

Special Elite Engineers Webinar Sequence An Insider's Perspective

Wednesday, June 17th, 2015 3:00 PM – 4:00 PM EST

Our Elite Engineer of the Month: Vincent Nganga, PE

Special Elite Engineers Webinar Sequence

An Insider's Perspective

Copyright Materials

This presentation is protected by US and International Copyright laws.

Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© MIDASoft Inc.,2013

Speaker Information

Vincent Nganga

Senior Bridge Engineer

EDUCATION

- MS, Structural Engineering, Southern Illinois University, Edwardsville
- BS, Civil Engineering, Washington University in St. Louis
- BS, Mathematics, Rockford College, Rockford, Illinois

PAST PROJECTS

- I-270/US 33 Interchange Northwest Freeway Reconstruction, Columbus OH
- Columbus Crossroads design-build project, Columbus OH
- I-5 Everett HOV Design-Build Project, Everett WA

3D FEM Modeling and Seismic Analysis for Evaluating Demand and Capacity of Highway Bridges

Vincent Nganga, PE Senior Bridge Engineer June 17th, 2015

MIDAS Special Elite Engineers Webinar - An Insider's Perspective

Illustrate the procedure used to perform nonlinear static "pushover" analysis in both the longitudinal and transverse directions.

- To perform the pushover analysis in the longitudinal direction, the entire bridge is pushed in order to include the frame action of the superstructure and adjacent bents.
- To perform the pushover analysis in the transverse direction, a bent may be isolated using the midas Civil "staged construction" feature OR the entire bridge can be pushed.

2. Model Setup

- Overview of Model
- Foundations Modeling
- Material Modeling
- Column modeling
- Gravity Loads

3. Displacement Demand Analysis

- Modal Analysis
- Response Spectrum Analysis
- Displacement Demand

- Hinge Definitions and Assignments
- Pushover Analysis

5. AASHTO LRFD Code Requirements

- P-Δ Capacity Requirement Check
- Minimum Lateral Strength Check
- Structure Displacement Demand/Capacity Check
- Member Ductility Requirement Check
- Column Shear Demand/Capacity Check
- Balanced Stiffness and Frame Geometry Requirement Check

6. Model Overview

- Three spans 54', 77' and 54' in length
- Four Prestressed concrete girder lines with 8'-6" spacing
- 8" concrete deck with 34' out-to-out width
- Beams continuous and fixed at the intermediate piers
- Two-5' diameter columns at the intermediate bents on spread footings
- Abutments free in the longitudinal direction and fixed transversely

6.1 Foundations Model - Soils

- The soil parameters used are G = 1,700 ksf and v = 0.35
- At the piers, the soil springs could be generated using the method for spread footings

Degree of Freedom	K _{sur}
Translation along x-axis	$\frac{GB}{2-v}\left[3.4\left(\frac{L}{B}\right)^{0.65}+1.2\right]$
Translation along y-axis	$\frac{GB}{2-v} \left[3.4 \left(\frac{L}{B}\right)^{0.65} + 0.4 \frac{L}{B} + 0.8 \right]$
Translation along z-axis	$\frac{GB}{1-v} \left[1.55 \left(\frac{L}{B} \right)^{0.75} + 0.8 \right]$
Rocking about x-axis	$\frac{GB^3}{1-\nu}\left[0.4\left(\frac{L}{B}\right)+0.1\right]$
Rocking about y-axis	$\frac{GB^3}{1-v} \left[0.47 \left(\frac{L}{B}\right)^{24} + 0.034 \right]$
Torsion about z-axis	$GB^3 \left[0.53 \left(\frac{L}{B}\right)^{2.45} + 0.51 \right]$

6.2 Foundations Model - Piers

- The springs used in the demand model (response-spectrum model) are the same as the springs used in the capacity model (pushover model)
- Note that it is also acceptable to conservatively use fixed base columns for the capacity model.

6.3 Foundations Model - Abutments

- AASHTO Guide Specifications for LRFD Seismic Bridge Design require the stiffness of the transverse abutments be modeled.
- The girder joint restraint assignments at the abutments are as follows

Material Name	Material Type	Section Property	Material	Weight for Modulus
		For	Unit Wt.	of Elasticity
		(Location)	(pcf)	(pcf)
Deck - 4000 psi	Concrete	Deck	155	150
Other - 4000 psi	Concrete	CrossBeams & Diaphragms	150	145
Column - 5000 psi	Concrete	Columns	150	145
Girder - 7000 psi	Concrete	Girders	165	155
Rebar - A706 Other	Rebar	Rebar other than Columns	490	-
Column - A706 - Column	Rebar	Column Rebar	490	-

- There are two columns at each bent.
- The columns are five feet in diameter and have (24) #10 bars for longitudinal steel, which amounts to a steel-concrete area ratio of about 1%.
- In the hinge zones, the columns have confinement steel consisting of #6 spiral bars with a 3.5 inch pitch.
- The column elements have rigid end offsets assigned to them at the footings and cap beams.
- Note that the columns are split into ten frame elements.

midas Civil Section Designer

• The "COLUMN" frame section is defined using a round shape in General Section Designer as shown

C Summers Ser.		Constant of	loop Courts		
C		-	act room		
 User Dervers 		e contracto	prancost	0.000	10
factor (a	(a)	1	164	a the	
independent (Prochamica	contrient,	-			
ers - Area of Confirmed C	Conceptie Cohe		\square	2259.741	11
ee : Arms of Effictively (Carefreid Core	cate Care	-		
F 2217.1	7. init		No	će:	
an in an / the ra-libered			F [0.981	
re Effective Lateral Conf The Effe	intra libres, i chie Labrai $=\frac{1}{2}k_{\mu}\rho_{\mu}f_{\mu\nu}$	er In the Cardo Confines Sh	te	Scottate :	
re ≣ffictive Lateral Conf The ≣fic 	inclusion of the Laboratory 1 = $\frac{1}{2}k_{\mu}\rho_{e}f_{jk}$	= In the Contro Confines Sh	na - na - l	6000000 0.344	17454 (= 111
re Sflictne Lateral Carf	$= \frac{1}{2} k_{g} \rho_{z} f_{yk}$	e In the Contro Confines Str	te -	Consiste 0.344	LARY.
The Effective Lateral Conf f_1 The Effective f_1 f_1 onfined Concrete Data ffoc gr 7.0	$\frac{1}{2} k_{\rm S} \rho_z f_{\rm yb}$ $\frac{1}{2} k_{\rm S} \rho_z h^2$	en film Control Confinent Site		Contartio 0.344 au 0.00767	or Lin
re Silicities Lateral Conf <u>fi</u> I the Silic <i>f_i</i> onfined Concrete Data foc <i>fr</i> 7.0 F Ultimate Strein for C	$\frac{1}{2}k_{\rm H}\rho_z f_{\rm J}h$	ecc rstel:ecu		Contarte 0.341 (c) 0.00767	and a second sec
re Sfin the Lateral Card The Sfin The Sfin (7) (7) (7) (7) (7) (7) (7) (8) (7) (8) (7) (7) (8) (8) (8) (8) (8) (8) (8) (8	$\frac{1}{2}k_{\rm F}\rho_z f_{\rm J} h$	ecc refe : ecc Net Selecte	* • • • • • • • • • • • • • • • • • • •	Contarte 0.344 h	

midas Civil Section Designer

Mander confined stress-strain concrete model for the core of the column is shown.

6.5 Pier Cap Beam

The pier cap beam elements were modeled as frame elements with nonprismatic section properties.

6.6 Superstructure – Deck and Girders

The girders are assigned insertion points such that they connect to the same joints as the deck elements but are below the deck.

Links connect the girders to the cap beam which models the fixed connection between these elements.

There are three dead load patterns in the model:

- > "DC-Structure", "DC-Barriers", and "DW-Overlay".
 - "DC-Structure" case includes the self weight of the structural components.
 - "DC-Barriers" case includes the dead load of the barriers, which is applied as line load to the outermost deck elements
 - "DW-Overlay" case includes the future overlay loads applied to the deck elements

7. Displacement Demand Analysis

Modal Analysis

- 1. Mass Source
 - All of the dead loads are considered as contributing mass for the modal load case.
- 2. Cracking of Columns
 - Section 5.6 of the AASHTO Guide Specifications for LRFD Seismic Bridge Design provides Diagrams that can be used to determine the cracked section properties of the columns
 - The column axial dead load at mid-height was calculated in the model to be approximately 1,200 kips without including the effects of the construction staging.
 - For our bridge, the inclusion of staging effects would cause the axial load in the columns to vary by less than ten percent. Such a small change in axial load would not significantly alter the results of this analysis.

Moment Curvature Curve

Property Modifiers

- The previous moment curvature curve we see that concrete strain capacity limits the available plastic curvature.
- The property modifiers are then applied to the column frame elements.
- Note that the torsional constant modifier is 0.2 for columns as required by Section 5.6.5 of the AASHTO Guide Specifications for LRFD Seismic Bridge Design.

Verification of Mass Participation

- Section 5.4.3 of the AASHTO Guide Specifications for LRFD Seismic Bridge Design requires a minimum of 90% mass participation in both directions.
- For our bridge, the mass is considered to be the same in both directions even though the end diaphragms are free in the longitudinal direction and restrained in the transverse direction.

8. Response-Spectrum Analysis

Seismic Hazard

- The bridge is located in Ridgefield, WA. The mapped spectral acceleration coefficients are:
 - ✓ PGA = 0.256 g
 - ✓ Ss = 0.605 g
 - ✓ S1 = 0.217 g
- A site class of E is used and the site coefficients are:
 - ✓ FPGA = 1.422
 - ✓ Fa = 1.489
 - ✓ Fv = 3.129
- Therefore, the response-spectrum was generated using the following parameters:
 - \checkmark As = FPGA*PGA = 0.364 g
 - ✓ SDS = Fa*Ss = 0.901 g
 - ✓ SD1 = Fv*S1 = 0.679 g
- Since SD1 is greater than or equal to 0.50, per Table 3.5-1 of the AASHTO Guide Specifications for LRFD Seismic Bridge Design the Seismic Design Category is D.

Response-Spectrum Function

 The spectrum is defined from a file created using the AASHTO Earthquake Ground Motion Parameters tool and also as shown below from midas Civil

Add/Mo	dify/Show	Response Spe	ectrum Fun	ctions						×
Funct	ion Name			Spectral Data Type						
AAS	HTO-LRFD6	th(2012)		Normalized Accel.	O Ac	celeration	O Vel	ocity	 Displacemer 	nt
				Scaling			- Gravity		-Graph Options	
Imp	oort File	Design Spe	ctrum	Scale Eactor	1		386.063 in/	sec ²	V-avis log s	calo
	Doriod	Spectral					- Damping Ra	atio		cule
	(sec)	Data	Â	Maximum Value	0 g		0.05		🔲 Y-axis log s	cale
	0.0000	0.6584	Ξ				10.05			
2	0.0600	1.2830								
3	0.0866	1.5603		1 44028						
4	0.1200	1.5603		1111020						
5	0.1800	1.5603		1.24028 -						
6	0.2400	1.5603		1 04028 -						
7	0.3000	1.5603		a 1.01020						
8	0.3600	1.5603		0.840277						
9	0.4200	1.5603		10 C40277						
10	0.4332	1.5603		0.0402//						
11	0.4800	1.4082		0.440277 -						
12	0.5400	1.2518		0.040077						
13	0.6000	1.1266		0.2402//						
14	0.6600	1.0242		0.0402774						
15	0.7200	0.9388		0.01	1.01	2.01	3.01	4.01	5.01	6.01
16	0.7800	0.8666	-			Period	(sec)			
Descrip	tion A	ASHTO-LRFD12:	Soil=E PGA=	=0.26 Ss=0.60 S1=0.22 RMF	=1.00			ОК	Cancel	Apply

8. Response-Spectrum Analysis

Load Case Setup

- Two response-spectrum analysis cases were setup in midas Civil: one for each orthogonal direction
- Longitudinal Direction The load case data for the X-direction is as shown

Spectrum Load Case	
oad Case Name:	RS X
irection :	х-ү 🔹
xcitation Angle :	0 ÷[deq]
cale Factor :	1
eriod Modification Fa	ctor :
	1
Iodal Combination Co	introl
Spectrum Punctions	noing Patio)
☑AASHTO-LRFD6th	(2012) (0.05)
AASHTO-LRFD6th	(2012) (0.05)
AASHTO-LRFD6th	(2012) (0.05) Nethod
Apply Damping M Damping Modal	(2012) (0.05) Aethod
Apply Damping N Damping Modal Correction by Da	(2012) (0.05) Aethod Method
AASHTO-LRFD6th Apply Damping Damping Correction by Da Interpolation of Spec	(2012) (0.05) Aethod Method mping Ratio ctral Data
AASHTO-LRFD6th Apply Damping N Damping Modal Correction by Da Interpolation of Spec C Linear	(2012) (0.05) Aethod Method mping Ratio ctral Data © Logarithm
AASHTO-LRFD6th Apply Damping M Damping Modal Correction by Da Interpolation of Spec C Linear	(2012) (0.05) Aethod Method mping Ratio ctral Data (Logarithm
AASHTO-LRFD6th Apply Damping N Damping Modal Correction by Da Interpolation of Spec C Linear	(2012) (0.05) Aethod Method mping Ratio ctral Data & Logarithm

Along the Major N Along the Absolut Select Mode Stype Mode Use Mode S 1 1 2 1	tode Direction e Maximum Value is Shape Factor
Select Mode Silve Mode Use Mode S 1 7 2 7	s Shape Factor
Mode Use Mode S	Shape Factor
1 7 2 7	1.0000
2 🕅	1.0000
the second se	1.0000
3 🔽	1.0000
4 🖌	1.0000
5 🖻	1.0000
6 🔽	1.0000
7 🔛	1.0000
8 🔛	1.0000
9 🖓	1.0000
10 🖓	1.0000
11 🖻	1.0000
12 🖓	1.0000
13 🖓	1.0000
14 🖓	1.0000
15 🛛	1.0000
Check A	I Check None

8. Response-Spectrum Analysis

Load Case Setup

coor cose nome:	oad Cases
Direction :	X-Y
Excitation Angle :	90 :[deg]
Scale Factor :	1
Period Modification Fe	actor :
	1
Spectrum Functions Function Name (Dar	mping Ratio)
Apply Damping	Method
Apply Damping Damping	Method 3 Method
Apply Damping Damping Modal	Method 9 Method 9 Method Ratio
Apply Damping Damping Modal Correction by Di Interpolation of Spe	Method 9 Method amping Ratio ctral Data

Displacements

- The column displacements were tracked at Joint 229, which is located at the top of a column.
- Longitudinal Direction The horizontal displacements at the tops of the columns from the RS X analysis case was UX = 7.48 inches and UY = 0.00 inches.

Joint Displacement at Joint 229 for Load Case "RS X"

Displacements

 Transverse Direction – The horizontal displacements at the tops of the columns from the RS Y analysis case were UX = 0.17 inches and UY = 3.55 inches.

Joint Displacement at Joint 229 for Load Case "RS Y"

Displacement Magnification

- Displacement magnification must be performed in accordance with Section 4.3.3 of the AASHTO Guide Specifications for LRFD Seismic Bridge Design
- Compute Ts and T *:
 - \checkmark Ts = SD1 / SDS = 0.679 / 0.901 = 0.754 sec.
 - \checkmark T * = 1.25 Ts = 1.25 * 0.754 = 0.942 sec.
- Longitudinal Direction Computed magnification for the X-direction (Long):
 - \checkmark TLong = 0.95 sec.
 - ✓ T* / TLong = 0.942 / 0.95 = 1.00 > 1.0 => Magnification is required
 - \checkmark Rd_Long = (1 1 / µD)*(T* / T) + 1 / µD = (1 1/6)*(1.00)+1/6 = 1.0
 - \checkmark (Assume µD =6)

9. Displacement Demand

Displacement Magnification

- Transverse Direction Computed magnification for the Y-direction (Trans):
 - \checkmark TTrans = 0.61 sec.
 - ✓ T* / TTrans = 0.942 / 0.61 = 1.54 > 1.0 => Magnification is required
 - ✓ Rd_Trans = $(1 1 / \mu D)^*(T^* / T) + 1 / \mu D = (1 1/6)^*(1.54)+1/6 = 1.45$ (Assume µD =6)

Column Displacement Demand

Section 4.4 of the AASHTO Guide Specifications for LRFD Seismic Bridge Design requires that 100% plus 30% of the displacements from each orthogonal seismic load case be combined to determine the displacement demands. The displacements were tracked as Joint 229, which is located at the top of a column.

- Longitudinal Direction For the X-direction (100RS X + 30RS Y):
 - \checkmark UX (due to RS X) = 7.48 in.
 - \checkmark UX (due to RS Y) = 0.17 in.
 - Δ^LD_Long = 1.0 * Rd_Long * 7.48 + 0.3 * Rd_Trans * 0.17

= 1.0 * 1.00* 7.48 + 0.3 * 1.45 * 0.17 = 7.55 in.

- => This is the displacement demand for the X-Dir
- Transverse Direction For the Y-direction (100RS Y + 30RS X):
 - ✓ UY (due to RS Y) = 3.55 in.
 - \checkmark UY (due to RS X) = 0.00 in.
 - Δ^LD_Trans = 1.0 * Rd_Trans * 3.55 + 0.3 * Rd_Long * 0.00

= 1.0 * 1.45 * 3.55 + 0.3 * 1.00 * 0.00 = 5.45 in.

=> This is the displacement demand for the Y-Dir

Plastic Hinge Definitions and Assignments

- The tops and bottoms of all columns were found to have enough moment fixity in all directions to cause plastic hinging
- Axial force diagram for the DC+DW load case

Plastic Hinge Definitions and Assignments

• The moment-curvature analysis of the column *base* is shown

Plastic Hinge Definitions and Assignments

• The moment-curvature analysis of the column *top* is shown

Plastic Hinge Definitions and Assignments

- Plastic Hinge Lengths The clear height of the columns is 350 inches; therefore:
 - L1 = Length from point of maximum moment at *base* of column to inflection point (in.)
 - = 350 x Mp_col_base / (Mp_col_base + Mp_col_top)
 - = 350 x 79186 / (79186 + 77920) = 176 in.
 - L2 = Length from point of maximum moment at *top* of column to inflection point (in.)

= 350 – L1 = 350 – 176 = 174 in.

Plastic Hinge Definitions and Assignments

In order to assign the plastic hinges to the column elements, the relative locations of the plastic hinges along the column frame elements were computed.

- For the bases of the columns:
 - Relative Length = [Footing Offset + (Hinge Length / 2)] / Element Length
 [30 + (27.0 / 2)] / 146 = 0.30
- For the tops of the columns:
 - Relative Length = [Element Length Capbeam Offset (Hinge Length / 2)] / Element Length = [146 58 (26.9 / 2)] / 146 = 0.51

Assign Plastic Hinges

The plastic hinge lengths must be computed at both the tops and bottoms of the columns using the equations in Section 4.11.6 of the AASHTO Guide Specifications for LRFD Seismic Bridge Design.

- The hinge length was computed as follows: Lp = 0.08L + 0.15fye*dbl ≥ 0.3fye*dbl Where:
 - L = length of column from point of maximum moment to the point of moment contraflexure (in.)
 - L1 at the base of the columns (L1Long = L1Trans = 176 in.)
 - L2 at the top of the columns (L2Long = L2Trans = 174 in.)
 - fye = expected yield strength of longitudinal column reinforcing steel bars (ksi) = 68 ksi (ASTM A706 bars).
 - ✓ dbl = nominal diameter of longitudinal column reinforcing steel bars (in.) = 1.27 in. (#10 bars)
 - ✓ Lp1 = Plastic hinge length at base of column = 0.08*176 + 0.15*68*1.27 ≥ 0.3*68*1.27 = 27.03 ≥ 25.91 = 27.0 in.
 - ✓ Lp2 = Plastic hinge length at top of column = 0.08*174 + 0.15*68*1.27 ≥ 0.3*68*1.27 = 26.87 ≥ 25.91 = 26.9 in.

Assign Plastic Hinges

The hinges at the columns were assigned as shown

Lateral Load Distributions

Longitudinal Direction:

The lateral load distribution used for the pushover analysis in the longitudinal direction is a direct horizontal acceleration on the structure mass. Also, the dead load can be applied as previously defined since the entire structure is present during the pushover analysis.

oad Pattern	Uniform Acceleration	-	-
lirection	DX •	Scale Factor	: 10
Direction	Scale		Add
DX	1		Modify
			Delete
	-		

Lateral Load Distributions

Transverse Direction:

The lateral load distribution used for the pushover analysis in the transverse direction could be applied as a horizontal load applied at the centroid of the superstructure. This way, the load distribution is used to mimic a direct horizontal acceleration on the superstructure mass.

For our bridge however, the load was applied similar to the Longitudinal direction by changing only the direction.

oad Pattern	Uniform Accele	ration 💌	
Direction	DY	Scale Fact	or: 1
Direction	Scale		Add
DY	1		Modify
			Delete

Load Case Setup

The dead load (DC+DW) must be applied prior to performing the pushover analysis. To do so in midas Civil, the initial load is set to "Import Static Analysis/Construction Stage Analysis Results" where the DC + DW were defined.

In this way, the dead load (DC+DW) is applied and the load is run as a nonlinear analysis. By running the load as a nonlinear analysis type, another load case can continue from it with the loads stored in the structure.

Pushover Global	Control			
Initial Load Perform No Import Stat - When the l initial load - When the o used as at	nlinear Static Analy ic Analysis / Const boundary condition and pushover load element forces in t i initial load	ysis for Initial ruction Stage s are differen l he last constru	Load Analysis Results t between uction stage are	
Load Case	ST: Self Weight		Scale F	actor 1
Static Load Ca	ase	Scale		Add
ST: Self Weig	ht	1		
ST: Wearing (Course	1		Modify
ST: Barrier		1		Delete

Load Case Setup

C					Nonlinear Analysis Option	
Perform Nonlinear St	tatic Analysis	for Initial Lo	ad		Permit Convergence Failure	
					Max. Number of Substeps :	10
 Import Static Analysis 	s / Construct	ion Stage An	alysis Results		Maximum Rerolion	10
- When the boundary	conditions ar	re different b	etween		Comunication Contaction	110
initial load and push	lover load				Convergence Criteria	0.001
- when the element to	orces in the i	ast construct	ion stage are		I ✓ Displacement Norm	0.001
used as an initial loc	eu				Force Norm	0.001
Load Case ST: ban	rier	•	Scale Factor		Energy Norm	0.001
Static Load Case	Sc	ale		Add		
ST: self weight	1				Analysis Stop	
ST: wearing course	1			Modify	Shear Component Yield	
ST: barrier	1				Eeam/Column	
					I∽ Beam/Column I Tru	
					Support Uplifting/Collapse : Dz-D	Ann Direction Nacion
ushover Hinge Data Opti Default Stiffness Reduc	ion ction Ratio of	Skeleton Cu	rve		Point Spring Support : Nonlinear	Xes Nirection Napon Type
ushover Hinge Data Opti Default Stiffness Reduc Trilinear / Slip Triline	ion ction Ratio of ear Type	Skeleton Cu	rve		Point Spring Support : Nonlinear	hirection hispon Type
ushover Hinge Data Opti Default Stiffness Reduc Trilinear / Slip Triline Symmetric	ion ction Ratio of ear Type	Skeleton Cu	rve (-)	- Data fo	Point Spring Support : Nonlinear	birection Napon Type
Pushover Hinge Data Opti Default Stiffness Reduc Trilinear / Slip Triline I Symmetric	ion ction Ratio of ear Type Alpha1	Skeleton Cu	(·)	- Data fo	Point Spring Support : Nonlinear Point Spring Support : Nonlinear or Auto-Calculation of Strength rence Location only for Distributed Hinges	Nirection Napon Type
Pushover Hinge Data Opti Default Stiffness Reduc Trilinear / Slip Triline I Symmetric	ion ction Ratio of ear Type Alpha1 Alpha2	Skeleton Cu (+) 0.1 0.05	(-) 0.1 0.05	Data fo Refer Bi	Point Spring Support : Nonlinear Point Spring Support : Nonlinear	Nirection Napon Type
Pushover Hinge Data Opti Default Stiffness Reduc Trilinear / Slip Triline I Symmetric	ion ction Ratio of ear Type Alpha1 Alpha2 r Type	Skeleton Cu (+) 0.1 0.05	(-) 0.1 0.05	Data fo Refer Br	Point Spring Support : Nonlinear Point Spring Support : Nonlinear or Auto-Calculation of Strength rence Location only for Distributed Hinges eam I-end alc. Yield Surface of Beam considering Bu	birection Bapon Type
Pushover Hinge Data Opti Default Stiffness Reduc Trilinear / Slip Triline I Symmetric Bilinear / Slip Bilinear	ion ction Ratio of ear Type Alpha1 Alpha2 r Type	Skeleton Cu (+) 0.1 0.05	(-) 0.1 0.05	Data fo Refer Br	Point Spring Support : Nonlinear Point Spring Support : Nonlinear or Auto-Calculation of Strength rence Location only for Distributed Hinges eam I-end alc. Yield Surface of Beam considering Bu	birection Bappo Type
Pushover Hinge Data Opti Default Stiffness Reduc Trilinear / Slip Triline I Symmetric Bilinear / Slip Bilinear	ion ction Ratio of ear Type Alpha1 Alpha2 r Type	Skeleton Cu (+) 0.1 0.05 (+)	(-) 0.05 (-)	Data fo Refer Bi	Point Spring Support : Nonlinear Point Spring Support : Nonlinear or Auto-Calculation of Strength rence Location only for Distributed Hinges eam I-end alc. Yield Surface of Beam considering Bu	Direction Nappo Type

MIDAS Information Technology Co., Ltd.

Load Case Results

A new load case is now created called "Mode X", which will actually be the pushover analysis case. The Load Case Data form for the "Mode X" load case is shown.

Load Case Results

Longitudinal Direction:

The system pushover curve for the longitudinal direction is shown

show load Care		
Rot Type	Capacity Curves	
Capacity Curve (MDOP) Base Shear vs. Displacement Shear Coefficient vs. Displacement Shear Coefficient vs. Displacement Load Factor vs Displacement Additional Curves at Other Nodes	130 200 200 240 44 200	
0 0 0		
Capacity Spectrum (SDOF) For Performance Point (FEMA)	Presultant III	
lemand Spectrum		
Define Deskan Spectrum (=	20 -	
Desiant Spectra at Dangerg Rates (N) 19 10 10 10 10	0 1 2 2 4 5 6 7 8 9 10 11 1. Monitored Displacement(D)	~
Constant Period Lines at Periods (sec) 0.5 1.5 2 2 2 2 2 2 2 2 2	Description for Printed Output	
Evaluation of Performance Point (C. Procedure 3) C. Procedure 3	Performance Point Graph Display Option Displ. Control Node: 34 Dir.: DX Load Pattern Type: Mode Shape F Black C Wh	ite
langing Parameters	V,D Change Graph Title	
Inherent + Additional Damping (%)	Sa,Sd Change Graph Range	2
Structural Behavior Type	Telf,Delf Save Window As *.bm	P

MIDAS Information Technology Co., Ltd.

Load Case Results

Longitudinal Direction:

The figures show the deformed shape of the structure at displacements for the load case "Push X"

View of Deformed Shape for the Load Case "Push X"

Load Case Results

Transverse Direction:

The system pushover curve for the transverse direction is shown

MIDAS Information Technology Co., Ltd.

Load Case Results

Transverse Direction:

The figures show the deformed shape of the structure at various displacements for the load case "Push Y"

View of Deformed Shape for the Load Case "Push Y"

P-Δ Capacity Requirement Check

The requirements of section 4.11.5 of the AASHTO Guide Specifications for LRFD Seismic Bridge Design must be satisfied or a nonlinear time history analysis that includes P- Δ effects must be performed.

The requirement is:

✓ Pdl∆r ≤ 0.25 Mp

Where:

- PdI = unfactored dead load on the column (kip) = 1,200 kips
- Δr = relative lateral offset between the point of contraflexure and the furthest end of the plastic hinge (in.) = $\Delta L D / 2$ (Assumed since the inflection point is located at approximately mid-height of the column. If the requirements are not met, a more advanced calculation of Δr will be performed)
- Mp = idealized plastic moment capacity of reinforced concrete column based upon expected material properties (kip-in.) = 78,560 kip-in.

P-Δ Capacity Requirement Check

Longitudinal Direction

- ✓ 0.25Mp= 0.25 * 78,560 = 19,640 kip-in.
- \checkmark $\Delta r = \Delta L D Long / 2 = 8.76 / 2 = 4.38 in.$
- ✓ Pdl∆r = 1,200 * 4.38 = 5,256 kip-in. < 0.25Mp = 19,640 kip-in. => Ok

Transverse Direction

- \checkmark $\Delta r = \Delta L D_T rans / 2 = 6.07 / 2 = 3.04 in.$
- ✓ Pdl∆r = 1,200 kips * 3.04 = 3,648 kip-in. < 0.25Mp = 19,640 kip-in. => Ok

Minimum Lateral Strength Check

The requirements of Section 8.7.1 of the AASHTO Guide Specifications for LRFD Seismic Bridge Design must be satisfied. The requirement is:

• Mne ≥ 0.1 Ptrib (Hh + 0.5 Ds) / Λ

Where;

- Mne = nominal moment capacity of the column based upon expected material properties as shown in Figure 8.5-1 of the AASHTO Guide Specifications for LRFD Seismic Bridge Design (kip-in.)
- Ptrib = greater of the dead load per column or force associated with the tributary seismic mass collected at the bent (kip)
- \checkmark Hh = the height from the top of the footing to the top of the column or the equivalent column height for a pile extension (in.)
- \checkmark = 34.0 * 12 (Top of footing to top of crossbeam) = 408 in.
- \checkmark Ds = depth of superstructure (in.) = 7.083 * 12 = 85 in.
- Λ = fixity factor (See Section 4.8.1 of the AASHTO Guide Specifications for LRFD Seismic Bridge Design) = 2 for fixed top and bottom

Minimum Lateral Strength Check

Determine Mne:

- \checkmark Mne \ge 0.1 Ptrib (Hh + 0.5 Ds) / \land
 - Section 8.5 of the AASHTO Guide Specifications for LRFD Seismic Bridge Design defines Mne as the expected nominal moment capacity based on the expected concrete and reinforcing steel strengths when the concrete strain reaches a magnitude of 0.003.
 - General Section Designer in midas Civil is used to determine Mne by performing a moment-curvature analysis and displaying the moment when the concrete reaches a strain of 0.003. The moment-curvature diagram for the column section is shown with values displayed at a concrete strain of 0.003.
- \checkmark Mne = 73,482 kip-inches.

12. Code Requirements

Minimum Lateral Strength Check

Moment-Curvature Curve for Frame Section "COLUMN" at $\varepsilon c = 0.003$

Section View : Section1 Interaction Curve Moment-Curvature Curve Stress Contour

Minimum Lateral Strength Check

Determine Ptrib:

Since the abutments were modeled as free in the longitudinal direction, all of the seismic mass is collected at the bents in the longitudinal direction. Therefore, the force associated with the tributary seismic mass collected at the bent is greater than the dead load per column and is computed as follows:

Ptrib = Weight of Structure / # of bents / # of columns per bent = 6,638 / 2 / 2 = 1,660 kips

Perform Check:

- \checkmark 0.1 Ptrib (Hh + 0.5 Ds) / Λ = 0.1 * 1,660 * (408 + 0.5 * 85) / 2
- ✓ = 37,392 kip-in. < 73,482 kip-in. = Mne => Ok

Balanced Stiffness and Frame Geometry Requirement Check

The balanced stiffness and balanced frame geometry requirements of Sections 4.1.2 and 4.1.3 of the AASHTO Guide Specifications for LRFD Seismic Bridge Design must be met.

Other Required Checks

- Structure Displacement Demand/Capacity Check
- Member Ductility Requirement Check
- Column Shear Demand/Capacity Check

13. Acknowledgements

- MIDAS Software
- AASHTO

Thank you!

For any additional inquiries and interest in trying out midas Civil please contact us:

MIDASoft midasoft@midasuser.com

Special Elite Engineers Webinar Sequence

An Insider's Perspective