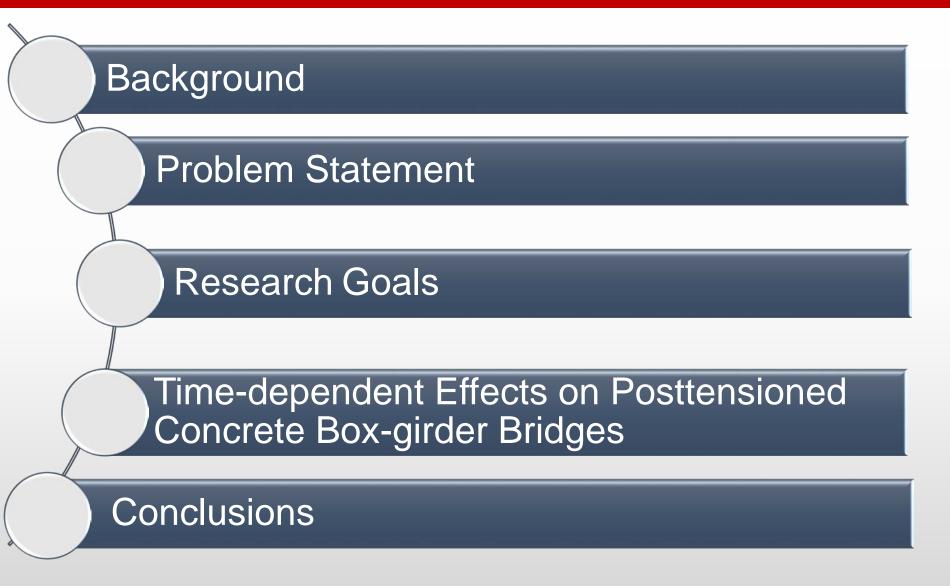
IOWA STATE UINVERSITY

Department of Civil, Construction and Environmental Engineering

Estimating Column Design Forces in Post-Tensioned Box Girder Bridges with Consideration to Time Dependent Effects

Sri Sritharan Wilson Engineering Professor


May 31, 2016

Project Details

- Sponsor: California Department Transportation
- Project Manager: Dr. Charles Sikorsky, Caltrans
- Co-PI: Dr. Matt Rouse, Iowa State University.
- Graduate Student: Dr. Ebadollah Honarvar, JACOBS

Outline

IOWA STATE UNIVERSITY College of Engineering

Background

Why Prestress?

- · To counteract high internal forces and stresses expected due to dead and live loads
- It can also minimize deflections and improve shear behavior.

Effects of Prestressing

- Concrete subjected to compression and tension
- Prestressing tendons subjected to tension

Method of Prestressing

· Post-tensioning - tendons are stretched after casting and curing of concrete

A box-girder as the posttensioned beam

IOWA STATE UNIVERSITY College of Engineering

Background

TIME-DEPENDENT EFFECTS ON PRESTRESSED BRIDGES

• Strains and stresses in a prestressed concrete bridge continuously change over a long period of time due to:

Time-Dependent Properties of Concrete and Steel

- Concrete creep and shrinkage
- Concrete relaxation
- Relaxation of prestressing steel
- Prestress losses

Thermal Effects

Heat gain and loss due to solar radiation and convection to or from the surrounding atmosphere

Variation in Loading and/or Support Locations

• Different construction stages of a prestresed bridge

Inefficient and inaccurate design of prestressed bridges may be possible due to complexity and interdependency of the time-dependent effects

Problem Statement

<u>As the superstructure shortens with time due to creep and shrinkage, columns are</u> <u>displaced laterally resulting in the induced forces/stresses in the columns</u>

SuperstructureColumn TopPoint of No MovementShorteningDisplacement(PNM)

Problem Statement

Concerns with the Current Design Practice

- Use of a constant strain rate may not be appropriate
- All columns might not experience cracking
- Ignoring/inaccurately modelling the beneficial effects of concrete relaxation

Consequences

- Overestimation of column base shear force
- Inefficient design of columns and foundation, increase in the adverse effects of time-dependent issues, and thus increased construction costs

<u>Note:</u> Although not studied herein, the thermal effects also cause movement of the superstructure, which should also be adequately addressed

Research Objectives

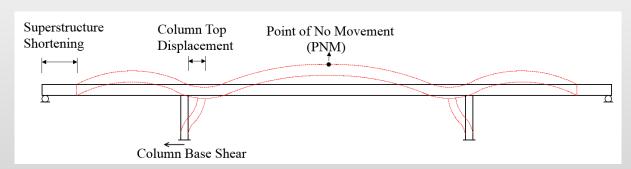
- Improve the prediction of the strain and stress build-up during and after construction
- Reduce construction challenges and associated costs due to the inaccurate design

The research objectives were achieved by

Improving the prediction of time-dependent effects on CIP/PCBB systematically

IOWA STATE UNIVERSITY College of Engineering

Current Design Practice and Concerns


Shortening strain rate of 525 $\mu\epsilon$ for the superstructure

Calculate the point of no movement (PNM) on superstructure

Calculate the column lateral top displacement

Calculate the column base shear force as the product of column displacement and stiffness with consideration to the possible column cracking

Ignoring concrete relaxation and assuming all columns crack

IOWA STATE UNIVERSITY College of Engineering

CIVIL, CONSTRUCTION & ENVIRONMENTAL ENGINEERING

Originally

established for joint

bearing design

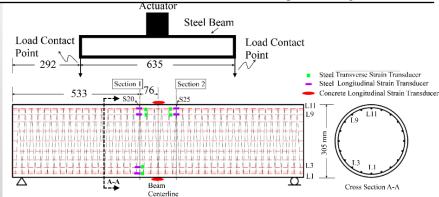
What is new in this investigation

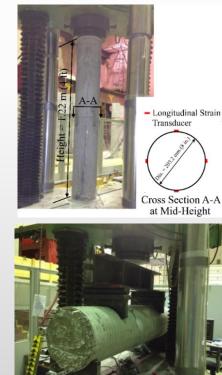
Quantifying the relaxation of normal strength concrete

Examining the beneficial effects of concrete relaxation on a prototype CIP/PBB

Investigating the time-dependent effects on eight different CIP/PCBB using the FEA

Developing simplified but rational design recommendations


Relaxation Tests

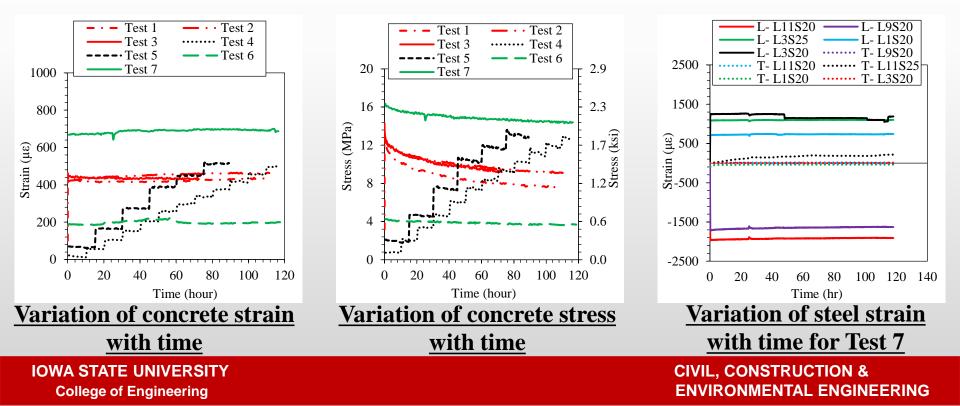

Descriptions of the specimens used for the relaxation tests

Specimen number	Туре	Diameter	Length	Loading ages (day)
1	Circular concrete column	203.2 mm (8 in.)	1.22 m (4 ft)	48, 76, 78, 84
2	Circular concrete column	304.8 mm (12 in.)	1.22 m (4 ft)	67
3	Circular RC beam	203.2 mm (8 in.)	1.22 m (4 ft)	130, 150

Details of the seven relaxation tests

Test Number	-	Specimen age at loading (day)	Test duration (hours)	Loading type	Initial strain (με)
1	1	48	109	Instantaneous axial compression	422
2	2	67	112	Instantaneous axial compression	452
3	1	76	73	Instantaneous axial compression	435
4	1	78	116	Incremental axial compression	43*
5	1	84	90	Incremental axial compression	87*
6	3	130	119	Instantaneous flexure- precracking	198
7	3	150	120	Instantaneous flexure- postcracking	682

CIVIL, CONSTRUCTION & ENVIRONMENTAL ENGINEERING


IOWA STATE UNIVERSITY College of Engineering

Observed Behavior

 Reduction in concrete forces/stresses with time under the state of the constant strain for the seven tests.

Results of the seven relaxation tests

	Variation in mean applied strain (με)	Thermal and	Stress (I	MPa)	Stress
Test		shrinkage strains (με)	Start	End	relaxation (%)
1	±6	< 10	13.7	7.0	49
2	±11	< 10	13.9	9.0	35
3	±22	< 10	14.3	8.7	39
4	±5	< 10	15.2	11.9	22
5	<u>+</u> 4	< 10	15.0	11.9	21
6	±10	< 10	4.6	3.7	21
7	±57	< 10	17.2	14.5	16

Relaxation Functions

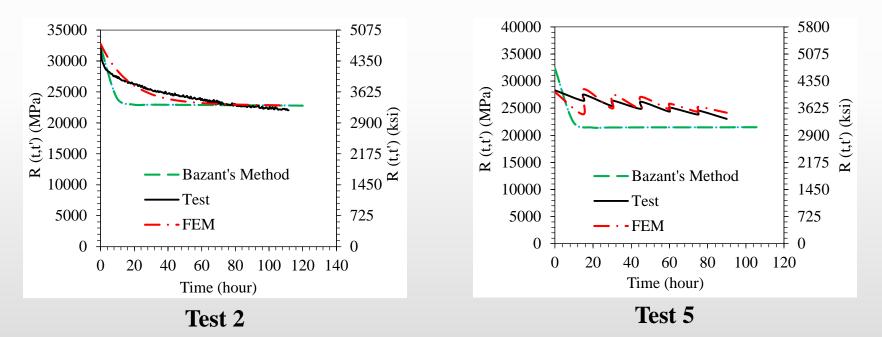
- The reduction in the stress due to a unit constant strain
- Using the AASHTO recommended creep model, the relaxation functions were estimated based on the following equations:

Exact solution using the finite-element model (FEM)

$$\Delta R(t_i) = -\frac{\sum_{i=1}^{k} [J(t_k, t_i) + J(t_k, t_{i-1}) - J(t_{k-1}, t_i) - J(t_{k-1}, t_{i-1})] \Delta R(t_i)}{J(t_k, t_k) + J(t_k, t_{k-1})}$$

Approximate method proposed by Bazant

$$R(t,t_0) = \frac{1-\Delta_0}{J(t,t_0)} - \frac{0.115}{J(t,t-1)} \left[\frac{J(t_0+\xi,t_0)}{J(t,t-\xi)} - 1 \right] \qquad \xi = \frac{1}{2}(t-t_0)$$

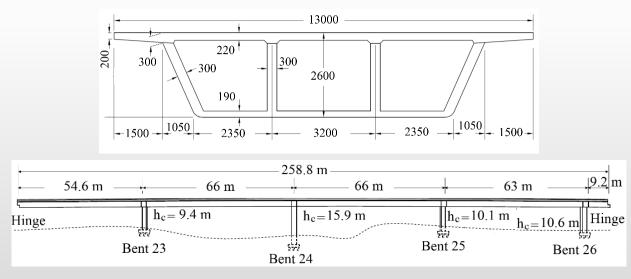

Simplified analysis (stress remains constant over time)

$$R(t,t_0) = \frac{1}{J(t,t_0)}$$

IOWA STATE UNIVERSITY College of Engineering

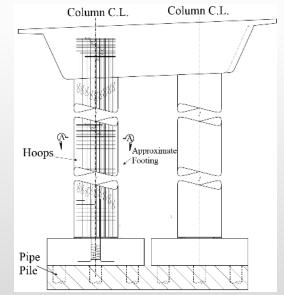
Relaxation Functions

- A good agreement between the test and the FEM results
- Identical approximation of the relaxation functions by the simplified analysis and the Bazant's method



Concrete relaxation functions calculated using the different methods

IOWA STATE UNIVERSITY College of Engineering


Beneficial Effects of Concrete Relaxation on a CIP/PCBB

• Frame 6 of the *Floodway Viaduct Bridge* was modeled in *midas Civil Software* to examine the time-dependent effects on a CIP/PCBB with due consideration to the relaxation of concrete columns

Elevation view and box-girder cross section

Bent details

CIVIL, CONSTRUCTION & ENVIRONMENTAL ENGINEERING

IOWA STATE UNIVERSITY College of Engineering

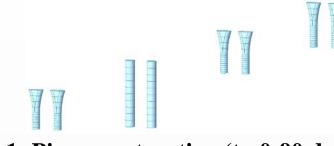
Finite-Element Analysis (FEA)

Model Assumptions

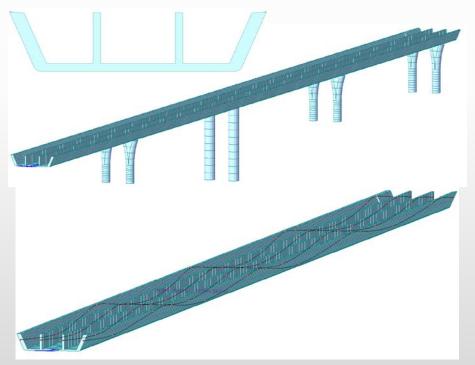
- Zero curvature
- Disregarding non-prestressed reinforcement
- Linear elastic behavior for columns

Material Models

Motorial much outer	Model			
Material property	Box-girder	Column		
Variation in concrete compressive strength with time	ACI	Not Applicable		
Modulus of elasticity	AASHTO	AASHTO		
Concrete creep/relaxation	AASHTO	AASHTO		
Concrete shrinkage	AASHTO	AASHTO		
Relaxation of posttensioned tendons	AASHTO	Not Applicable		

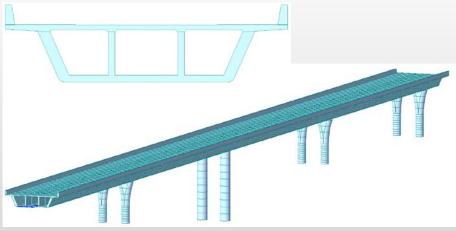

Loading

Only dead load and prestressing force


Column Stiffness

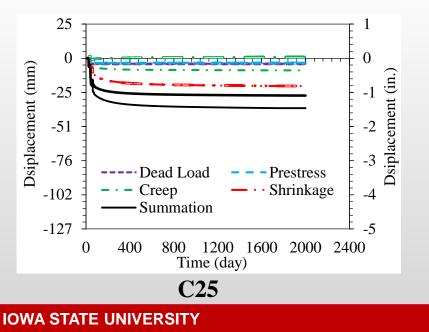
• Moment-curvature analysis using *XSection*

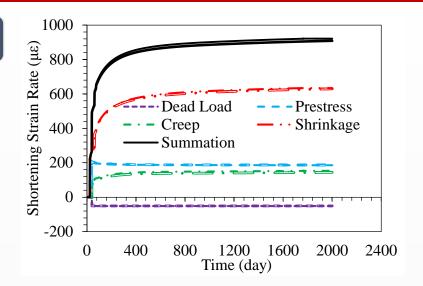
Construction Stages Sequence

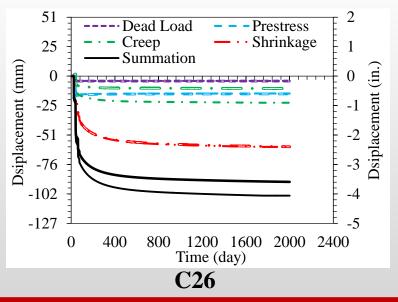

<u>1- Piers construction (t= 0-90 days)</u>

<u>2- Box-girder construction (t= 90-180 days)</u></u>

IOWA STATE UNIVERSITY College of Engineering

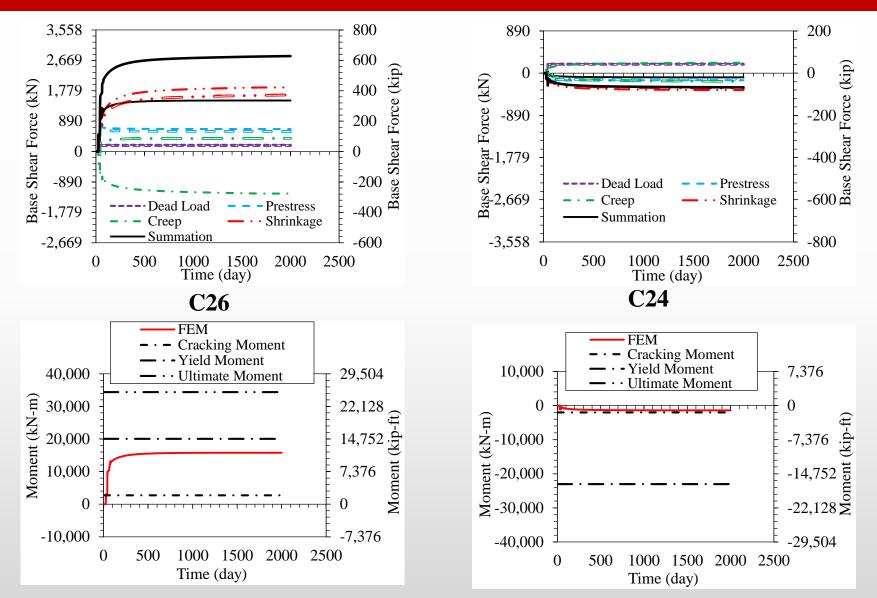

<u>3- Deck construction (t= 180-210 days),</u> followed by prestressing (t= 210-220 days)



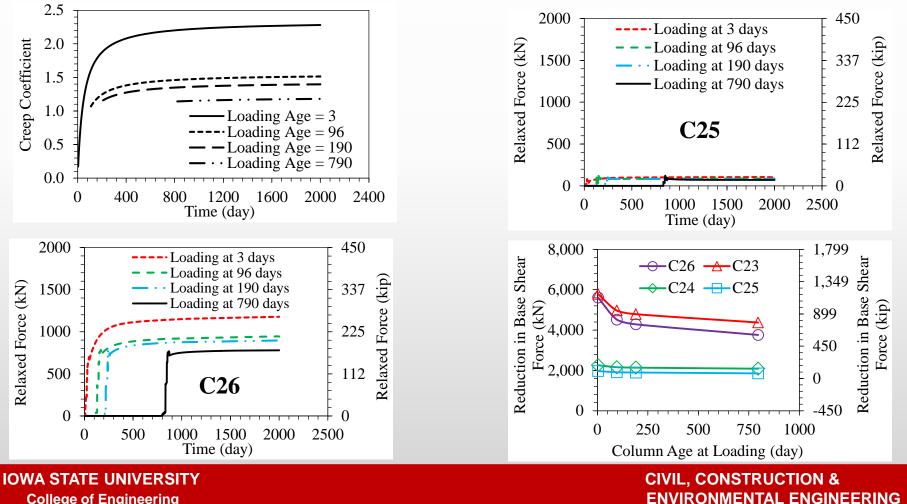

4- Barriers construction (t= 220-235 days)

Results

- With and without column relaxation
- Shortening strain rate of superstructure
- Variation of column lateral top displacement with time
- Variation of column base shear force with time



CIVIL, CONSTRUCTION & ENVIRONMENTAL ENGINEERING


College of Engineering

IOWA STATE UNIVERSITY College of Engineering

Effects of Loading Age

- The AASHTO creep coefficient
- Relaxed forces for the loading ages of three, 96, 190, and 796 days

College of Engineering

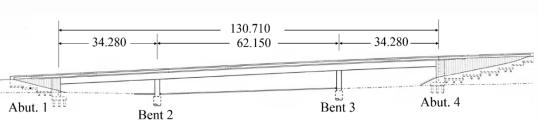
Time-Dependent Effects On Eight Different PCBBs Using the FEA

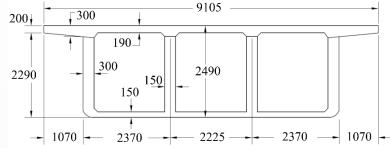
Descriptions of eight different PCBBs of various span lengths and configurations

Calculation of the shortening strain rate of superstructure

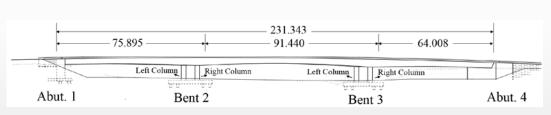
Calculation of column lateral top displacement and the corresponding base shear force

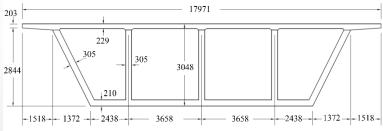
Evaluate the current design practice against the FEA results

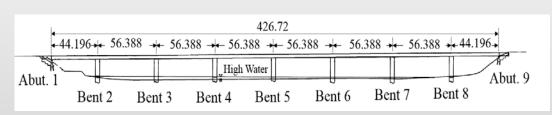

Develop simplified but rational design recommendations

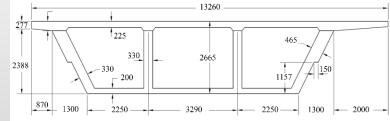

Descriptions of PCBBs

- Small-, short-, and long-span bridges
- Pier type, multiple vs. single column bents,
- Connection type to foundation
- Box-girder prestressing details

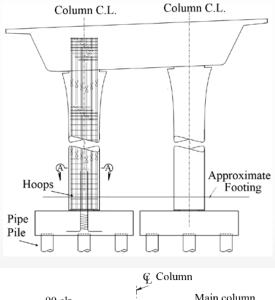

	Type Bridge		Bridge label	Bridge length (m)	Column label	
Bridge and	Short	WB SR60 HOV Connector		B1	145.4	B1-Ci; where i=2:3
e	Short	Floodway Viaduct-Frame 8		B2	131.0	B2-Ci; where $i=31:33$
column		S405-E22 Connector Medium Floodway Viaduct -Frame 6 Estrella River		B3	293.4	B3-Ci; where i=2:3
nomenclatures	Medium			B4	258.8	B4-Ci; where i=23:26
				B5	231.3	B5-Ci; where i=2:6
	N805-N5 Truck ConnecteLongSantiago Creek		5 Truck Connector	B6	358.0	B6-Ci; where i=2:8
			o Creek	B7	387.3	B7-Ci; where i=2:6
		Trabuco Creek		B8	426.7	B8-Ci; where i=2:8
	Bridge	P _{jack} Initial axial stress		Anchorage s	et Friction	Wobble coefficient, ĸ
	name	(kN)	(MPa)	(mm)	coefficient, µ	(1/mm)
	B1	36700	6.7	10	0.15	6.60E-07
Details of the	B2	32199	4.8	10	0.2	6.56E-07
box-girder	B3	131928	11.4	10	0.2	6.56E-07
prestressing	B4	49199	6.8	10	0.2	6.56E-07
prestressing	B5	52042	5.9	10	$N.A^*.$	N.A*.
	B6	41059	6.2	10	$N.A^*.$	N.A*.
	B7	17298	6.8	0	0.2	0.00E+00
	B8	63099	7.4	10	0.25	1.48E-06
IOWA STATE UNIVERSITY CIVIL, CONSTRUCTION & CIVIL, CONSTRUCTION & ENVIRONMENTAL ENGINEERING						

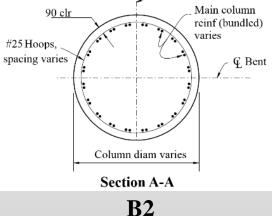

Bridge Elevation Views and Cross Sections



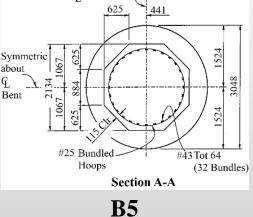

B1

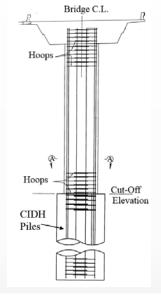
B3

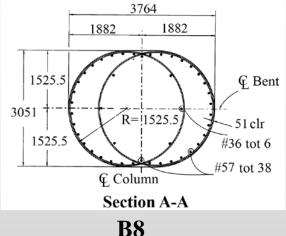




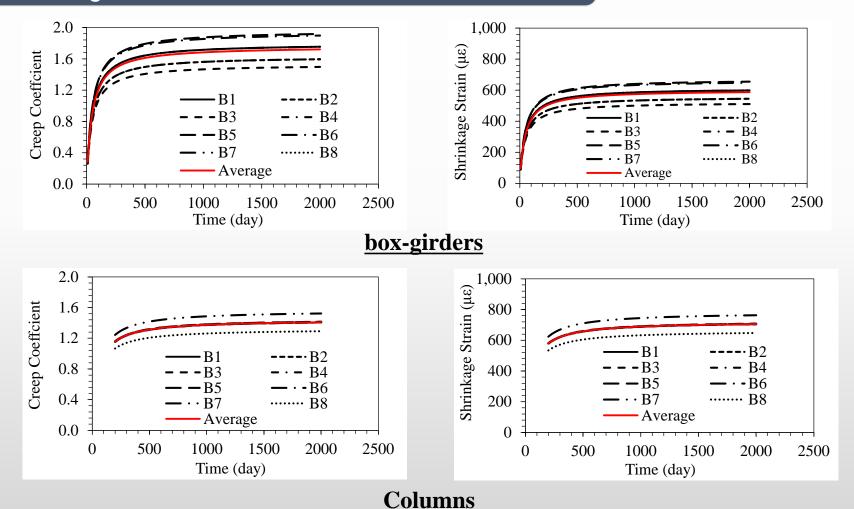
B8


IOWA STATE UNIVERSITY College of Engineering

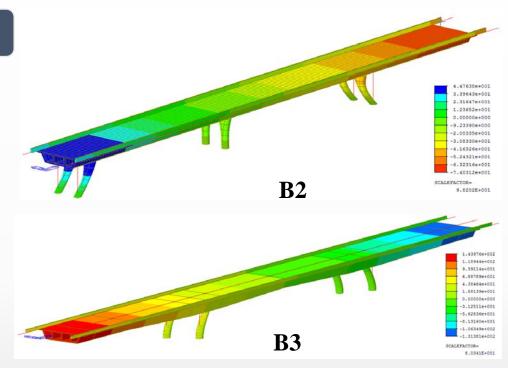

Bridge Bent Details



Bridge C.L. Stirrups Approximate Footing Cut-Off Elevation CIDH Pile Symmetric about G. Column 625 441 1524 625 Symmetric 067 about



IOWA STATE UNIVERSITY College of Engineering


AASHTO Creep Coefficients and Shrinkage Strains for the Eight PCBBs

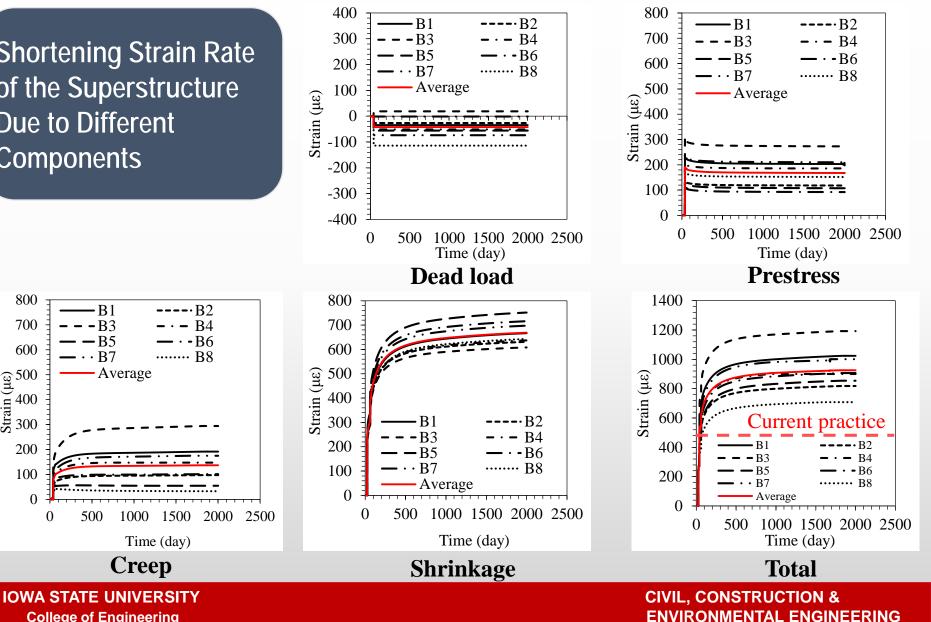
IOWA STATE UNIVERSITY College of Engineering

Results

- Shortening strain rate of the superstructure due to dead load, prestress, creep, and shrinkage
- Variation of column lateral top displacement and the corresponding base shear force with time

CIVIL, CONSTRUCTION & ENVIRONMENTAL ENGINEERING

IOWA STATE UNIVERSITY College of Engineering


Shortening Strain Rate of the Superstructure **Due to Different** Components

B1

- B3

– B5

- · · B7

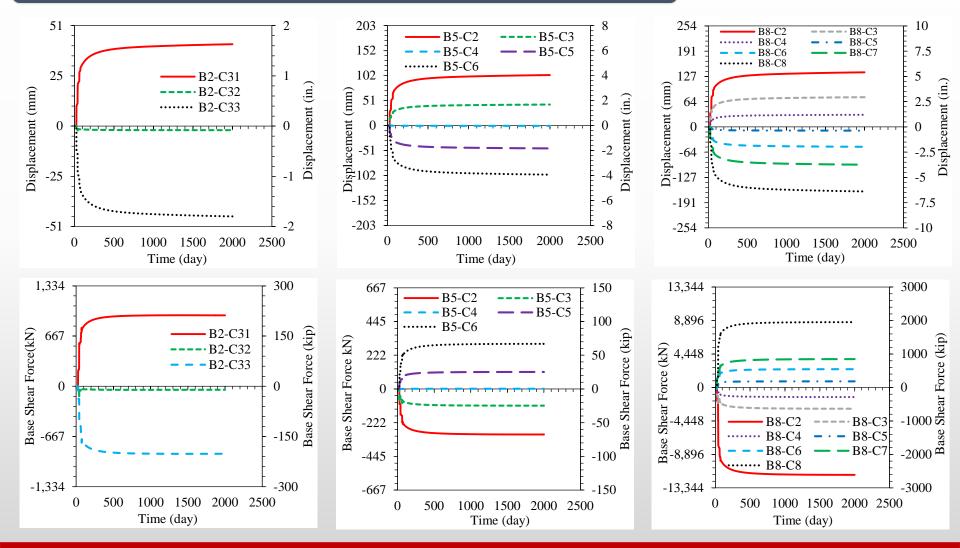
College of Engineering

500

800

700

600

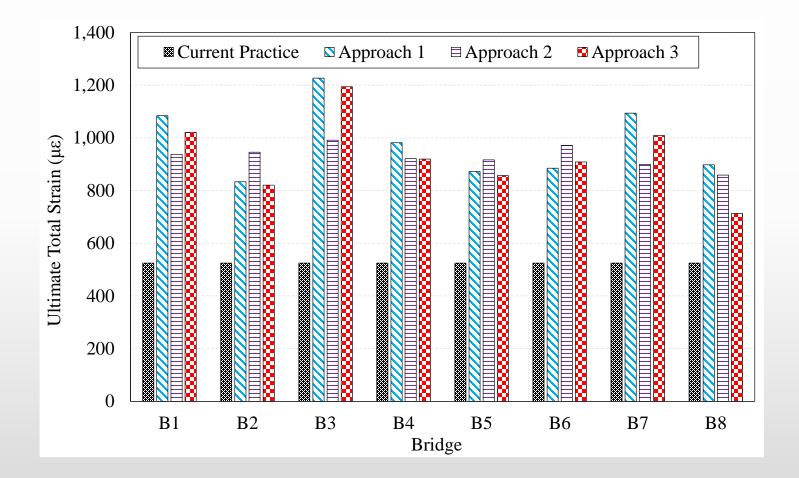

200

100

0

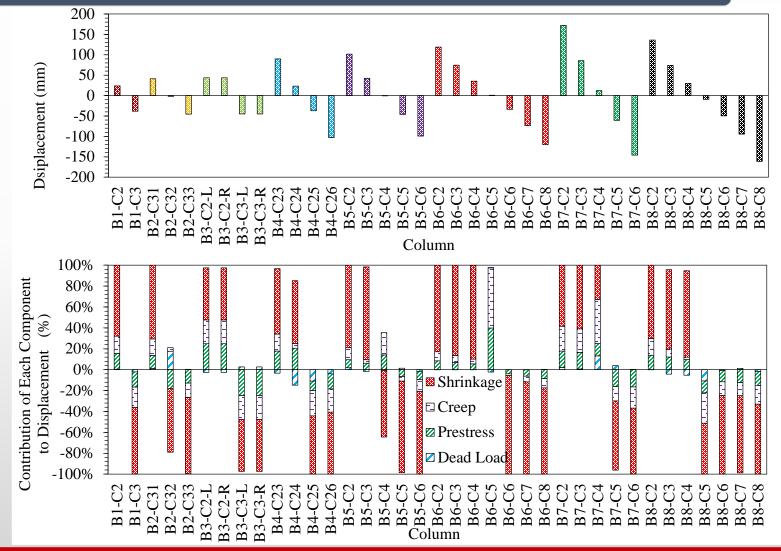
0

Column Displacements and Shear Forces


IOWA STATE UNIVERSITY College of Engineering

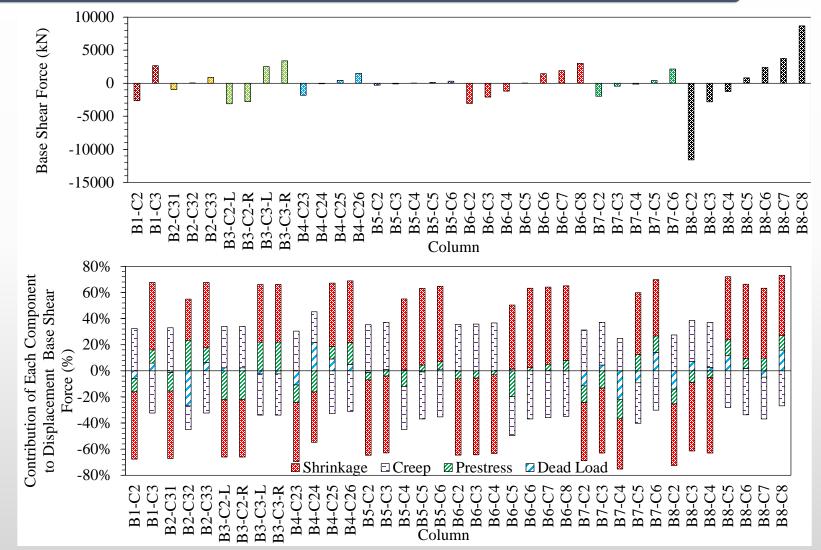
Design Recommendations

- Concrete creep and shrinkage are stabilized after 2000 days
- The ultimate condition for the deformations and forces were defined after 2000 days
- In addition to the current practice, three different simplified approaches were developed

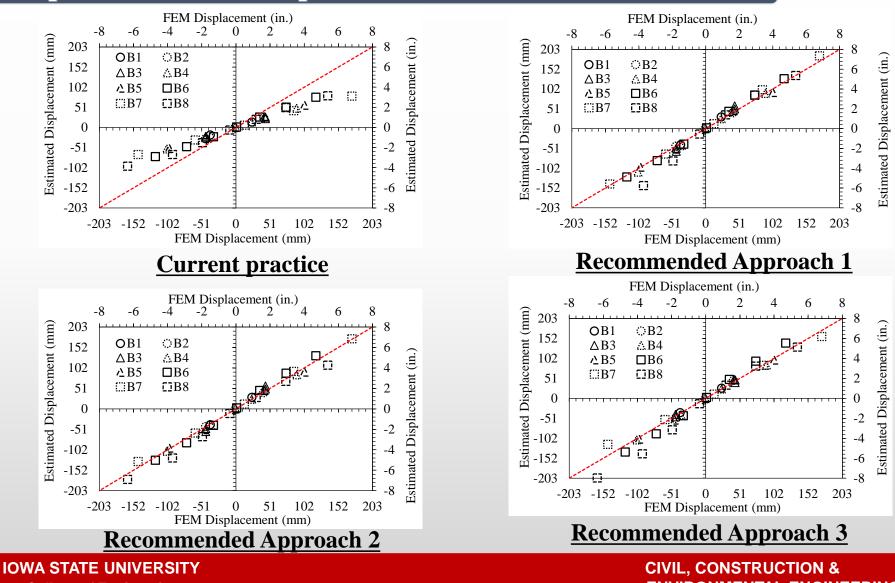

Annroach	$\varepsilon_{\rm T} = \varepsilon_{\rm DL} + \varepsilon_{\rm PS} + \varepsilon_{\rm CR} + \varepsilon_{\rm SH}$			_ A	V	Delevation	Б	
Approach	$\epsilon_{\rm DL}$ $\epsilon_{\rm I}$	PS	ε _{CR}	$\epsilon_{ m SH}$	$-\Delta_{col}$	K _{col}	Relaxation	L' col
Current practice	$\epsilon_{\rm T} = 16 \text{ mm.}/30.5 \text{ m} = 525 \ \mu\epsilon$			$\epsilon_T \times x_{col}$	0.5 K _g	Unconsidered	$\Delta_{\rm col} \times { m K}_{ m col}$	
Recommended Approach 1	Consider	$\frac{P}{E_{C}A}$	$\Phi_U \times \epsilon_{\text{PS}}$	$\epsilon_{\rm U}$	$\epsilon_T \times x_{col}$	K _{eff}	Considered	$\frac{\Delta_{\rm col} \times {\rm k'}_{\rm col}}{(1 + \emptyset_{\rm C})}$
Recommended Approach 2	Consider	FEM results for each bridge	FEM results for each bridge	FEM results for each bridge	$\epsilon_T \times x_{col}$	K _{eff}	Considered	$\frac{\Delta_{\rm col} \times {\rm k'}_{\rm col}}{(1 + \emptyset_{\rm C})}$
Recommended Approach 3	Consider	FEM mean values	FEM mean values	FEM average results	$\epsilon_{T} \times x_{col}$	K _{eff}	Considered	$\frac{\Delta_{\rm col} \times {\rm k'}_{\rm col}}{(1 + \phi_{\rm C})}$

Ultimate Total Strain for Eight Bridges

IOWA STATE UNIVERSITY College of Engineering

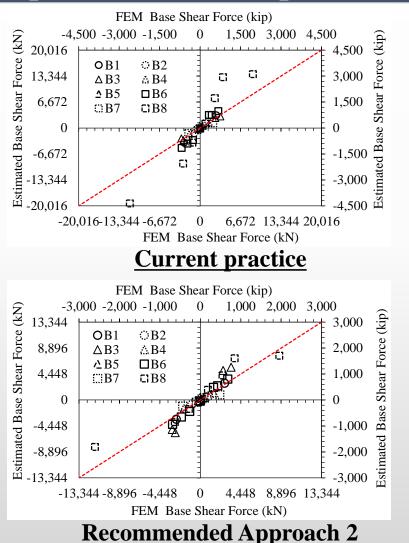

Ultimate Displacements for 37 Columns

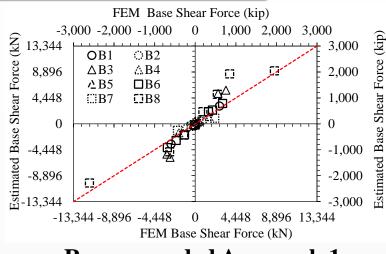
IOWA STATE UNIVERSITY College of Engineering


Long-Term Camber of PPCB

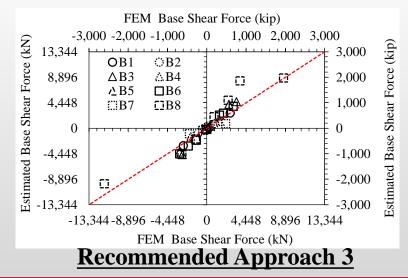
Ultimate Base Shear Forces for 37 Columns

IOWA STATE UNIVERSITY College of Engineering


Comparison of the Simplified Methods with the FEA


College of Engineering

ENVIRONMENTAL ENGINEERING


Comparison of the Simplified Methods with the FEA

IOWA STATE UNIVERSITY College of Engineering

Recommended Approach 1

Conclusions

- The beneficial effects of concrete relaxation on the displacement-induced columns forces were demonstrated and quantified using an experimental study in conjunction with the FEA of a CIP/PCBB.
- The FEA results from eight different CIP/PCBBs indicated that the shortening strain rate of a superstructure, the column lateral displacement and the corresponding base shear force can be refined to improve the current design practice.
- Using the findings of the FEA, three different simplified approaches were recommended with due consideration to the concrete relaxation to accommodate the time-dependent effects in the design of columns of CIP/PCBB more accurately.