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Speaker Information

PAST PROJ

Daniel Baxter, P.E., S.E.

Senior Bridge Engineer | Michael Baker International

EDUCATION

MS, Structural Engineering, Washington University in St. Louis
« BS, Civil Engineering, Washington University in St. Louis
« BA, Carleton College

ECT

Winona Bridge and Cleveland Innerbelt Bridge Truss Rehabilitations

* Milton Madison Bridge New Truss Structure
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Multiple post-tensioned concrete and steel arch, box, and | girder bridges
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Learning Objectives

At the end of the this course, participants will be able to
understand:

1. Analysis and Modeling methods of Truss Bridges

2. Determining appropriate fixity conditions for truss members
3. When to use different modeling and analysis approaches
4. Application of FEA for specific regions of truss bridges
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Analysis and Modeling

= What is an idealized truss?

= Bending moments in truss bridges

= Should a truss be modeled as pinned or fixed?
= 2D versus 3D modeling

= Case study of detailed 3D modeling
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What is an idealized truss?

= Atruss is a structure composed of members joined
together at their endpoints. The members are joined

together by smooth pins and all loadings are applied
at the joints.

= Each truss member acts as an axial force member,
subject to either axial tension or compression.

Source: Hibbeler, Structural Analysis, Fourth Edition, pp. 74.
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Forces In an ldealized Truss

<': C Axial Force Bending Moment

A B e = Axial Tension

s = Axial Compression
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What happens when load is applied away
from ajoint?

<': C Axial Force Bending Moment

A B

s = Axial Tension

s = Axial Compression
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What happens if the joints are fixed?

<': C Axial Force Bending Moment

A B e = Axial Tension

s = Axial Compression
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Primary Moments

= Primary moments are bending moments that the
truss members must develop to remain in equilibrium
while carrying load.

= Since the truss is loaded away from the work point of
a joint, it is said to be eccentrically loaded.

Innovation Done Right..We Make a Difference
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Sources of Primary Moments
= Worklines that don’t meet at a
single point

= Centroid does not coincide with
the workline

= | oads applied away from panel
points

» Member self-weight
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Secondary Moments

= Bending forces in truss members that are not
required to satisfy equilibrium are termed secondary
moments, or secondary stresses.

= These are not the same as second order moments,

which are caused by axial forces applied to
compression members in their deflected position.

Innovation Done Right..We Make a Difference
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Sources of Secondary Moments

» Rigid connections between members
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Secondary Moments
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Should secondary moments be
considered for truss analysis?

REE  ma .ERBA  asemav  grsauveort Innovation Done Right..We Make a Difference
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C.R. Grimm: Secondary Stresses in Bridge
Trusses, 1908
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C.R. Grimm: Secondary Stresses in Bridge
Trusses, 1908

* “In common cases there is no necessity for such
calculations, yet in particular cases secondary
stresses should be investigated;...where [they
are] of great magnitude, or where a bridge has to
carry much greater loads than those for which it
has been designed.”

* “The writer suggests that readers who take a
particular interest in this subject...examine
trusses and publish their results”.
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Sciotoville Bridge, 1916

J- NS

David Steinman
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Sciotoville Bridge, 1916

= “This was done by cambering the trusses for full
dead load plus one-half the live load...but
assembling and erecting them so that the angles
between the members...would correspond to the
geometric form of truss.”

= “This is the first bridge, in which this method of
reducing secondary stresses in all members has
been used”.

Source: The Continuous Truss Bridge Over the Ohio River at Sciotoville, Ohio, of the
Chesapeake and Ohio Northern Railway, by Gustav Lindenthal, ASCE Transactions,
1922.
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J. Parcel and E. Murer: Effect of Secondary
Stresses Upon Ultimate Strength, 1934
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J. Parcel and E. Murer: Effect of Secondary
Stresses Upon Ultimate Strength, 1934

» General analysis and laboratory tests

= “For most bridge members...the ultimate strength is
practically unaffected, even by high secondary
stresses”.

= “ltis evident that the secondary bending was relieved
by the plastic condition on the compressive face...A
complete re-adjustment resulting in a nearly uniform
distribution over the section was the final state of
stress.”
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R.M Korol, et al., On Primary and Secondary
Stresses In Triangulated Trusses, 1986

= General analysis and laboratory tests

» “|t appears that Parcel and Murer’s work was
taken by the profession as the final word on the
subject of secondary stresses in steel trusses”.

= “Continuity at the joints added 5% and 7% to the

carrying capacity of two trusses as computed by
simple statics”.
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R.M Korol, et al., On Primary and Secondary
Stresses In Triangulated Trusses, 1986
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Current Practice

* “Where loads, other than the self-weight of the
members and wind loads there on, are transmitted to
the truss at panel points, the truss may be analyzed
as a pin-connected assembly”

-AASHTO LRFD 4.6.2.4

= “Stresses due to the dead load moment of the
member shall be considered, as shall those caused
by eccentricity of joints or working lines.
Secondary stress due to truss distortion or floorbeam
deflection need not be considered in any member
whose width measured parallel to the plane of
distortion is less than one-tenth of its length.”
-AASHTO LRFD 6.14.2.3

REE  ma .ERBA  asemav  gsauveort Innovation Done Right..We Make a Difference



Michael Baker

Current Practice

» “[Secondary stresses] have little effect on the
buckling strength (and tensile strength) of
truss members.

Because of local yielding of extreme fibers of
the members near the joints, the secondary
moments gradually dissipate as the truss is
loaded to its ultimate strength. They can
therefore be neglected in the buckling
analysis”

-Guide to Stability Design Criteria of Metal Structures, 6t
Edition, Page 50
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Should trusses be modeled as pinned or fixed?

* Pinned = secondary moments neglected
» Fixed = secondary moments included

» Recommend pinned for strength limit state, fixed for fatigue and
service limit state

* Include primary moments for all limit states

Innovation Done Right..We Make a Difference
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Member Length Adjustment for Camber

NN S
7

Truss under no load in geometric position prior to camber length adjustment of members
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How complex should the model be?

i
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2D Modeling
= Conventional bridges

= Main member dead and live load axial forces
= Use lever rule for live load distribution

Innovation Done Right..\We Make a Difference
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3D Modeling

= Wind analysis
= Floor systems

= Changes to structural configuration of original bridge
» Detalled FEA of specific regions

Innovation Done Right..We Make a Difference
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Axial Force Comparisons
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Axial Force Comparisons

Upstream Top Chord
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Axial Force Comparisons

Upstream Bottom Chord

> 118’-L19
o 0Ll a L0 =
200 — 4
0 ‘\,:.,
] s Upstream Truss - Original Plan Dead Load Axial

Force

-200 L Lﬂ
l‘ \\)‘ “ \\?‘ === Jpstream Truss - Baker Dead Load Axial Force
-400 ;-/ 2D
] ]

-600 Upstream Truss - HNTB Dead Load Axial Force

Axial Force (kips)

2D
-800 Upstream Truss - Baker Dead Load Axial Force
o s 3D
-1000

Axis Title

KASEMAN ~ JI/SALLYPORT Innovation Done Right..We Make a Difference




Michael Baker

INTERNATIONAL

Wind Load Moments

=i
=,

Geometric Nonlinear Results

-3125/-2376=1.32
-2703 /-1920=1.41
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Floor Systems in 3D
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Floor System Deformations

Stringers

Tie Girder Floorbeam
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Floor System Deformations
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Secondary Members in 3D Models

= |aterals and floorbeams supplement top and bottom
chords

&
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Boundary Conditions in 3D Models

= Consider ablility of actual connections to transfer
moments
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Detailed Modeling of Truss Bridges
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Detailed Modeling Case Study:
Winona Bridge
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= U13-L14, adjoining connections and members
modeled with shell elements

= High-strength bars for U13-L14 modeled with
truss elements

= Rjvets modeled with beam elements and
multilinear links
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= Questions:

- What are the demand/capacity ratios in adjacent
members after one channel fractures?

« Wil there be large differential displacements between
the end of the member and the connection?

«  Will rivets in the gusset plates fail due to large
differential displacements between the member and
connection?

«  Will the high-strength bars engage to carry load after
one channel fractures?

Innovation Done Right..We Make a Difference
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= Three analysis conditions:

- 1.25DC + 1.5DW + 1.30(90% Double Truck LL + IM)
[Extreme Ill] before fracture

 Extreme lll after one U13-L14 channel fractures
 Extreme lll after both channels fracture
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Shear Versus Deformation for A-141 Rivets
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Source: The Static Strength of Rivets Subjected to Combined Tension and Shear,
Munse, et. al., University of lllinois Bulletin, 1956
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Extreme |lll Stresses Before Fracture
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High-Strength Bar Force
Before Fracture
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Rivet Shear Versus Deformation Before Fracture

35
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Extreme |lll Stresses After Fracture
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Extreme |lll Stresses After Fracture

MIDAS/Civil
= ;,.:— 1 i POST-PROCESSOR
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High-Strength Bar Force
After Fracture

MIDAS/Civil
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Axial Force Distribution After Fracture

_ High Strength Bars | Remaining Channel

Force 285 kips 500 kips
Percent of Total 36% 64%
Force

Percent of Total 31% 69%
Area
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Deformations After Fracture

MIDAS/Civil
POST-PROCESSOR

DISPLACEMENT
RESULTANT
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Rivet Shear Versus Deformation After Fracture

35
L——/* . .
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Summary

Differential Displacement
Between U13 and L14

Before Fracture 1.2”
After Fracture 1.3”
High-Strength Bars In Place Only 3.0”

| ForceinHighStrengthBars

Before Fracture 191 kips
After Fracture 285 kips
High-Strength Bars In Place Only 967 kips

Note: 0.8A,,,f,, = (314.4)(4 bars) = 1257.6 kips
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Summary

U13-L14 Longitudinal Strain

Before Fracture 0.0007
After Fracture 0.001
High-Strength Bars In Place Only 0.003

Note: (0.8f,,) / Ey,, = 0.004

A .ERPA  GASEMAN  JJSALLYPORT Innovation Done Right..We Make a Difference
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Summary

0.08 016 0.24
70 : i r - :
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w — 200
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] | I 1 I
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Figure 5.4 Effect of strain rate on siress—sirain curve for AT steal.
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Summary

Maximum Rivet Maximum Rivet
Force Displacement

Before Fracture 18.7 kips 0.042”
After Fracture 21.9 kips 0.050”
High Strength Bars In Place Only 16.5 kips 0.037”

Shear Versus Deformation for A-141 Rivets

Shear (kips)

0 0.05 0.1 0.15 0.2 0.25 0.3
Deformation (in)
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Summary

= Adjacent members have D/C ratios below 1.00 for all
three analysis conditions — 5% increase in D/C ratio after
fracture for adjacent member

= No signs of connection distress

= High strength bars engage after fracture in proportion to
total steel area

= After fracture, strain of remaining channel remains near
the beginning of the plastic range

= Strain of remaining channel limited to maximum bar
strain of 0.004
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Conclusions

= Use pinned ends for the strength limit state
= Consider primary moments

= 2D analysis is sufficient for main members of most
truss bridges

= Use 3D when appropriate
= Be consistent with analysis and design in 3D!
= Consider detailed modeling in 3D when needed
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Questions?

For any additional inquiries and interest in trying out midas Civil please contact us at:

midasoft@midasuser.com
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Thank you!

For any additional inquiries and interest in trying out midas Civil please contact us:
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