2016 MIDAS Complex Bridge Test Drive Event

Lucas Park(CAE Consultant) E mail: Lucaspark@midasit.com

100

May.03	 Segmental Bridge Analysis & Design Modeling through Wizards Generation of numerous tendon profiles / Tapered Section / Construction Stage Sequence Precise Analysis(Time dependent Material/Tendon Loss) 	
May.04	High Speed Rail Road - Rail Track Analysis Model Wizard 1. Automatic Modeling for a simplified separate analysis 2. Automatic Modeling for a stage analysis 3. Automatic Modeling for a moving load analysis	
May.09	Steel Composite Bridge Analysis & Design - Different Modeling Methods - Modifying a model from Wizard - Analysis / Design	
May.11	Cable Stayed Bridge Analysis - Modeling through Wizard/Modification - Auto-adjusting Cable Pretension forces - Construction Stages	
May.12	Suspension Bridge Analysis - Modeling through Wizard/Modification - Auto calculation of tensions in main Cables and Coordinates - Steel column design of irregular sections	2 dasUser.com

Midas Civil

World wide existence

"Biggest CAE Software Developer" in Civil Engineering

Bridge

midas Civil

Midas Civil

Integrated Solution System for Bridge and **Civil Structures**

midas FEA

Advanced Nonlinear and **Detailed Analysis System**

Mechanical

Total Solutions for

General Pre & Post

Processor for Finite Element Analysis

CFD

GTS NX GeoTechnical analysis System SoilWorks Geotechnical Solutions for practical Design **Building** midas Gen

Integrated System for building and General Structures

midas DShop

Auto-Drawing Module and generate Structural drawing and Bill of Materials

midas Design+

Structural engineer's tools

Midas Civil

USERS Across North America (partial list)

What kind of bridge type can midas Civil handle?

Conventional Bridge

Midas Civil

Culvert

Frame Bridge

Slab Bridge

Balanced Cantilever Method Bridge

Staged Segmental Bridge

Incremental Launching Method Bridge

Movable Scaffolding Method Bridge

Precast (Spliced) Girder Bridge

Integral Bridge

Steel Plate (Flare) Girder Bridge

Precast Segmental Method Bridge

Fill Staging Method Bridge

Cable-stayed Bridge & Suspension Bridge

Cable Stayed Bridge

Extra-doesd Bridge Suspension Bridge

Steel Box Girder Bridge

MIDAS Provides the best solutions in Structural, Geotechnical, and Mechanical Engineering

Midas Civil

Few project examples - USA

US 17 Wilmington By Pass in USA

Port Access Bridge, Alaska

Lee Roy Selmon Flyovers in FL USA

Galena Creek bridge in NV USA

MIDAS Information Technology Co., Ltd.

MIDAS Provides the best solutions in Structural, Geotechnical, and Mechanical Engineering

MIDAS Midas Civil

Few project examples - USA

Innerbelt Bridge in Cleveland OH Ironton-Russell Bridge

Pearl Harbor Memorial Bridge

Hastings Bridge

MIDAS Information Technology Co., Ltd.

- Why FEA is required for Segmental Bridges?
- Typical Modeling issues with Finite Element Modeling
- How Midas Civil will help you to set Up the Model
- How Midas Civil will help you in Precise Analysis?

Finite Element Analysis of Segmental Bridges

Why FEA is required for Segmental Bridges?

- Segmental Bridges need to be carefully analyzed
- The effect of prestressing needs to be carefully evaluated
- The time dependent material behavior
- The construction loads need to be considered in analysis

1. The depth of the girder changes from the mid span to the mid support, which requires creation of several cross sections along the length of the Girder.

2. A large number of Prestressing Tendons need to be modeled.

3. Tendons must be defined in individual stages as they appear in the bridge

Balance Cantilever Bridge

Incremental Launching Method

Span by Span Construction

Finite Element Analysis of Segmental Bridges

5. Temporary Supports need to be defined in the Construction Stage

How midas Civil will help you to set up the Model

Use Wizard to do the Modeling, Wizard automatically creates:

- Geometric Model of the bridge
- 3D Tendons are automatically generated
- Construction Stages are automatically generated
- Loads in Construction Stages are automatically defined

TOM Defend Mound		II M Bridge Model Woard X	MSS Bridge Wizard X
raw bridge witzera X	FCM Bridge Wizard X	Dideo Model Data Tuno	Bridge Model Data Type
Bridge Model Data Type	Bridge Model Data Type	bruge Hodel Data Type	Type1 Type2
Type1 OType2	Type1 OType2	() Typez	
Marial Section Tenden			Model Section Tendon
	Model Section Tendon	ILM Model Top Bottom Tendons Web Tendon	
Span(L1) Span(L2)			Span(L1) Span(L2)
Diaphragn Cold Joint	PT	Type	Diaphragm Cold Joint
	FSM K1 Zone1 B Zone2 K2	None St B1	
SS SS		B2	85
Curvature1 Curvature2		NL 1H1	S4 54
54 St		Tendon Property	
		Top : N2	
<u>\$1</u> \$2		Bottom : H2	No. Name
Apply Tapered Section	C	Tentro Arrangement	Bridge Material : 1 1: C400 ~
Bridge Material : 1 1: C400 ·		NO NO NO NO NO	Span(L) : 49.9872, 2@60.0456, 49.9872 m (ex: 30, 40, 5@50)
Span(L) : 49.9872, 2@60.0456, 49.9872 m (ex: 30, 40, 5@50)	Matenal (Girder)	Arrangement i ype : 200708	Radius : 0 m © Convex O Concave
Radius : 0 m O Convex O Concave	Material (Pier) 1 1: C400 V Stage Duration 0 🗘 day(s)	Tendon A Jadding Order : 1st V	Fixed Support : 170.078 (60.0456) V
Fixed Support : 170.078 (60.0456)	Number of Piers 4 A Method Cast-in V	Tendon B Jacking Order : Ist Sh B3	Segment Division per Span : 20
Segment Division per Span : 20		Jading Stress	Cold Junt (S3) : 0.2 x12 (Span)
Tapered Section Length : S1 20 m S2 : 20 m	m © convex () concave	Too 1.0.7 y St. y at 2,00194 at 2,40016 at 0	
Curvature 1 : Exp. : 2 Curvature 2 : Exp. 2	Pier Table Key Segment Pier FSM	Data 107 H DU 11 D DI D	Anchorage(SH)
Cold Joint (S3) : 0.2 x L2 (Span)	P.T. 12.192 m K1 2.286 m H 20.116 m FSM(L) 3@3.9624, 3(B4: 2.49306 m B5: 0 m	Diaphragm(S5) : 3.9624 m
Anchorage(S4) : 3.9624 m	B 6.096 m K2 2.286 m C 4.2672 m FSM(R) 3@3.9624.3(Grouting	Stage Duration : 20 🐨 day(s)
Diaphragm(S5) : 3.9624 m Support(S6) : 0 m		O Prestressing Step	Initial Member Age : 5 🔶 day(s)
Stage Duration : 20 🖨 day(s)	Advanced Zone1 2@2.4384, 2@4.2	●Every 1	Movable Scaffolding Reaction : 0 tonf
Initial Member Age : 5 🗢 day(s)	Pier Table Placing Member Age Zone2 2@2.4384, 2@4.2 Advanced		
			Open Save As OK Cancel
OK Cancel	Upen Save As UK Cancel	Open Save As OK Cancel	

Balanced Canterliver Construction Method

Balanced Canterliver Construction Method

Midas Civil

Balanced Canterliver Construction Method

Balanced Canterliver Construction Method

Balanced Canterliver Construction Method

Midas Civil

Balanced Canterliver Construction Method

MIDAS

Balanced Canterliver Construction Method

Manual Tendon Definition

> Enter Tendon in 2D or 3D

> Typical tendon : Defines lumped representativ e tendon. Only one tendon profile is defined at t he centroid of the all the tendons. It is multiplied with number of tendons at the time of analysis.

> Reference Axis

Straight: Reference axis is straight Curved: Circular reference axis can be define d

Element: Element is taken as the reference a xis

ndon Name :	FSMBot1-0	12	Group :	FsmB	ot L-2 🔻
ndon Property :	Ten	don		•]
signed Elements	1108	3			
Innut Type	1100	·	traight L	anath of T	ondon —
• 2-D (3-D	5		ingun of T	endon
Curve Type		-	legin :	0	π
Spline	Round	E	ind :	0	ft
Typical Tendon		No.	of Tend	ons : 🛛	1
ransfer_Length					
User defined Length	•	Begin :	0	End :	0 ft
rofile	н — ас ас				
Reference Axis	: C	Straigh	t C	Curve	Element
У 1 50201					
1.59301					
-8.40699	20	40	60	8	1 100
, ,	20	10			
x(ft)	y(ft)	fix	Rz[deg]	· · · · · ·
1 0.0000	-0.800	0	0.	00	III
2 13.0000	-0.000	0 1	0.	00	
3 26.0000	-0.000	0	0.	00	
4 39.0000	-0.000		0.	00	
z					
-5.75199		_			
		5 3	1000	12 2	
-15.752	20	40	60		100
-15.752 +	20	40	60	8	0 10 [°] x
-15.752 0	20 Z(ft) fb	40	deg] E	80	0 10° x
-15.752 0 x(ft) 1 0.0000	20 z(ft) fix -6.6000	40 Ry[60 deg] E 0.00 I	80	0 10° x
-15.752 x(ft) 1 0.0000 2 13.0000	20 z(ft) fix -6.6000 Г -8.5200 Г	40	deg] E 0.00 I 0.00 I	80 7	
-15.752 x(ft) 1 0.0000 2 13.0000 3 88.5000	20 2(ft) fix -6.6000 Г -8.5200 Г -8.5200 Г	40	deg] E 0.00 0.00 0.00	80	
-15.752 0 x(ft) 1 0.0000 2 13.0000 3 88.5000 4 104.5000	20 2(ft) fix -6.6000 Г -8.5200 Г -8.5200 Г -6.6000 Г	40	deg] E 0.00 1 0.00 1 0.00 1 0.00 1	80 30 7 	
-15.752 x(ft) 1 0.0000 2 13.0000 3 88.5000 4 104.5000	20 2(ft) ft/ -6.6000 -8.5200 -8.5200 -6.6000 -6.6000 -6.6000 -6.6000 -6.6000 -6.6000 -6.6000 -6.6000 -6.6000 -6.6000 -6.6000 -6.6000 -6.6000 -8.5200 -6.6000 -8.5200 -6.6000 -8.5200 -6.6000 -8.5200 -6.6000 -8.5200 -6.6000 -8.5200 -6.6000 -8.5200 -6.6000 -8.5200 -6.6000 -8.5200 -6.6000 -8.5200 -6.6000 -8.5200 -6.6000 -8.5200 -6.6000 -8.5200 -6.6000 -8.5200 -6.6000 -	40 Ry[deg] E 0.00 1 0.00 1 0.00 1 0.00 1	80	
-15.752 x(ft) 1 0.0000 2 13.0000 3 88.5000 4 104.5000 c	z(ft) fb -6.6000 -8.5200 -6.6000 -6.6000 First (• 1	40	deg] E 0.00 I 0.00 I 0.00 I 0.00 I Make	80 V Symmetr	0 10 [°] x
-15.752 x(ft) 1 0.0000 2 13.0000 3 88.5000 4 104.5000 Proint of Sym.: (Profile Insertion Point	20 z(ft) fb -6.6000 -8.5200 -6.6000 First I ht: I	40	deg] E 0.00 I 0.00 I 0.00 I 0.00 I 0.00 I Make	Symmetr J of Elem.	ic Tendon
-15.752 x(ft) 1 0.0000 2 13.0000 3 88.5000 4 104.5000 Proint of Sym.: (Profile Insertion Point: Axis Direction :	20 2(ft) ftb -6.6000 Г -8.5200 Г -8.5200 Г -6.6000 Г First © I nt : © E	40	deg] E 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 Make C End-	80 Symmetr J of Elem.	0 10°x
-15.752 x(ft) 1 0.0000 2 13.0000 3 88.5000 4 104.5000 Profile Insertion Point Axis Direction :	20 2(ft) ftb -6.6000 Г -8.5200 Г -8.5200 Г -6.6000 Г First © I nt : © E © I	ast .ast 	60 deg] E 0.00 I 0.00 I 0.00 I Make C End- C J ->	80 Symmetr J of Elem. I of Elem.	0 10°x
-15.752 x(ft) 1 0.0000 2 13.0000 3 88.5000 4 104.5000 Profile Insertion Point Axis Direction : Axis Rot. Angle :	20 2(ft) ftb -6.6000 Г -8.5200 Г -8.5200 Г -6.6000 Г First © I nt : © E © I 0	40 Ry[/ ast ind-I -> J	deg] E 0.00 I 0.00 I 0.00 I 0.00 I Make C End- C J -> [deg]	Symmetr J of Elem. V Pro	ic Tendon

Balanced Canterliver Construction Method

Manual Tendon Definition

X Axis Rot Angle: The tendon placed in the table is rotated about its local x-axis by the specified angle. Useful while placing tendons on inclined w ebs

Tendon can be imported from Auto CAD too.

Midas Civil

Balanced Canterliver Construction Method

Auto Tapered Generation

Span by Span Construction Method

MIDAS Information Technology Co., Ltd.

Incremental Launching Method

>

Incremental Launching Method

Incremental Launching Method

Incremental Launching Method

Define the Launching sequence

- **1. Consideration of Time Dependent Material Strength:**
- Midas Civil can consider the change in modulus of elasticity of the material depending on the Element age

ame	Scale Factor	Graph Options	
concrete	1.0	X-axis log scale	☐ Y-axis log scale
iype © Code © User	7.5		
evelopment of Strength	6.5		
Code : CEB-FIP	5.5		
$f(t)=(t_{ok}+\Delta f)\times e \times p(s \times [1-(28/t_{eq})^{0.5}])$	4.5		
Mean compressive strength of concrete at the age of 28 days (fck+delta_f)	3.5		
7 kips/in ²	3		
Cement Type(s)	1.5		
N, R : 0.25	1		
	0 2 4	6 8 12 16	20 24 28
		Time (day)	

2. Consideration of Creep and Shrinkage:

• Midas Civil can consider the creep and shrinkage of concrete for estimation of deformation And secondary effects.

3. Consideration of Secondary effects of Prestressing:

• Midas Civil can consider the secondary effects of prestressing

4. Staged Post Tensioning

• Midas Civil can be used to define the staged post tensioning on the bridges and a single tendon can be prestressed in several stages depending on the scenario

Losses can be obtained for the staged post tensioning

How Midas Civil will help you in Precise Analysis?

5. Soil Structure Interaction

Soil Structure Interaction is Mandatory :

- Static Load Distribution might change
- Settlement effects may be there
- Better visualization of Load Transfer Mechanism
- Forces for Foundation Design

6. Initial Tangent Displacement to Erected Structures

How Midas Civil will help you in Precise Analysis?

7. Comprehensive Tendon Loss Table

Elem	Part	Stress (Immediate Loss) (tonf/m²)	Elastic Deform. Loss (tonf/m²)	Stress(Elastic Loss)/ Stress (Immediate Loss)	Creep/Shrinkage Loss (tonf/m²)	Relaxation Loss _(tonf/m²)	Stress(All Loss)/ Stress(Immediate Loss)	Effective Num.	
he Los	ss of ter	ndon group (Top-P 1	-1] at the stage of [CS	\$15]					
_			Mage	CS15	Apply				Polovetion Leon
	0	treco	-1503.120	4 0.9864	-2001.5266	-1781.4910	0.9522	1.000	Relaxation Loss
		1033	-1312.953	0.9890	-1683.7269	1923		1.000	
(Immediate Loss)		liate Loss)	-1567.3		-2058.4493	-1897	2.000		
		· · · · ·	-1437.5	Electic Deferm Los	-1728.7034	-1966 Cr	eep/Shrinkage Los	S 2.000	
	-1601.7	Elastic Deform. Lu	-2560.0828	-1954		4.0000			
	-		-1269.3		-2170.9805	-2018		4.0000	
10	1	119308.8508	-1575.9		-2825.2251	-2021		6.0000	
10	J	121608.4439	-1228.2		-2390.6729	-2061		6.0000	
11	1	120864.1954	-1543.212	8 0.9872	-2984.8731	-2074.6478	0.9454	8.0000	
11	J	122359.4065	-1207.221	6 0.9901	-2510.7456	-2100.9499	0.9524	8.0000	
12	1	121846.7142	-1499.552	3 0.9877	-3059.8470	-2116.0764	0.9452	10.0000	
12	J	122931.4828	-1175.196	1 0.9904	-2603.4411	-2135.5507	0.9519	10.0000	
13	1	122617.7621	-1456.147	1 0.9881	-3117.3407	-2152.6191	0.9451	12.0000	
13	J	123420.2116	-1169.577	4 0.9905	-2695.1804	-2167.2901	0.9511	12.0000	
14	I.	123346.6290	-1305.297	3 0.9894	-2762.0238	-2177.5484	0.9494	13.0000	
14	J	123754.7978	-1091.672	0 0.9912	-2380.9363	-2185.2032	0.9543	13.0000	
15	I.	123689.1182	-1205.459	4 0.9903	-2502.6430	-2196.4093	0.9523	14.0000	
15	J	124000.0104	-935.544	3 0.9925	-2135.9582	-2202.4672	0.9575	14.0000	
16	I.	124000.5283	-1070.962	1 0.9914	-2290.0152	-2215.4558	0.9550	15.0000	
16	J	124214.8268	-854.335	1 0.9931	-1971.0158	-2219.8802	0.9594	15.0000	
17	1	124473.7719	-974.915	2 0.9922	-2135.3736	-2238.2395	0.9570	16.0000	
17	J	124453.3270	-807.209	5 0.9935	-1844.6140	-2238.3055	0.9607	16.0000	
18	I	124654.8424	-915.334	9 0.9927	-2002.6652	-2255.7464	0.9585	17.0000	
18	J	124391.1551	-781.400	1 0.9937	-1741.6377	-2251.2031	0.9616	17.0000	
19	I	124104.2791	-960.357	1 0.9923	-2044.0233	-2271.0101	0.9575	19.0000	
19	J	123778.5924	-842.844	6 0.9932	-1854.7681	-2265.2115	0.9599	19.0000	
20	1	123778.5924	-843.492	9 0.9932	-1840.4820	-2265.2115	0.9600	19.0000	
20	J	123690.4758	-760.076	8 0.9939	-1746.0620	-2263.6244	0.9614	19.0000	
21	I I	123690.4758	-768.755	9 0.9938	-1751.3335	-2263.6244	0.9613	19.0000	
21	J	123575.9243	-774.698	3 0.9937	-1783.1502	-2261.3959	0.9610	19.0000	
22	1	123575.9243	-767.254	8 0.9938	-1780.7905	-2261.3959	0.9611	19.0000	
22	J	123614.9472	-843.550	0 0.9932	-1870.5844	-2262.0279	0.9597	19.0000	
23	I	123614.9472	-841.383	2 0.9932	-1884.3004	-2262.0279	0.9597	19.0000	
Tend	don Lo:	ss (Stress) / Te	ndon Loss (Force)	· · · · · · · · · · · · · · · · · · ·	•			•	

2016 MIDAS Complex Bridge Test Drive Event

Thank You

Lucas Park(CAE Consultant) E mail: Lucaspark@midasit.com