Plasticity Data						
Plastic Material Name	NONE	_				Plasticity Data
The succession of the successi	NONE					Plastic Mat
Thermal Transfer						Thermal Tran
Specific Heat :	0	Btu/kips*[F]				Specific Heat
Heat Conduction :	0	Btu/in*hr*[F]				Heat Conduct
Damping Ratio :	0.02					Damping Ratio
	0	K (Cancel	Apply		

General Material ID 3		Name	A588-50			
Elasticity Data		-User Define	d			
Type of Design User I	Defined 🔻	Standard	None	•		
		DB				
	User	Concrete				
	- oreninga	Standard		-		
Type of Material		Code	Ŧ			
	DB					
User Defined		_				
Modulus of Elasticity :	2.3200e+004	kips/in^2				
Poisson's Ratio :	0.3					
Thermal Coefficient :	6.5000e-006	1/[F]				
Weight Density :	0.000284	kips/in^3				
Use Mass Density:	0	0 kips/in^3/g				
Concrete						
Modulus of Elasticity :	0.0000e+000	kips/in^2				
Poisson's Ratio :	0]				
Thermal Coefficient :	0.0000e+000	1/[F]				
Weight Density :	0	kips/in^3				
Use Mass Density:	0	⁰ kips/in^3/g				
Plasticity Data						
Plastic Material Name	NONE	•				
Thermal Transfer						
Specific Heat :	0	Btu/kips*[F]				
Heat Conduction :	0	Btu/in*hr*[F]				
amping Ratio :	0.02	1				

Challenges – Structural Analysis

- Responsible for determining effects of "Equilibrium on the Deflected Shape of the Structure"
- "Structure" for Construction Engineers can mean rebar cages, standees, single beams hanging from a crane to incomplete partially braced structures and structures during various states of demolition
- Frequent Use of AISC Direct Analysis Method Reduced Stiffness to Account for Partial Yielding
- Including maximum fabrication tolerances in the models
- Loads at various stages of construction or demolition
- Use of shapes that are more square than deep to account for uncertain boundary conditions
- Deflections sometimes control Getting deflection right with uncertain boundary conditions is the trick

Hudson Yards – Construction Engineering Challenges

Sliding Tower Crane

Shipping Logistics – A-frame Columns and Trusses have to be Spliced on -site

Lifting Lugs - Weld must be designed to resist bending

Concrete Tunnel Roof Construction – 12 ft. thick – rebar stands

Drilled Shaft Construction – Rebar Cage Installation – 85 ft. long

Rebar Cage Installation

Rebar Cage Installation

70 ton Caisson Core

LIRR Railroad Yard - aka Hudson Yards - Pre-construction

Utility Relocation

Secant Wall Construction

Secant Wall Construction

Secant Wall Construction

Tunnel Excavation

Tunnel Excavation

Tunnel Wall / Slab Construction

Tunnel Wall / Slab Construction

Tunnel Roof Construction

Tunnel Roof Construction

Tunnel Roof Backfilled

Plan Elevation of Truss

Truss Shop Drawing

Truss Shop Drawing

Tekla Model of Truss

AISC Tolerances $\frac{1}{8}$ in x $\frac{(\text{Total Length}, ft)}{10}$

Apply Wind Loads

Conservatively Use 50 p.s.f. per AASHTO

Hudson Yards Truss Erection - MIDAS Model

Hudson Yards Truss Erection

Modeling Nodes for Tolerances

Case 1 – Top and Bottom Chords both swept in same direction

Case 2 – Top and Bottom Chords swept in opposite directions


```
_____
  [[[*]]] CHECK AXIAL STRENGTH.
_____
    (). Check slenderness ratio of axial compression member (Kl/r).
        [ AASHTO-LRFD12 Specification 6.9.3 ]
        -. Kl/r = 356.4 > 120.0 ---> NOT ACCEPTABLE !
MIDAS/Civil - Steel Code Checking [ AASHTO-LRFD12 ]
                                                            Version 8.3.5
(). Check width-thickness ratio of flange (BTR).
        [ AASHTO-LRFD12 Specification 6.9.4.2 ]
        -. Lambda r = 0.56*SQRT[Es/Fy] = 13.49
        -. BTR = bf/2tf = 2.91 < Lambda r ---> NON-SLENDER SECTION !
    (). Calculate reduction factor of unstiffened elements (Qs).
        -. Os = 1.0 (Unstiffened elements are not Slender.)
    (). Check depth-thickness ratio of web (DTR).
        [ AASHTO-LRFD12 Specification 6.9.4.2 ]
        -. Lambda r = 1.49*SQRT[Es/Fy] = 35.88
        -. Dweb = H-tf1-tf2 = 1.05 ft.
        -. DTR = Dweb/tw = 7.12 < Lambda r ---> NON-SLENDER SECTION !
    (). Calculate reduction factor of stiffened elements (Oa).
        -. Qa = 1.0 (Stiffened elements are not Slender.)
    (). Full reduction factor for slender section (QsQa).
        [ AASHTO-LRFD12 Specification 6.9.4.2 ]
        -. Q = Qs*Qa = 1.000
        -. Po = Q*Fy*Area = 5850.0000 kips.
    (). Calc
        [ A2
        -. 1
```

```
(). Calculate Flexural Buckling Resistance (Pe FB).
    [ AASHTO-LRFD12 Specification 6.9.4.1]
            pi^2 * E
   -. Pe FB = -----Area = 263.6670 kips.
             (K1/r)^{2}
(). Elastic Critical Buckling Resistance (Pe).
   -. Pe = Pe FB = 263.6670 kips.
(). Calculate axial compressive strength (phiPn).
   [ AASHTO-LRFD12 Specification 6.9.4.1.1 ]
   -. phi = 0.90
   -. Pe/Po = 0.05 < 0.44
   -. Pn = 0.877*Pe = 231.24 kips.
   -. phiPn = phi*Pn = 208.11 kips.
(). Check ratio of axial strength (Pu/phiPn).
        Pu
             136.12
    -. ----- = ----- = 0.65 < 1.000 ---> 0.K.
       phiPn 208.11
```


MIDAS Civil Advantages

Easy to Create Trusses and Modify Nodes

Accurate Deflection Calculations

AASHTO Code Check

Easy to Apply Loads and Combinations

P-Delta and Buckling Analysis

Hudson Yards Truss Assembly Jig

Column B-15 Lower Section

Column B-15 Upper Section

MIDAS Information Technology Co., Ltd.

Check Bolts for Top	Lug Plate:	Stage 1 Column is horizontal
P =	32.3	kips
e =	16.0	in.
Design Moment =	516.8	kip-in
Total Shear =	32.3	kips
# of Bolts in shear =	4.0	
Shear per Bolt =	8.08	kips
# of Bolts in Tension =	2.0	
Distance between bolt lines =	30.0	in.
Tension per Bolt =	8.6	kips
Bolt Diameter =	1.125	in.
A, =	0.99	in ²
$F_{nt} =$	90.0	(ksi)
F _{no} =	54.0	(ksi)
Ω =	2.0	
Net Tension Capacity per bolt =	50.6	(kips)
Net Shear Capacity per Bolt =	30.4	(kips)
Tensile stress per bolt (frt) =	8.7	(ksi)
Shear stress per Bolt (fro) =	8.13	(ksi)
Modified tensile stress (F'nt) =	90.0	$(ksi) \qquad OK \qquad F'_{nt} = 1.3 F_{nt} - \frac{F_{nt}}{r} f_{rv} \leq F_{nt}$
		r _{rv}

	1				1
	Check wel	d from pl	ate dp130	to top o	f column
		P =	25	kips	
		e =	8.5	in.	
		<i>M</i> _{bxw} =	212.5	kip-in.	
	S_	– weld =	48.00	in²/in	
		f _{bow} =	4.43	ksi	
$f_w = \sqrt{(f_{bx})^2 + (f_{bx})^2} + \frac{1}{2} \int (f_{bx})^2 dx$	$(f_{shear})^2$	P + + + + + + + + + + + + + + + + + + +	25.00	kips	
fw		A_ =	24.0	in ²	
$t_w = \frac{F_w}{F_w} =$		f shear =	1.04	ksi	
.707		$f_{\omega} =$	4.55	ksi	
		$F_{\infty} =$	21.0	ksi	
Requ	ired Throat	Size =	0.306	in.	

Properties of a Weld Treated as a Line					
Outline of Welded Joint b=width d=depth	Section Modulus Bending (about horizontal axis X-X)	Polar Moment of Inertia			
d xx	$Z = \frac{d^2}{6}$	$J = \frac{d^3}{12}$			
d xx	$Z = \frac{d^2}{3}$	$J = \frac{d(3b^2 + d^2)}{6}$			
d XX	Z = bd	$J = \frac{b^3 + 3bd^2}{6}$			
-X	$Z = bd + \frac{d^2}{3}$	$J = \frac{(b+d)^3}{6}$			
xx	$Z = bd + \frac{d^2}{6}$	$J = \frac{(2b+d)^3}{12} - \frac{b^2(b+d)^2}{2b+d}$			
	$Z = bd + \frac{d^2}{3}$	$J = \frac{b^3 + 3bd^2 + d^3}{6}$			
d x	$Z=2bd+\frac{d^2}{3}$	$J = \frac{2b^3 + 6bd^2 + d^3}{6}$			
x - x	$Z = \frac{\pi d^2}{4}$	$J = \frac{\pi d^3}{4}$			

Www.RobertMarkoski.net/Engineering

MID/10 Information recimology co., Etc.

	Stage 2 -	Loads on	. bolts: L	тррет	Sectio	on is Vert	ical
	Total	Assembly	Weight -	- 6	4.6	kips	
	Out to Or	it Bolt Dit	tance = -	- 2	. <mark>50</mark>	ft	
		Distance	to CoG -	-	1.1	ft	
	*	of total la	ength = -	- 4.	4.0%		
		Lt Bolt R	leaction +	- 3	36. <mark>2</mark>	kips	
		Rt Bolt R	leaction +	- 2	2 8.4	kips	
			P -	- 3	36. 2	kips	
	# of	Bolts in 2	Tension :		2.0		
	7	'ension pe	τ Bolt -	- 1	18.1	kips	
		Bolt D	iameter :	- 1.	125	in.	
			A , -	- 0).99	in²	
			F _{nt} -	- 9	0.0	(ksi)	
			F _{ns} :	- 5	4.0	(ksi)	
			Ω -	- ,	2.0		
	Net Tension	Capacity p	per bolt :	- 5	0.6	(kips)	
Τ	Tensile stre	ss per be	olt (f _{ri}) :	- 1	8.2	(ksi)	

									W36 x 160)			
	E	Elemei	nt			2	75		Max Positv	e Bending =			
	F	ositio	n				I		Max Negat	ve Bending =	-16575.96 ki	p-in.	
	Mor	ment 1	Гуре			Be	am		Max Shear	= <mark>-123.69</mark>	kips		
I. D	esig	n Con	ditio	n (Po	sitiv	e Flex	(ure)						
1.	Sect	tion Pr	rope	rties									
1	· · ·	-											
			Ρ	ositio	n			Material	Thick (in)	f _y (ksi)	f _u (ksi)		Note
		Cor	mpre	essior	n Fla	ange		A588-50	1.020	50.000	70.000	less	than 2 in.
		T	ensi	on F	land	le		A588-50	1.020	50.000	70.000	less	than 2 in.
	-			Web				A588-50	0.650	50 000	70 000	less	than 2 in
	-								0.000		70.000		
	ſ	Desir	n S	treno	th1								
	- 1	L Colig	jii 3	ueng	EO	000	l	(0		المحمد معالم	~		
2	_	Fye	=		50.	000	KSI	(Compressi	on Flange Y	iela Strengtr	1)		
		Fyw	=		50.	000	ksi	(Web Yield	Strength)				
÷.		Fyt	=		50.	000	ksi	(Tension Fla	ange Yield S	trength)			
-		Es	=	290	00.	000	ksi	(Elastic Mo	dulus of Ste	el)			
	D	=	3	4.000) In		t _w	= 0.05	U IN				
		Posi	ition			Mate	rial	Thick (in)	f _y (ksi)	f _u (ksi)	Not	ie	
	Con	npress	ion F	lange		A588	-50	1.020	50.000	70.000	less thar	n 2 in.	
	T	ension	i Flan	ige		A588	-50	1.020	50.000	70.000	less thar	n 2 in.	
		W	eb			A588	-50	0.650	50.000	70.000	less thar	n 2 in.	
[[esig	n Stre	ngth]									
	Fye	=	50	000	ksi	(Con	npres	sion Flange Yi	eld Strength)				
	Fyw	=	50	000	ksi	(Wet	o Yiel	d Strength)					
	Fyt	=	50	000	ksi	(Ten:	sion I	-lange Yield St	rength)				
	E _s	= 2	9000	.000	ksi	(Elas	tic M	odulus of Stee	9)				

	5)	Long-term	Composit	te Sectio	n(Long.	Reinfo	rcemer	nt/3)										
		A _(R3) (in ²) 48.233		L _{y(R3}	յ (in⁴)		10564.496 J			I _{z(R3)} (in ⁴)		997.631						
		d _{Top(R3)} (in)		17.197			_{R3)} (in)		18.	843								
		S _{Top(R3)} (in ³)		614.335		S _{Bot}	_{R3)} (in ³)		560	.648								
v.	Str	ength Limit	State - I	lexural	Resistar	nce												
	1.	Flexure																
		Negative n	noment															
	1)	Design Force	es and St	resses														
		Loadcombir	nation Na	me scL	CB1													
		Loadcombir	nation Ty	pe -														
		Compo	pont				N	И _и (ki	ips∙in)						Vu		Т	
		Compo	nem	Steel	(M _{D1})	Long	-term (M _{D2})	Short	t-term		Sun	1	(k	(ips)	(k	ips∙ir	ו)
		Forces	(-)	-4(662.267		0.0	000	-1191	.3.688	-	-1657	5.955	-12	3.694	-3	1.15	3
		Compo	nent					f _{c,t} ((ksi)									
		Compo	nem	Steel	(M _{D1})	Long	-term (M _{D2})	Short	t-term		Sun	۱					
		Strossos	Тор		8.718		0.0	000	15.	286		2	4.004					
		3063365	Bot		-8.718		0.0	000	-19.	785		-2	8.503					

<mark>→ B</mark> ase	-			MIDAS/Civil POST-PROCESSOR
			TOP	BEAM FORCE
			202	AXIAL
				1.61204e+000 0.00000e+000 -2.22602e+000 -3.41964e+000 -5.8065e+000 -7.00047e+000 -8.19409e+000 -9.38770e+000 -1.05813e+000 -1.17749e+000 -1.29685e+000
			CE	S: sLCB1
		-1	MA MI	X : 24 N : 6
				LE: 01-28-2015~ IT: kips TE: 05/15/2015
			X:	VIEW-DIRECTION -0.612 Z
			2:	0.500

Crane Outrigger Loads

GBP - Crane Crawler Loads

Crane on Bridge – Lane Loads

Factored HS20 Loads

Factored Crane Outrigger Loads

Composite Design Results

Element 14						14				W36 x 192							
	Po	ositio	on			I			Max Positve Bending =								
	Mom	ent	Туре			Beam				Max Negatve	Bending =	-24701.3	6	kip-	in.		
										Max Shear =	167.45	k	tips				
I. De	esign	Cor	ndition	(Posi	itive F	exure)											
1. :	Section	on P	ropert	es													
1)	Slab	Prop	perties														
	Bs	=	72	.000	in											1	
	t,	=	9	.000	in												
	t _h	=	3	.760	in						<u> </u>				-	1	
	$f_{c}^{(\prime)}$	=	4	.000	ksi								Г				
	Ec	=	3644	.147	ksi								I 1				
	A,	=	4	960	in²								I 1				
	Fyr	=	60	.000	ksi												
2)	Girde	er Pr	opertie	5													
[[Section	on]											I 1				
	b _{fc}	=	12	.100	in	b _{ft}	=	12	.100	in							
	t _{fc}	=	1	.260	in	t _{ft}	=	1	.260	in			L				
	D	=	34	.500	in	tw	=	0	.765	in							

Section Properties For Timber Planks

General			Weed
Material ID 2		Name	WOOD
Elasticity Data			
Type of Design User [efined 🔹	User Define	ed
		Standard	None
		DB	· · · · · · · · · · · · · · · · · · ·
	llear		
	Defined	Concrete	
		Standard	
I ype of Material	Orthotropic		Code
	or a rola opic	DB	· · · · · · · · · · · · · · · · · · ·
User Defined			
Modulus of Elasticity :	2.3040e+005	kips/ft^2	
Poisson's Ratio :	0.4		
Thermal Coefficient :	2.0000e+006	1/[F]	
Weight Density :	0.02419	kips/ft^3	
Use Mass Density:	0	kips/ft^3/g	
Concrete		1	
Modulus of Elasticity :	0.0000e+000	kips/ft^2	
Poisson's Ratio :	0		
Thermal Coefficient :	0.0000e+000	1/[F]	
Weight Density :	0	kips/ft^3	
Use Mass Density:	0	kips/ft^3/g	
Plasticity Data			
Plastic Material Name	NONE	•	
Thermal Transfer			
Specific Heat :	0	Btu/kips*[F]	
Heat Conduction	0	Btu/ft*br*[F]	
incer conductorr i		Staffe in [i]	
Damping Ratio :	0		
	0	ĸ	Cancel Apply

Loading on Overhang Brackets:

Loading on Vertical Post: Post Spacing = 3.00 ft Vertical Loading = 0.03 ksf Load per Post = 0.09 kips/ft

Repairs and improvements to the Harlem River Lift Bridge, at a cost of \$47.2 million, are scheduled to be finished in mid-March. Angel Franco/The New York Times

Project Introduction Electrical Upgrades Remove and Replace Wire Ropes Design Work Platform

Work Platform for Wire Rope Removal

Cooper E80 Loading

	Check Azi	al Capacity	of End Dia	gonal:		
		Κ =	1.0			
		L =	680.4	(in.)		
		r_ =	13.63	in.		
		r., =	10.10	in.		
	KL/r =	49.92		$\kappa L_{/r_y} =$	67.36634	
0.62	$9\sqrt{E/F_y} =$	17.85		5.034 J	³ /F _y =	142.88
Therefore): ::	3				
Fan	$= 0.6F_{m} - 1$	(17500 Fy)	$\left(\frac{KL}{KL}\right) =$	21548.44	(psi)	
		(E)	\r)	21.54844	(ksi)	Controls
<i>F</i> _{cr} =	$F_{y}\left[1-\frac{F}{4\pi}\right]$	$\left[\frac{KL}{2E}\left(\frac{KL}{r}\right)^2\right] =$	30.9	(ksi)		
Therefore	the maxim	ım compres	sive force	allowed::		
	A =	121.2	(in²)			
	C =	2612.3	(kips)			
	Maz. A	zial Load =	2019	(kips)		
P	ercent capa	city in Com	pression =	77.29%		
			<u> </u>	77 ^^		
Interac	interaction for bending and compression:			17.29%		

	CHECK AIId	capacity	or Enu Diag	yonai:		
		K =	1.0			
		L =	680.4	(in.)		
		r_ =	13.63	in.		
		۲, =	10.10	in.		
	$KL/r_x =$	49.92		$KL_{/r_y} =$	67.36634	
0.629	$\sqrt{E/F_y} =$	17.85		5.034	⁶ / _{Fy} =	142.88
Therefore:		F 3	2 (81)			
Fall	$= 0.6F_y - ($	$17500 \frac{r_y}{F}$	$\left(\frac{RL}{r}\right) =$	21548.44	(psi)	
		27		21.54844	(ksi)	Controls
Fcr	$= F_{y}\left[1-\frac{1}{4}\right]$	$\left[\frac{F_y}{\pi^2 E} \left(\frac{KL}{r}\right)^2\right]$	= 30.9	(ksi)		
Therefore	the mazimu	n compres	sive force	allowed::		
	A =	121.2	(in²)			
	C "II =	2612.3	(kips)			
	Maz. Az	ial Load =	980	(kips)		
Pe	rcent capac	ity in Com	pression =	37.51%		

HRLB Successful Completion

Why MIDAS for TPC?

Why MIDAS for TPC?

Why MIDAS for TPC?

60 Bridges – I95-I91 New Haven Ct

Curved Girders

Submittals to Designer And CDOT

Modeling Issues

Deflection Issues During Steel Erection

Cranes on New Bridge Decks

Project Challenges

Traffic Volume – Outage Limitations

Access Limitations

Temporary Diaphragm Spacing

Bolt Alignment

Shoring Towers - Jacking

Overhang brackets

Cranes on New bridge deck

Lateral Loads on Girders

False-work – Code Check on Beams

MIDAS Information Technology Co., Ltd.

MIDAS Information Technology Co., Ltd.

MIDAS Information Technology Co., Ltd.

MIDAS Information Technology Co., Ltd.

Special Thanks

- Angela Kim, Jin Ko, and Grace An MIDAS Civil
- Ali Catik President Tutor Perini Corp.
- Henry Cheung Vice President Tutor Perini Corp
- Bob Cooper General Sup't Tutor- Perini Corp.
- Dong Chang Phd. Asst. Chief Engineer Tutor Perini Corp.
- Special Thanks Terry Flynn Vice President / Chief Engineer Tutor Perini Corporation

Questions?

For any additional inquiries and interest in trying out midas Civil please contact us at:

midasoft@midasuser.com

Special Elite Engineers Webinar Sequence

An Insider's Perspective

PDH Credit

To receive your PDH credit send an email to the address below with the subject header '**May Webinar PDH**'.

jinko@midasuser.com