Analysis of a Severely Skewed Prestressed Concrete Beam Bridge

Gary L. Gardner, Jr., P.E.

Bridge Technical Service Manager ms consultants, inc. August 19th, 2015

MIDAS Special Elite Engineers Webinar - An Insider's Perspective

- 1. Introduction
- 2. Proposed Bridge Configuration
- 3. Preliminary Design
- 4. Refined Analysis Model
- 5. Results
- 6. Conclusions

- 2. Proposed Bridge Configuration
- 3. Preliminary Design
- 4. Refined Analysis Model
- 5. Results
- 6. Conclusions

Project Location

MIDAS Information Technology Co., Ltd.

Portsmouth Bypass Project

MIDAS Information Technology Co., Ltd.

- Project Facts
 - 16 miles long
 - 4-lane divided, limited access highway
 - Bypasses 23 miles of U.S. 23 and U.S. 52
 - Four interchanges
 - >25 Million CY Excavation
 - >20 Million CY Embankment
 - 85% of excavation is rock
 - Cuts & embankments up to 200 ft high
 - 21 bridges

- Project Procurement
 - Portsmouth Bypass is Ohio first PPP
 - Design-Build-Finance-Operate-Maintain
 - ODOT to make annual availability payments for 35-year maintenance period
 - Project to be Delivered 8 years earlier than originally planned
 - Project Awarded in December 2014 after approximately 1 year bid process

- Bid Process
 - 3 teams selected to bid, lowest annual availability payment selected
 - Portsmouth Gateway Group \$25,884,800 per year (-\$50,590)

Estimated Cost to Construct: \$429,000,000

- PWP Portsmouth, LLC \$25,935,390 per year
- Portsmouth Bypass Development Partners \$26,229,590 per year

- Developer
 - ACS Infrastructure Development, Inc.
 - Infrared Capital Partners, Limited
 - Star America
- Construction Contractor
 - Dragados USA, Inc.
 - The Beaver Excavating Company
 - John R. Jurgensen Co., Inc.
- Lead Design Engineer
 - ms consultants, inc.
- Independent Quality Firm
 - HDR, Inc.

- 2. Proposed Bridge Configuration
- 3. Preliminary Design
- 4. Refined Analysis Model
- 5. Results
- 6. Conclusions

Bridge Location

• S.R. 823/U.S. 52 Interchange Plan

- Bridge #2 Reference Design Option
 - 2-Span Steel Bridge with Straddle Bent

ms

- Bridge #1A & #1B Reference Design Option
 - 5-Span Steel Bridge with 2 Straddle Bents

MIDAS Information Technology Co., Ltd.

• PGG Revised Design – How the D/B Process Works

• PGG Revised Design – How the D/B Process Works

PGG Revised Design – Bridge Schematic

Proposed Bridge #2 Profile

• Proposed Bridge Framing and Deck Plan

- Girder Span Varies 158.84' to 173.76'
- All Bays Flared Vary from 7.58' to 9.60'
- Deck Overhangs Curved Vary 3.54' to 5.20'
- Staggered diaphragm arrangement

- 2. Proposed Bridge Configuration
- 3. Preliminary Design
- 4. Refined Analysis Model
- 5. Results
- 6. Conclusions

• Preliminary Design Approach

- Preliminary Design Approach
 - Don't be ashamed

Preliminary Design Approach

- Don't be ashamed
- Just know the limitations

Know the Limitations

• Plan view shows all skew, spans, and flare correctly

Know the Limitations

• Design Summary says it's all OK! However...

Know the Limitations

- Four girders designed independently as line girders
 - No consideration of:
 - Skew effects (except AASHTO skew factors)
 - Grade effect on axial load
 - Intermediate diaphragm forces
 - Lateral bending/torsion effects
 - Effects of bearing restraint
 - Actual live load distribution
 - Effect of end diaphragm restraint
 - Deck construction loads

- Results of Preliminary Design
 - ODOT WF84-49
 - varying strand pattern
 - Modified standard ODOT WF72-49
 - 6 to 8 draped strands per beam
 - Lightweight concrete
 - w_c = 120 pcf
 - Recommended by precaster for shipping
 - High-strength concrete
 - f'_{ci} = 6 ksi
 - f'_c = 9 ksi

- Results of Preliminary Design
 - Intermediate steel diaphragms modified from ODOT PSID-1-13

- Results of Preliminary Design
 - Concrete end diaphragms modified from ODOT PSID-1-13

- 2. Proposed Bridge Configuration
- 3. Preliminary Design
- 4. Refined Analysis Model
- 5. Results
- 6. Conclusions

- Modeling Approach
 - Detailed grillage model
 - Beam elements for concrete beams, end diaphragms

- Modeling Approach
 - Detailed grillage model
 - Beam elements for concrete beams, end diaphragms
 - Truss elements for intermediate steel diaphragms

Modeling Approach

- Detailed grillage model
 - Beam elements for concrete beams, end diaphragms
 - Truss elements for intermediate steel diaphragms

- Modeling Approach Using MIDAS
 - Detailed grillage model
 - Beam elements for concrete beams, end diaphragms
 - Truss elements for intermediate steel diaphragms
 - Plate elements for deck

- Modeling Approach Using MIDAS
 - Detailed grillage model
 - Beam elements for concrete beams, end diaphragms
 - Truss elements for intermediate steel diaphragms
 - Plate elements for deck
 - Elastic links for bearings
 - Strands modeled with tendon template

- Create Sections
 - Non-standard WF84-49 Concrete Beams
 - Easily created by modifying predefined ODOT WF72-49

Section ID 1	T	PSC-I			-
Name WF72-49	Mesl	h Size for Stiff. Ca	lc.		in
Section Name	Left		Right		
ODOT 👻	H1	0 in			
WF72-49 🔻	HL1	5 in	HR1	5	in
V Symmetry	HL2	6 in	HR2	6	in
Joint On/Off	HL2-1	0 in	HR2-1	0	in
D1	HL2-2	3 in	HR2-2	3	in
JL1 JR1	HL3	46.5 in	HR3	46.5	in
✓ JL2 JR2	HL4	У in	HR4	9	in
JL4 JR4	HL4-1	0in	HR4-1	0	in
Shear Check	HL4-2	7 in	HR4-2	7	in
Auto	HL5	5.5 in	HR5	5.5	in
Z1: 73 in 📝	BL1	4 in	BR1	4	in
Z2 : Centroid	BL2	24.5 in	BR2	24.5	lin
Z3: 14.5 in 📝	BL2-1		BR2-1	0	in
Web Thick.	BL2-2	17.5 in	BR2-2	17.5]in
for Shear(total) Auto	BL4	20 in	BR4	20	lin
t1:0 in	BL4-1	0 in	BR4-1	0	in
t2:0 in	BL4-2	14 in	BR4-2	14	in
t3: U in 📃				-	
for Torsion(min.)		Consider She	ar Deforma	ation.	
U in 🗖		Consider War	ping Effec	t(7th DOF	-)
for Torsion(min.) 0 in Offset : Center-Top		Consider Shea	ar Defori ping Effe	ma ecl	mation. ect(7th DOf

Section Data		×) í	PSC Viewer	X
DB/User PSC Section ID 1	PSC-I	•		BL2 BL2-2 BL2-1 HL1 HL2 HL2-1 HL2-1 HL2-1 HL2-1 HL2-1 HL2-1 HL2-1 HL2-1 HL2-1 HL2-1 HL2-1 HL2-1 HL2-1 HL2-1 HL2-1 HL2-1 HL2-1 HL2-1 HL2-2	BR2-2 II BR2-2 HI JR1 HR1 HR2 HR2-1 HR2
Section Name	Left in	Right		HL3 BL1	BR1 HR3
Joint On/Off	HL2 6 in HL2-1 0 in HL2-2 3 in HL3 58.5 in	HR2 6 in HR2-1 0 in HR2-2 3 in HR3 58.5 in		HL4 HL4 HL4-1 HL5 HL4-1 HL4-1 HL4-1 HL4-1 HL4-1 HL4-1	HR4-2 HR4-1 HR4-1 HR5 BR4-1
Shear Check	HL4 9 in HL4-1 0 in HL4-2 7 in HL5 5.5 in		Offset – rence for Deck, Diaphrag	r BL4-2 BL4 BL4 BL4	BR4-2 BR4
21: 73 in V 22: Centroid 23: 14.5 in V Web Thick.	BL1 4 i BL2 24.5 in BL2-1 0 in BL2-2 17.5 in	BR2-1 0 in BR2-2 17.5 in	nodes		Z1
for Shear(total) Auto t1 : 0 in t2 : 0 in t3 : 0 in	BL4 ¹⁰ in BL4-1 0 in BL4-7 14 in	BR4 20 in BR4-1 0 in BR4-2 14 in			> y Z2 Z3
for Torsion(min.) 0 in Offset : Center-Top Change Offset	Consider She Consider War Table Input	ar Deformation. ping Effect(7th DOF) Display Centroid			

Create Sections

- Non-standard WF84-49 Concrete Beams
 - Easily created by modifying predefined ODOT WF72-49
- End Diaphragm
 - Solid Rectangle

Section Data	X
DB/User	
Section ID 3	Solid Rectangle
Name End Diaph	O User O DB AISC10(US) ▼
р в	Sect. Name Built-Up Section Get Data from Single Angle DB Name AISC10(US)
	Sect. Name

Create Sections

- Non-standard WF84-49
 Concrete Beams
 - Easily created by modifying predefined ODOT WF72-49
- End Diaphragm
 - Solid Rectangle
- Intermediate Diaphragm Members
 - Predefined AISC
 Steel Sections

ection Data				X
Section ID 8 Name L6X4X5/16	C User	o db 🛛	ISC10(US)	•
	Get Data fro DB Name Sect, Name	L6X4X5, Built- om Single Angle AISC10(Up Section	-
	H B tw tf	6 4 0.313 0.313	in in in in	

Create Sections

- Non-standard WF84-49 Concrete Beams
 - Easily created by modifying predefined ODOT WF72-49
- End Diaphragm
 - Solid Rectangle
- Intermediate Diaphragm Members
 - Predefined AISC Steel
 Sections
- Deck Plates
 - Properties-> Thickness->Add

Thickness Data		83
Value Stiffened		
Thickness ID 1		
In-plane & Out-of-plane	7.5 in	
🔘 In-plane	0 in	
Out-of-plane	0 in	
 Plate Offset Thickness Ratio Local z Value Local z in 	Offset Distance	

- Create Materials
 - Properties -> Material Properties -> Add
 - All materials created from MIDAS predefined materials with default properties except as noted
 - Steel ASTM A572-50
 - Tendon Steel ASTM A416-270 (Low Relaxation)
 - Lightweight Precast Beams ASTM(RC) C9000
 - Adjusted density and elastic modulus
 - Concrete for End Diaphragms ASTM(RC) C4500
 - Deck Concrete ASTM(RC) C4500
 - Density set to zero so wet concrete loads can be applied to beam in construction stage analysis
 - Time Dependent Properties to be added later

ms

- Create Nodes and Elements
 - Many ways to do this, many references available from MIDAS
 - The following extra steps now will help later on:
 - Use GROUPS liberally as nodes/elements are defined (used extensively in construction stage analysis)
 - Node and element renumbering (helpful for defining live load, specifying output points)
 - Plate elements for deck were created with auto-mesh tool
 - Translate girder nodes upward with rigid links and automesh will find these nodes on the deck plane

- Boundary Conditions
 - Rigid links used to connect:
 - Top of beam to deck
 - Beam to intermediate diaphragms
 - End of beam to bearing
 - Bearing elastic links
 - Offset bottom of beam node downward by bearing height
 - Add ground support with 6 DOF restrained
 - Add elastic link between bottom of girder and ground support for full control of restraint conditions in all DOF

- Modeling Bearings
 - Rotate bearing parallel to beam (defaults to GCS)

Modeling Bearings

- Rotate bearing parallel to beam
- Enter accurate stiffness of bearing into table

No	Node1	Node2	Туре	B Angle ([deg])	SDx (kips/in)	SDy (kips/in)	SDz (kips/in)	"Fixed" End – load plate has oversize
329	4061	4053	GEN	1.90	10000.000	19.0000	19.0000	holes, assume only
330	4062	4054	GEN	2.55	10000.000	19.0000	19.0000	one set of anchor
331	4063	4055	GEN	3.17	10000.000	10000.000	10000.000	bolts engaged
332	4064	4056	GEN	3.75	10000.000	19.0000	19.0000	
333	4057	246	GEN	1.90	10000.000	19.0000	19.0000	Expansion End –
334	4058	248	GEN	2.55	10000.000	19.0000	19.0000	estimated
335	4059	4051	GEN	3.17	10000.000	19.0000	19.0000	
336	4060	4052	GEN	3.75	10000.000	19.0000	19.0000	stiffness based on
007	0.0	1000	01010	1.00		0.0000	0.0000	assumed size
		Ve es (10	rtical Su sentially 000 kip = flection	upport – / rigid = 0.1"	μ			

Modeling Bearings

- Rotate bearing parallel to beam
- Enter accurate stiffness of bearing into table
- Consider changes in BC during construction
 - Example: End of beam needs torsional restraint until diaphragms are installed (ie. temporary A-frame brace)
 - Model multiple bearings, divide into groups

	No	Node1	Node2	Туре	B Angle ([deg])	SDx (kips/in)	SDy (kips/in)	SDz (kips/in)	SRx (in*kips/[rad])	SRy (in*kips/[rad])	SRz (in*kips/[rad])	Shear Spring Location	Distance Ratio SDy	Distance Ratio SDz	Group
	257	4061	4053	GEN	1.90	10000.000	10000.000	10000.000	0.00	0.00	83333333.33		0.50	0.50	BC Group 1 Initial Supports
	258	4062	4054	GEN	2.55	10000.000	10000.000	10000.000	0.00	0.00	83333333.33		0.50	0.50	BC Group 1 Initial Supports
	259	4063	4055	GEN	3.17	10000.000	10000.000	10000.000	0.00	0.00	83333333.33		0.50	0.50	BC Group 1 Initial Supports
	260	4064	4056	GEN	3.75	10000.000	10000.000	10000.000	0.00	0.00	83333333.33	Γ	0.50	0.50	BC Group 1 Initial Supports
	261	4057	246	GEN	1.90	10000.000	10000.000	0.0000	0.00	0.00	83333333.33		0.50	0.50	BC Group 1 Initial Supports
	262	4058	248	GEN	2.55	10000.000	10000.000	0.0000	0.00	0.00	83333333.33		0.50	0.50	BC Group 1 Initial Supports
	263	4059	4051	GEN	3.17	10000.000	10000.000	0.0000	0.00	0.00	83333333.33		0.50	0.50	BC Group 1 Initial Supports
	264	4060	4052	GEN	3.75	10000.000	10000.000	0.0000	0.00	0.00	83333333.33		0.50	0.50	BC Group 1 Initial Supports
							· · · · · ·	· · · ·							
Γ	No	Node1	Node2	Туре	B Angle ([deg])	SDx (kips/in)	SDy (kips/in)	SDz (kips/in)	SRx (in*kips/[rad])	SRy (in*kips/[rad])	SRz (in*kips/[rad])	Shear Spring Location	Distance Ratio SDy	Distance Ratio SDz	Group
	329	4061	4053	GEN	1.90	10000.000	19.0000	19.0000	0.00	0.00	0.00		0.50	0.50	BC Group 5 Release Fascia
	330	4062	4054	GEN	2.55	10000.000	19.0000	19.0000	0.00	0.00	0.00	Γ	0.50	0.50	BC Group 5 Release Fascia
	331	4063	4055	GEN	3.17	10000.000	10000.000	10000.000	0.00	0.00	0.00		0.50	0.50	BC Group 5 Release Fascia
	332	4064	4056	GEN	3.75	10000.000	19.0000	19.0000	0.00	0.00	0.00		0.50	0.50	BC Group 5 Release Fascia
	333	4057	246	GEN	1.90	10000.000	19.0000	19.0000	0.00	0.00	0.00		0.50	0.50	BC Group 5 Release Fascia
	334	4058	248	GEN	2.55	10000.000	19.0000	19.0000	0.00	0.00	0.00		0.50	0.50	BC Group 5 Release Fascia
	335	4059	4051	GEN	3.17	10000.000	19.0000	19.0000	0.00	0.00	0.00		0.50	0.50	BC Group 5 Release Fascia
	336	4060	4052	GEN	3.75	10000.000	19.0000	19.0000	0.00	0.00	0.00		0.50	0.50	BC Group 5 Release Fascia

MIDAS Information Technology Co., Ltd.

• Don't underestimate the importance of accurate BC's!

• Don't underestimate the importance of accurate BC's!

ms

- Dead Loads
 - Beam and diaphragm loads self-weight
 - Deck and haunch trapezoidal line load to top of beam
 - Divided into five separate zones to simulate deck placement sequence

ms

- Dead Loads
 - Beam and diaphragm loads self-weight
 - Deck and haunch trapezoidal line load to top of beam
 - Divided into five separate zones to simulate deck placement sequence

- Dead Loads
 - Beam and diaphragm loads self-weight
 - Deck and haunch trapezoidal line load to top of beam
 - Divided into five separate zones to simulate deck placement sequence

Dead Loads

- Beam and diaphragm loads self-weight
- Deck and haunch trapezoidal line load to top of beam
- Parapet load nodal loads to the deck nodes

ms

Dead Loads

- Beam and diaphragm loads self-weight
- Deck and haunch trapezoidal line load to top of beam
- Parapet load nodal loads to the deck nodes
- Wearing surface pressure load on deck plates

Prestress Loads

- Beam and diaphragm loads self-weight
- Deck and haunch trapezoidal line load to top of beam
- Parapet load nodal loads to the deck nodes
- Wearing surface pressure load on deck plates
- Create a load case for prestress, will be filled in when tendon information is defined

- Defining Tendons
 - Modified from auto-generated template for ODOT WF72-49
 - Structure->Wizard->PSC Bridge->Tendon Template
 - Edit coordinates of top strands

ms

- Tendon Properties
 - Define tendon properties, profile and load from:
 - Loads->Load Type->Temp/Prestress->Prestress Loads->...

		Pm2A	
Tendon Name		DIIIZA	
Tendon Type		Internal(Pre-Tensior	ı) ▼
Material	4	4: Tendon	▼
Total Tendon Area		0.217	in^2
Strand Diameter		0.6	in
Relaxation Coefficient		Magura	▼ 45 ▼
Ultimate Strength		270.243	kips/in^2
Yield Strength		227.573	kips/in^2
Curvature Friction Factor		0	
Wobble Friction Factor		0	1/in
External Cable Moment Magnifier	r	0	kips/in^2
Anchorage Slip(Draw in)		Bond Type	
Begin : 0	in	Bonded Bon	
End : 0	in	O Unbonded	

- Tendon Profile
 - All straight tendons already have correct profile information from the tendon template
 - Edit profile of draped tendons only
 - Adjust x coordinate for debonded strands
 Adjust start and

- Tendon Prestress
 - All tendons prestressed to 75% of ultimate strength

- Time Dependent Materials
 - Each time dependent material needs:
 - Creep/Shrinkage properties
 - Compressive strength gain curve
 - Properties->Time Dep. Matl.->Creep/Shrinkage->Add
 - PS beam shown, deck and diaphragm also defined

Add/Modi	fy Time Dependent Material (Creep /	Shrinkage)			23
Name :	LW Conc TimeDep	Code :	AASHT	0	•
AASHTO)				
Comp	ressive strength of concrete at the age o	of 28 days :		9	kips/in^2
Relat	ive Humidity of ambient environment (40-	99):		70 🚔	%
Volum	ne-surface ratio :			4.2	in
Age o	of concrete at the beginning of shrinkage	:		3	day
E E	pose to drying before 5 days of curing				
	S	how Result	0	K Canc	el Apply

- Time Dependent Materials
 - Each time dependent material needs:
 - Creep/Shrinkage properties
 - Compressive strength gain curve
 - Properties->Time Dep. Matl.->Comp. Strength->Add
 - PS beam shown, deck and diaphragm also defined

	Add/Modify Time Dependent Material (Comp. Strength)		X
	Name LW Conc TimeDep	Scale Factor Graph Options 1.0 X-axis log scale	
	Type © Code © User		
	Development of Strength Code : $ACI = f(t) = t_{eq} \times f_{28} / (a+b \times t_{eq})$		-
	Concrete Compressive Strength at 28 Days(f28) : 9 kips/in^2	5	-
ACI a,b factors "fudged" based on knowns: 6 ksi release strength at 1 day and	Concrete Compressive Strength Factor(a, b) a: 0.35 b: 0.98		-
9 ksi strength at 28 days		0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_
	Redraw Graph	OK Cancel	

- Link time dependent properties to materials
- Properties->Time Dep. Matl.->Material Link

e Me	enu		
ne D	ependent	Material Lin	k
T	Desertes		
Time	Dependent	t Material Ty	
Cree	р/Snrinkage		
Comp	o. Strength	LW Cor	ic ▼
Sele	ct Material t	to Assign	
м	aterials	Sele Mat	ected terials
1:St	eel50XF	3:LW	Precast Be
2:Co	ncDeck		
3:LM 4:Te	/ Precast Be ndon		
5:Du	immy Beams		
6:Co	inc Diaphs		
Ope	ration		
Ope	ration Add / Modif	ý D	elete
Ope	ration Add / Modif	ý D	elete
Ope No	ration Add / Modif Mat	y D Creep/	elete
Ope No 2	Add / Modif Mat ConcD	y D Creep/ Conc D	elete Comp ConcDeck
Ope No 2 3	Add / Modif Mat ConcD LW Pr	y D Creep/ Conc D LW Co	elete Comp ConcDeck LW Co
Ope No 2 3	ration Add / Modif Mat ConcD LW Pr	y D Creep/ Conc D LW Co	elete Comp ConcDeck LW Co
Ope No 2 3	ration Add / Modif Mat ConcD LW Pr	y D Creep/ Conc D LW Co	elete Comp ConcDeck LW Co
Ope No 2 3	ration Add / Modif Mat ConcD LW Pr	y D Creep/ Conc D LW Co	elete Comp ConcDeck LW Co
Ope No 2 3	ration Add / Modif Mat ConcD LW Pr	y D Creep/ Conc D LW Co	elete Comp ConcDeck LW Co
Ope No 2 3	ration Add / Modif Mat ConcD LW Pr	y D Creep/ Conc D LW Co	elete Comp ConcDeck LW Co Close
Ope No 2 3	ration Add / Modif Mat ConcD LW Pr	y D Creep/ Conc D LW Co	elete Comp ConcDeck LW Co
Ope No 2 3	ration Add / Modif Mat ConcD LW Pr	y D Creep/ Conc D LW Co	elete Comp ConcDeck LW Co
Ope No 2 3	ration Add / Modif Mat ConcD LW Pr	y D Creep/ Conc D LW Co	elete Comp ConcDeck LW Co

- Moving Load
 - Select moving load code AASHTO LRFD
 - Select vehicles HL-93TRK and HL-93TDM
 - Set Dymanic Load Allowance to 33%

Vehicular Load Properties Vehicular Load Name : HL-93TRK Vehicular Load Type : HL-93TRK Dynamic Load Allowance : 33 % $H_{L-93TRK}$ Dynamic Load Allowance : 33 % M_{L} M_{L	Standa AASH	ard Name TO LRFD Load				•
Vehicular Load Name : HL-93TRK Vehicular Load Type : HL-93TRK Dynamic Load Allowance : 33 % $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Vehicu	lar Load Proper	ties			
Vehicular Load Type : Dynamic Load Allowance : 33 % P_1 W H93TRK P_3 W W H93TRK P_3 P_3 W H93TRK P_3 $Q_0.05333332$ kips/in Q_0 R_1 Q_0 R_2 Q_0 R_2 Q_0 R_2 Q_0 R_2 Q_0 R_2 Q_0 R_2 R_3 Q_0 R_2 Q_0 R_2 Q_0 R_2 R_3 R_3 R_2 Q_0 R_3	Vehicu	ular Load Name	: HL-9	3TRK		
Dynamic Load Allowance : 33 % P1 P2 P3 W I P1 I D1 D2 \sim D3 I 8 168 2 32 168 3 32 360 WI 0 kips WW 0 kips WW 0 kips 0 kips 0 MO Kips 0 MO Kips 0 MU 0 Kips/in MU 0 K	Vehic	ular Load Type	: HL-9	3TRK		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynar	mic Load Allowa	nce : 33			%
1 8 168 Ps 0 kips 2 32 168 Pm 0 kips 3 32 360 dW1 0 kips/in dD1 0 in dW2 0 kips/in dD2 0 in dD2 0 in		₩ ↓ <	↓ ↓ I < D1 ^N D2	↓ ∽D3 [→]		→
2 32 168 Pm 0 kips 3 32 360 dW1 0 kips/in dD1 0 in dW2 0 kips/in dD2 0 in		W ↓ ↓	↓ I ← D1 D1 D2 Spacing(in)	<u>↓</u> D3 	0.05333333	→ ×i
dW1 0 kips/in dD1 0 in dW2 0 kips/in dD2 0 in	No	W ↓ ↓ Load(kips)	I ← D1 D2 Spacing(in)	v w v v v v v	0.05333333	kips/in kips
dD1 0 in dW2 0 kips/in dD2 0 in	No 1 2 3	₩ ↓ Load(kips) 8 32 32	← D1 D2 Spacing(in) 168 168 360	v v v v v v v v v v v Ps Pm	0.05333333 0 0	kips/in kips kips
dW2 0 kips/in dD2 0 in	No 1 2 3	₩ Load(kips) 8 32 32	← D1 D2 D1 D2 Spacing(in) 168 168 360	v v v v v v v v v v v v v v	0.05333333 0 0 0	kips/in kips kips kips/in
dD2 0 in	No 1 2 3	₩ Load(kips) 8 32 32	← D1 → ← D2 Spacing(in) 168 168 360	v v v v v v v v v v v v v v	0.05333333 0 0 0 0 0	kips/in kips kips kips/in in
	No 1 2 3	₩ Load(kips) 8 32 32	← D1 D2 Spacing(in) 168 168 360	W Ps Pm dW1 dD1 dW2	0.05333333 0 0 0 0 0 0	kips/in kips kips kips/in in kips/in

- Traffic Surface Lanes Fascia Beams
 - Curved deck on straight beams, therefore curb line used as reference line for fascia beam surface lanes

ms

- Traffic Surface Lanes Fascia Beams
 - Just change the offset for the second lane

- Traffic Surface Lanes Interior Beams
 - Similar procedure as fascia beam, but use beam line nodes as reference instead of curb line
 - One set of 2 lane positions optimized for each beam
 - Total of 8 lanes defined
 - Using lane optimization, MIDAS creates the rest

- Moving Load Cases (MLC)
 - Defines which lane loadings can occur simultaneously
 - Defines multiple presence factors
 - Create MLCs with optimum lanes for each beam
 - ie. Beam 1, Lane 1 with Beam 1, Lane 2
 - If using lane optimization, group similar shift directions

Define Moving Load Case	23				
Load Case Name : G2	G2LL				
Description : Girder 2 Liv	rder 2 Live Load				
Load Case for Permit Vehicle					
Multiple Presence Factor					
Num of Loaded Lanes	Scale Factor				
1	1.2				
2	1				
3	0.85				
> 3	0.65				
Sub-Load Cases Loading Effect Combined Independent					
ide dass S., Lane 1	lane1 lane2				
HL-93TDM 1 Girder 2	Lane 1 Girder .				
HL-93TRK 1 Girder 2	Girder 2 Lane 1 Girder .				
< III	•				
Add Modify	Delete				
OK Cancel	Apply				

• Construction Stage (CS) Analysis

- Construction Stage (CS) Analysis
 - Load->Load Type->Construction Stage->Define C.S.->Add

Stage Additional Steps Current Stage Information Element Boundary Load Group List Top of Girder Nodes Girder Nodes at Deck Elevation Support Nodes at Deck Elevation Support Nodes at Bearing Cross Frame Nodes Edge of Deck Nodes CG Barrier Toe of Barrier Toe of Barrier Const Stage 1 Beam DL +PS Const Stage 2 XFrames Const Stage 4 Deck Elements Const Stage 5 End Diaphs Add Modify Delete Add	Compose Construction Stage Stage Stage : Name : Duration : 0 Cave Result	Addi Day (Ex	tional Steps : 0 ample: 1, 3, 7, 14) to Generation	Add Delete Modify Clear Step Day
Element Boundary Load Group List	Stage Additional Steps Current Stage Information	Ste	p Number : 0 🚖	
	Element Boundary Load Group List Top of Girder Nodes Girder Nodes at Deck Elevation Support Nodes at Girder Elevation Support Nodes at Bearing Cross Frame Nodes Edge of Deck Nodes CG Barrier Toe of Barrier Toe of Barrier Const Stage 1 Beam DL +PS Const Stage 2 XFrames Const Stage 4 Deck Elements Const Stage 5 End Diaphs	Activation Age : 0 day Group List Name Age Add Modify Dele	te Add Mo	100 👻 % Redist.

- Construction Stage (CS) Analysis
 - The only things that can happen in a construction stage:
 - Elements change
 - Boundary conditions change
 - Loads change
 - Time passes

- Construction Stage (CS) Analysis
 - The only things that can happen in a construction stage:

- Basic CS Analysis Stage Summary
 - Prestress the beams and erect
 - Erect steel diaphragms (zero force under beam self-weight)
 - Release temporary beam end supports
 - Place deck loading in 5 stages to simulate placement
 - Activate deck elements (makes bridge composite)
 - Place end diaphragms
 - Place Barrier
 - Open bridge to traffic
 - Place future wearing surface
 - "End" of time dependent effects

Basic CS Analysis Stage Summary (with wait time)

- Prestress the beams and erect
- Wait
- Erect steel diaphragms (zero force under beam self-weight)
- Release temporary beam end supports
- Wait
- Place deck loading in 5 stages to simulate placement
- Wait
- Activate deck elements (makes bridge composite)
- Wait
- Place end diaphragms
- Wait
- Place Barrier
- Wait
- Open bridge to traffic
- Wait
- Place future wearing surface
- Wait
- "End" of time dependent effects

WAIT TIMES ARE CRITICAL TO ESTIMATING TIME DEPENDENT EFFECTS.

THIS MODEL APPLIES ALL LOADS ON THE 1ST DAY OF A STAGE AND THEN USES DEFINED "WAIT STAGES" WHERE NOTHING HAPPENS EXCEPT TIME PASSING.

THE USER CAN ALSO CHANGE WHETHER LOADS ARE APPLIED AT THE BEGINNING OR END OF A STAGE TO ELIMINATE ADDITIONAL STAGES. THIS IS A MATTER OF PREFERENCE.

Basic CS Analysis Stage Summary – What Changes?

- Prestress the beams and erect
 - Add elements, add boundary conditions, add load
- Erect steel diaphragms (zero force under beam self-weight) (#)
 - Add elements, add boundary conditions*
- Release temporary beam end supports
 - Delete boundary conditions, add boundary conditions
- Place deck loading in 5 stages to simulate placement
 - Add load
- Activate deck elements (makes bridge composite)
 - Add elements, add boundary conditions*
- Place end diaphragms (#)
 - Add elements
- Place Barrier
 - Add load
- Open bridge to traffic
- Place future wearing surface
 - Add load
- "End" of time dependent effects

* - BOUNDARY CONDITIONS ADDED AT THESE STAGES ARE RIGID LINKS

- ADDITIONAL LOAD AT THIS STAGE IS SELF-WEIGHT, WHICH IS AUTOMATICALLY ACTIVATED WHEN AN ELEMENT IS ACTIVATED (IF SELF-WEIGHT IS SELECTED IN A PREVIOUS STAGE)

Defining the First Stage – Need <u>Elements</u>, Boundaries, and Loads

Compose Construc	tion Stage				X
Stage			- Additional Ste	eps	
Stage :	Erect PS Beams	▼ ▲ ▼	Day: 0		Add Delete
Name :	Erect PS Beams		(Example: 1	l, 3, 7, 14)	Modify Clear
Duration :	0	day(s)	- Auto Gener	ation	Step Day
Save Result			Stop Number		
	Stage Additional Steps		Step Numbe		
[Current Stage Information		Gene	rate Steps	
Element Bounda	ary Load				1
Group List		Activation		Deactivation	
Top of Girder Nodes Girder Nodes at Deck Elevation Support Nodes at Girder Elevation Support Nodes at Bearing		Age : 0	🖨 day(s)	Element Force Redistribution : Group List	100 💉 %
Edge of Deck	Nodes	Name	Age	Name	Redist.
Toe of Barrier Const Stage 2 Const Stage 5	2 XFrames + Deck Elements - End Diaphs	Const Stage 1 Beam DI	L+PS 1		
	CTIVATES BEAM EMENTS AND SSOCIATED TENDONS	Add Modify	Delete	Add Mo	dify Delete
			0	Cance	el Apply

Defining the First Stage - Need Elements, <u>Boundaries</u>, and Loads

Compose Construction Stage			83
Stage Erect PS Beams Name : Erect PS Beams Duration : 0 Save Result Image: Stage	v v v day(s)	Additional Steps Day : 0 (Example: 1, 3, 7, 14) Auto Generation Step Number : 0 🚖 Generate Steps	Add Delete Modify Clear Step Day
Element Boundary Load Group List BC Group 4 Deck Links BC Group 2 Xframes BC Group 3 Release Supports BC Group 5 Release Fascia Beam Brgs ACTIVATES INITIAL BEAM SUPPORT CONDITIONS (WITH TEMPORARY)	Activation Support / Spring Posit Original ODe Group List Name BC Group 1 Initial Sup Add Modify	ion formed Position Deforme Delete	Delete
		OK Can	cel Apply

Defining the First Stage – Need Elements, Boundaries, and Loads

Compose Constru	ction Stage			23
Stage			Additional Steps	
Stage :	Erect PS Beams	▼ ▲ ▼	Day: 0	Add Delete
Name :	Erect PS Beams		(Example: 1, 3, 7, 14)	Modify Clear
Duration :	0	💼 day(s)		Step Day
Save Regult			Auto Generation	
Save Result	Stage Additional Steps		Step Number : 0 🚖	
	Current Stage Information			
Element Bound	ary Load			
Group List		Activation	Deactivation	
Const Stage Load Group 7 Const Stage Const Stage Const Stage Const Stage Const Stage Const Stage	3 Wet Deck Loads 5 Barrier Loads 7 FWS 3A Wet Deck Loads 3B Wet Deck Loads 3C Wet Deck Loads 3D Wet Deck Loads 3D Wet Deck Loads 3E Wet Deck Loads	Active Day : First Group List Name Const Stage 1 Load Be	day(s) Inactive Day : Group List Name Name	First vday(s)
ACTIVATES PRESTRESS WILL ALWA WE TURN T	SELF-WEIGHT AND S LOADS. THESE LOADS YS BE ACTIVE UNLESS HEM OFF LATER	Add Modify	Delete Add M	odify Delete
			OK Can	cel Apply

Activating/Deactivating Boundary Conditions

Compose Constr	ruction Stage				×
Stage			Additional St	eps	
Stage :	Release Temporary Supports	▼	Dav: 0		Add Delete
Name :	Release Temporary Supports		(Example: 1	l, 3, 7, 14)	Modify Clear
Duration :	20	💼 day(s)			Step Day
Save Result	Stage Additional Steps		Step Numbe	er: 0 🚖	
	Current Stage Information		Gene	rate steps	
Element Boun Group List BC Group 4 BC Group 2 BC Group 3	Idary Load Control	Activation Support / Spring Posit Original O De	ion formed	Deactivation	
		Group List		Group List	
		Name	Position	Name	
		BC Group 5 Release	. Deforme	BC Group 1 Init	ial Supports
DEACTIVA AND ACTIV GROUP IN INSTABILIT	TE ORIGINAL GROUP /ATE SUBSEQUENT THE SAME STEP OR IY WILL OCCUR	Add Modify	Delete	Add	Delete
			0	K Cano	cel Apply

Construction Stage Analysis Control

Analysis->Construction Stage

Construction Stage Analysis Control Data	
Final Stage Cast Stage Other Stage Day 10000 - End of CS	Cable-P SPECIFY END OF CS ANALYSIS. CAN BE USED TO CHECK COMBINATIONS WITH LIVE LOAD AT BEGINNING AND END OF SERVICE.
Restart Construction Stage Analysis Select Stages for Restart Analysis Option Include Nonlinear Analysis Indude Nonlinear Analysis Nonlinear Analysis Control Indupendent Stage Indude Equilibrium Element Nodal Forces Include P-Delta Effect Only P-Delta Analysis Control Include Time Dependent Effect Time Dependent Effect Control Load Cases to be Distinguished from Dead Load for C.S. Output Include Time Dependent Effect	Convert Final Stage Member Forces to Initial Forces for Post C.S. Truss Beam Change Cable Element to Equivalent Truss Element for PostCS Apply Initial Member Force to C.S. Initial Displacement for C.S. Initial Tangent Displacement for Erected Structures ENABLE TIME DEPENDENT EFFECTS Lack-of-Fit Force Control Apply Camber Displacement to C.S. (if Defined)
No Load Case Name Type Case1 Cas Add Modify Velete	Constant Constant <td< td=""></td<>

Construction Stage Analysis Control – Time Dependent Effects

Analysis->Construction Stage->Time Dependent Effect Control

Time Dependent Effect Control	
Time Dependent Effect	
Creep & Shrinkage Type Creep Creep Convergence for Creep Iteration Number of Iterations: 5 Tolerance : 0.01	SELECT CREEP AND SHRINKAGE
$\begin{tabular}{ c c c c } \hline \hline & & & & & & & & \\ \hline \hline & & & & & & \\ \hline \hline & & & &$	AUTOMATIC CONTROL OF CONVERGENCE CRITERIA AND ADDITIONAL TIME STEPS FOR C&S
 Tendon Tension Loss Effect (Creep & Shrinkage) Consider Re-Bar Confinement Effect Variation of Comp. Strength Apply Time Dependent Effect Elastic Modulus to Post C.S Tendon Tension Loss Effect (Elastic Shortening) Change with Variation of Tendon Force Constant 	CONTROL OF TENDON ELASTIC LOSSES, ETC.
OK Cancel	

MIDAS Information Technology Co., Ltd.

Load Combinations

Results->Load Combinations->Concrete Design->Auto Generation

Automatic Generation of Load Combinations	
Option Ord Replace	
Code Selection Steel Concrete SRC Steel Composite	SELECT CONCRETE, AASHTO-LRFD12
Design Code : AASHTO-LRFD12 Manipulation of Construction Stage Load Case ST Only CS Only ST +CS ST : Static Load Case CS : Construction Stage	"CS ONLY" MUST BE SELECTED IN ORDER TO COMBINE DEAD LOAD EFFECTS FROM CS ANALYSIS WITH LIVE LOADS AND OTHER STATIC
Will Execute Construction Stage Analysis Consider Losses for Prestress Load Cases Transfer Stage : 1 Service Load Stage : 1	BE COMBINED WITH THE FINAL CONSTRUCTION STAGE.
Load Modifier : 1 = ELoad Factors for Permanent Loads (Yp) ====================================	CONSIDER LOSSES
Load Factor for Settlement : 1	FOR EXAMPLE: 0.9xDL, 1.25xDL, OR BOTH
Structural Plate Box Structures(Metal Box Culverts) Condition for Temperature O Deformation Check	
OK Cancel	

1. Introduction

- 2. Proposed Bridge Configuration
- 3. Preliminary Design
- 4. Refined Analysis Model
- 5. Results
- 6. Conclusions

- Results to be Considered
 - Load Combinations After All Losses
 - Service (I Compression, III Tension) (Typically governs design)
 - Strength I (Shear Only)
 - Strength for moment does not govern
 - Envelope of Stresses During Construction

- Service III Tension at Midspan
 - Axial Force and Vertical Bending Only
 - Additional stresses have transferred from interior to exterior beams, particularly Beam 1, the shortest beam

MIDSPAN TENSION STRESS (KSI)							
Beam Preliminary Design Refined Analysis Allowable Stress							
1	-0.172	-0.355	-0.284				
2	-0.233	-0.072	-0.284				
3	-0.227	-0.125	-0.284				
4	-0.215	-0.272	-0.284				

- Service III Tension at Midspan
 - Axial Force and Vertical Bending
 - Lateral Bending
 - Lateral bending effect adds tension stress to bottom flange

MIDSPAN TENSION STRESS (KSI) WITH LATERAL BENDING						
Beam	Preliminary Design Refined Analysis Allowable Stres					
1	-0.172	-0.436	-0.284			
2	-0.233	-0.314	-0.284			
3	-0.227	-0.580	-0.284			
4	-0.215	-0.481	-0.284			

Service III – Lateral Bending Moment

- Service III Lateral Bending Moment
 - Highest moment at end diaphragm connection
 - In a heavily reinforced compression zone
 - Joint actually not fully restrained opportunity for further refinement

- Service III Lateral Bending Moment
 - Localized moments at intermediate diaphragm connections
 - Located in tensile zone consider potential for additional cracking

= -0.600 KS

- Service III Lateral Bending Moment
 - Localized moments at intermediate diaphragm connections
 - Located in tensile zone consider potential for additional cracking

Beam	Preliminary Design	Refined Analysis	Allowable Stress
1	-0.172	-0.436	-0.284
2	-0.233	-0.314	-0.284
3	-0.227	-0.580	-0.284
4	-0.215	-0.481	-0.284

- Service I Compression at Midspan
 - Axial Force and Vertical Bending Only
 - Also indicates additional load to exterior beams

MIDSPAN COMPRESSION STRESS (KSI)					
Beam		Preliminary Design	Refined Analysis	Allowable Stress	
1	w/ LL	2.862	3.280	5.400	
2	w/ LL	2.838	2.812	5.400	
3	w/ LL	2.973	2.955	5.400	
4	w/ LL	3.176	3.518	5.400	

- Service I Compression at Midspan
 - Axial Force and Vertical Bending
 - Lateral Bending
 - Lateral bending effect adds to compressive stress
 - Less of a concern because compression does not often govern and because the top flange is fully restrained

MIDSPAN COMPRESSION STRESS (KSI) WITH LATERAL BENDING					
Beam		Preliminary Design	Refined Analysis	Allowable Stress	
1	w/ LL	2.862	3.376	5.400	
2	w/ LL	2.838	3.173	5.400	
3	w/ LL	2.973	3.625	5.400	
4	w/ LL	3.176	3.818	5.400	

- Strength Limit State Shear
 - Increase in exterior beams
 - Increase at obtuse corners

Strength Limit State – Steel Diaphragm Force

- Activate member size to be checked (L 6x6x3/8)
- Filtering by tension and compression simplifies checking
- 107 kip maximum tension / 207 kip resistance (OK)

- Strength Limit State Steel Diaphragm Force
 - Activate member size to be checked (L 6x4x5/16)
 - 73 kip maximum tension / 144 kip resistance (OK)

- Strength Limit State Steel Diaphragm Force
 - Activate member size to be checked (L 6x6x3/8)
 - 15 kip maximum compression / 102 kip resistance (OK)

- Strength Limit State Steel Diaphragm Force
 - Activate member size to be checked (L 6x4x5/16)
 - 52 kip maximum compression / 66 kip resistance (OK)

- Construction Stage Analysis Steel Diaphragm Force
 - During construction there are potentially large fluctuations in the diaphragm forces not evident from the final load conditions
 - Particular concern is during deck placement
 - MIDAS allows user to envelope Max/Min forces for all stages
 - For this bridge, the factored CS envelope diaphragm forces were:
 - 53 kips Compression
 - 55 kips Tension
 - Forces are equal to or less than the STR-I design forces and therefore do not govern

- Construction Stage Analysis Beam Stresses
 - MIDAS provides CS beam stresses at each construction stage
 - Animation is a useful tool to visualize CS stage stress changes
 - CS stresses for this bridge were less than service loads

1. Introduction

- 2. Proposed Bridge Configuration
- 3. Preliminary Design
- 4. Refined Analysis Model
- 5. Results
- 6. Conclusions

- By comparing line girder analysis with refined analysis of this severely skewed prestressed bridge, the following was revealed:
 - Tensile stresses due to primary bending in the exterior beams was increased
 - Potentially significant tensile stresses due to lateral bending effects are present in interior and exterior beams alike
 - Compression stresses were increased in the exterior beams and due to lateral bending, but was not critical for this bridge
 - Shear at the obtuse bridge corners was increased
 - Significant restraint forces exist at the obtuse corner beam to diaphragm connection that merit further investigation
 - The assumed steel diaphragm sections checked out, but with refined analysis at least there is a basis for design
 - Stresses during construction stages were not critical for the beam, but should be checked for the assumed sequence

Acknowledgements

