2016 Elite Engineers Webinar Series

MIDAS

Pushover Analysis of a Torsionally Eccentric Cellular Abutment

Date 11/03/2016 3 PM – 4 PM Eastern Time

Today's Presenter: Jon Emenheiser, PE

Copyright Materials

This presentation is protected by US and International Copyright laws.

Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© Midasoft Inc., 2016

MIDAS Ch2m:

Presentation Outline

- Project Overview
- Superstructure Analysis
- Substructure Analysis
 - Substructure Model
 - Elastic Analysis
 - Inelastic Analysis
- Pushover Analysis in Midas Civil 3D
 - Elastic Model
 - General Section Designer
 - Pushover Analysis
- Result Comparisons
- Shear Design of Column and Element Detailing

Presentation Overview

- Presentation Objectives
 - Develop understanding of:
 - Modeling Techniques
 - Inelastic Analysis
 - Midas General Section Designer
 - Midas Civil 3D Pushover Analysis
- Limitations of Presentation
 - Presentation will not:
 - Discuss foundation bearing and sliding capacity
 - Explain all theory behind topics
 - Provide all steps required to use software
 - Provide algorithms used for calculations

- Led by Central Federal Lands
- Funded by Federal Lands Access Program
- Project Location
 - Tahoe National Forest
 - Placer County, CA
 - Tahoe City, CA

MIDAS ch2m:

- Structure Selection
 - Original Structure
 - Three Spans
 - Deep Foundations
 - Complicated Geometry
 - Revised Design
 - Single Main Span
 - Shallow Foundations
 - Square Geometry

- Truckee River Bridge
- Bridge Description
 - 119'-0" Simple Span Decked Bulb Tee Girder
 - 14'-0" Cellular Abutments
 - Retaining wall toward Embankment
 - Columns toward River

Project Overview

Bridge Elevation

Superstructure

- AASHTO LRFD 2012 6th Edition with Caltrans Amendments
- Decked Bulb Tee Girders UDOT Typical Section
- Level Bearing Seats
- Steel Reinforced Elastomeric Bearing Pads
- CIP Concrete Topping
- CIP Diaphragms
- CIP Barriers

Midas Civil 3D Superstructure Wizard

- Not used for primary design
- Used to verify distribution factors were conservative

Superstructure Model with Abutments

For Interior Moment with 2 trucks

- AASHTO Equations g=0.52
- CONSPAN Grillage g=0.46
- Midas Grillage g=0.41

Caltrans P15 Permit Truck

Midas Civil 3D Superstructure Wizard

- Design Codes
 - AASHTO LRFD 2012 6th Edition with Caltrans Amendments
 - AASHTO LRFD 2011 Guide Specifications for Seismic Design of Highway Bridges
 - Caltrans Seismic Design Criteria 2013 v.1.7
- Substructure Overview
 - Spread Footing with Toe Walls
 - Columns with Corbel for Girder Supports
 - Retaining Wall as Backwall
 - Solid Top Slab with Utility Voids

Side Elevation

Front Elevation

- Substructure Model
 - Solid Element Model in CSiBridge
 - Plate Element Model in Midas Civil 3D
 - Beam Element Model was used for Corbel Design

Elastic Properties of Column

- Used for Initial Design
- Nominal Material Properties
- No Confined Concrete
- Rectangular Section

Column Section with Nominal Material Properties

Element Design

- Bottom Slab, Back Wall, Top Slab
 - Plate Analysis
 - Design Forces per 1 ft Strip
 - Reinforced Concrete Design^{*}
- Corbel Beam
 - Stiffness considerations
 - Designed as idealized beam
 - TxDOT Design Example based on AASHTO 2010
 - AASHTO 5.13.2.4
- Columns
 - Designed to Remain elastic during Design Event

County: Any Hwy: Any

Design: BRG Date: 6/2010

Inverted Tee Bent Cap Design Example

Design example is in accordance with the AASHTO LRFD Bridge Design Specifications, 5th Ed. (2010) as prescribed by TxDOT Bridge Design Manual - LRFD (May 2009).

- Inelastic Analysis
 - Determine design value for base shear to ensure ductile plastic hinging in column

Column Shear Failure http://www.arch.virginia.edu/~km6e/tti/ttisummary/full/mex-city-shear-col-noted.jpeg

Column Plastic Hinge http://www.dot.ca.gov/hq/esc/earthquake_engineering/da mage_report/1_Visual_Catalog_of_RC_Bridge_Damage.pdf

- Seismic Design
 - PGA 0.44G T=0
 - Site Class D
 - Seismic Design Category D
 - Isolated Shear Key
 - Shear Key for ¼ Superstructure Weight
 - Minimum Seat Width
 - Considered Deflection for Utilities

Shear Key Detail

- Inelastic Section Properties
 - Expected Material Properties
 - 1.3 x f[°]_c (5.85 ksi)
 - 1.13 x f_y (68 ksi)
 - Concrete Confined Inside Spirals

Column Section with Expected Material Properties

Column Section

Moment Curvature Analysis

• Determine Curvature of Section at increasing Moments

State	Curvature *10^-3 (1/in)	Moment (kip×in)
a.Crack	0.030227	3007.628
b.Yield(Init.)	0.186939	6717.772
c.Yield	1.767234	7098.877
d.Ultimate(conc)	3.384659	7325.386
e.Ultimate(rebar)	-	-
f.Yield(ideal)	0.230062	8267.406

- Pushover Analysis
 - Moment Curvature Analysis
 - Determine Overstrength Moments
 - $M_{po}=1.2 \times M_p$ Caltrans SDC Section 4.3
 - Calculate Shear with only Service Axial Force (Dead Load)
 - $V_o = (M_{po-top} + M_{po-bot})/h$
 - Sum Base Shears
 - Apply Total Shear as Lateral Force
 - Recalculate Axial Forces Include Overturning
 - Iterate until Lateral Force and Total Shear Converge

Pushover Analysis

Pushover Analysis

Abutment Pushover

Transverse Pushover

Cap beam assumed to be rigid for pushover analysis

Column Height 14.2 ft Column Spacing 15.25 ft (between exterior columns) Lp (in) 23.01 Plastic Hinge L 1.92 ft P_top 270 kips (DL from bridge + DL of cap beam)

Column Weight 8.5 kips

Trial 0					Trial 1								
Co	lumn	P_ot	P_top	P_bott	Mo_top	Mo_bott	Vo	P_ot	P_top	P_bott	Mo_top	Mo_bott	Vo
	I	kips	kips	kips	k-ft	k-ft	kips	kips	kips	kips	k-ft	k-ft	kips
	1	0.00	250	259	630.2	634.5	89.07	-99.52	170	179	588.9	593.5	83.27
	2	0.00	250	259	630.2	634.5	89.07	-33.17	237	245	623.5	627.8	88.12
	3	0.00	250	259	630.2	634.5	89.07	33.17	303	312	657.1	661.1	92.83
	4	0.00	250	259	630.2	634.5	89.07	99.52	370	378	688.4	692.4	97.24
					Total		356.261				Total		361.46

l otal

356.261

1.439% converge =

- Torsional Eccentricity
 - Bending about both Column Axes
 - Restraint from Back Wall

- General Procedure
 - Create Elastic Model in Midas Civil 3D (Midas)
 - General Section Designer (GSD)
 - Inelastic Section Properties
 - Moment Curvature Analysis
 - Pushover Analysis
 - Define Hinge and Assign Plastic Hinge
 - Perform Analysis

- Elastic Model
 - Elements must be similar to those used in GSD
 - Used to calculate initial elastic properties in pushover analysis
 - Items to verify
 - Material Properties
 - Section Properties
 - Reinforcement Steel Layout
 - Alternatively, Properties can be entered in GSD and Linked to Midas

General Section Designer

• GSD – Material - Unconfined Concrete

• GSD – Confined Area

Nonlinear propertie

🕼 midus 050 Ver. 250 – [C/\Ukers\je023618\Decitop\Mido	Pushover Results/MIDAS Files/SquareColumn-rev1 - [Section View Section3]	Kent & Park Model Mondari Mischill Minardari Mischill Chana Concrete Code (CBS0010-02) Trifinear Concrete Model History Model (CB 23 12320)
Add New Section Neme Add	Section & Retiar Type	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
General Section Design Works (Pre-Mode) Material Material Steel Section RC : 1 Material RC : Concrete Confined Area : Offast	Confinement Effectiveness Coefficient, ke Acc : Area of Condined Concrete Care 306.159 in1 Ac : Area of Effectively Confined Concrete Care 286.67 in2 ke = Ae / (Ac (1 occ)) = Ae / Acc = 0.936 < 1.0 The Effective Lateral Confiring Stress on the Concrete : The Effective Lateral Confiring Stress on the Concrete	Y 0.0004 J = N Y Y Y Y Solution of Concents $e_1 = \frac{F_1}{E_1}$ Solution of Concents $e_1 = \frac{F_1}{E_1}$ Solution of Concents $e_2 = \frac{F_1}{E_1}$ Solution of Concents $e_1 = \frac{F_1}{E_1}$ Solution of Concents $e_2 = \frac{F_1}{E_1}$ Solution of Concents $e_1 = \frac{F_1}{E_1}$ Solution of Concents $e_2 = \frac{F_1}{E_1}$ Solution of Concents $e_2 = \frac{F_1}{E_1}$ Solution of Concents $e_1 = \frac{F_1}{E_1}$ Solution of Concents $e_2 = \frac{F_1}{E_1}$ Solution of Concents $e_1 = \frac{F_1}{E_1}$ Solution of Concents $e_2 = \frac{F_1}{E_1}$ Solution of Concents $e_2 = \frac{F_1}{E_1}$ Solution of Concents $e_1 = \frac{F_2}{E_1}$ Solution of Concents $e_2 = \frac{F_2}{E_1}$ Solution of Concents $e_1 = \frac{F_2}{E_1}$ Solution of Concents $e_1 = \frac{F_2}{E_1}$ Solution of Concents $e_2 = \frac$
Bebar Material Property - None Stage Toolumm (RC) Main Reinforcement Port Une Arc Rectangle Permeter Permeter Code Combination ZUC1 StLC2	$f_l = \frac{1}{2} k_0 \rho_z f_{yh}$ 0.318 km/m² Confined Concrete Data	
	steel to the volume of Contreet Conce acu : Utbrate Strain for Confined Concretes 0.02001	Riebar Area = 8.000 m ^a *

• GSD – Steel Properties

• GSD – Steel Pattern

• GSD – Run Analysis

• GSD – Moment Curvature

MIDAS Ch2m:

Pushover Analysis in Midas Civil 3D

• GSD – Link to Midas Civil

MIDAS Ch2m:

Pushover Analysis in Midas Civil 3D

• GSD – Export Hinge

• Midas - Pushover Analysis

• Midas - Pushover Analysis – Define Hinge

• Midas - Pushover Analysis – Define Hinge

• Midas - Pushover Analysis – Assign Hinge

• Midas - Pushover Analysis – Load Case

C 000880 ·	Add/Modify Puthover Load Case	s\TRB Pushover - 24in square column] - [MIDAS/Civil]	- # X
New Structure Node:Element Propedies Globa Load Assign Hinge Perform Perform Globa Load Assign Hinge Perform Analysis Perform Control Load Assign Hinge Perform Perform Perform Control Load Assign Hinge Perform Perform Perform Control Load Station Perform Perform Perform Treec Memu Y X Interview Interview Interview	Name : 50 y Description : General Control Increment Steps (ristep) : 50 Consider P-Delta Effect -P-Delta effect will not be supported in case when Large Displacement is selected from Global Control. Initiate tested load Tetrat Study	Rating Query Tools Unbower Test Test Test Test Test Test A TOO Tools The Menu 2	\$2 Help × (* ♥) (C) (0) (1) + ×
Pushover Analysis Assign Hinge Properties Option Add / Replace Delete Element Type Sean/Column Truss General Link Select Property Select Property Select Property Menge Properties Type hinge Menge Properties Type Me	Increment Nethod Constative Deplacement by Initial Load Displacement Nethod Constative Deplacement by Initial Load Displacement Retriad Control Option Global Most Translational Deplacement : Master Node Node : 1800 Direction : Master Node Node : 1800 Direction : Max. Displacement : Icoad Pattern Load Coad Case Pushover 1 Declet OK Cancel	Tables Works Group B The Dependent N The Dependent N The Dependent N The Dependent N Todates Section 3 Section 3 Section 3 Section Statices Section 3 Section 3 Section 3 Static Load Supports 3 Supports 3 Section 2 Static Load Static Load Case 1 Static Load Case 1 Static Load Case 1 Static Load Static Load Case 2 Static Load Case 3 Sections 2 Static Load Case 3 Static Load Case 3 Static Load Case 3 Sections 2 Static Load Case 3 Static Load Case 3 Section 2 Section 2 Static Load Case 3 Static Load Case 3 Section 2 Section 2 Static Load Case 3 Static Load Case 3 Section 2 Section 2 Static Load Case 3 Section 2 Section 2 Section 2 Static Load Case 3 Section 2 Section 2 Section 2 Static Load Case 3 Section 2 Section 2 Section 2 Section 3 Section 3 Section 3 Section 3 Section 3 Section 3 Section	bottl sterial/Comp. Strength) sterial/Comp. Strength) sterial/Comp. Strength) sterial/Comp. Strength) sale Factor roperties : 2 1 [Seff Weight: Seff Weight] [Pushover : 1] [Service 1 :] 3 objetion n Load Cases : 2 [AASHTO LRFD] protol [Max. iteration=100] se : 1 enert] inge Propeties : 1 Column : RC ; PM : Dir=0000 inge Propeties : 1
Tree Menu Task Pane	essage / Analysis Nessage / * [- B2031 jarge	11
For Help, press F1	None: U14.016, 85.928, -99.96	G: 14.016, 85.928, 99.95 kips * n * 🗘 🙄 🕨 none	· 7 1 1 2

MIDAS Ch2m:

Pushover Analysis in Midas Civil 3D

• Midas - Pushover Analysis – Global Control Options

	Civil 2016 - [C:\Uses]	je022618\Desktop\Midas Pushover Results\N	IIDAS Files\TRB Pushover -	24in square column] - [MIDAS/Civil]	- # X
View Structure	Puthover Global Control	Bullet Bullet		Query Tools	😡 Help – 🧉 X
Global Control Case Case Case Case Case Case Case Case	Geometric Nonlinearity Type Whone Carge Displacements Initial Load Propertian Nonlinear Static Analysis for Initial Load Import Static Analysis / Construction Stage Analysis Results When the boundary conditions are different between Initial load and pushover load When the element forces in the last construction stage are used or as write load.	Nonlinear Analysis Option Permit Convergence Failure Max, Number of Substeps : Maximum Iteration Convergence Criteria Displacement Norm Porce Norm Energy Norm	20 100 ± 0.001 0.001	The Man	()))) ())) ())) ()
Option @ Add / Replace ① Del	Load Case ST: Self Weight Scale Factor Static Load Case Scale	1 Analysis Stop		8	Section : 8 Section Stiffness Scale Factor Thickness : 4
Benent Type @ Bean/Column C Truss	ST: Self Weight 1 ST: Service 1 1	todfy Axial Component Colapse,Bui Relete Support Upifting/Colapse : D Upifting Cola	king all e Direction Japoe		undartes 5 Supports - 3 4 Loads to Masses : 1 4 To Loads 9 Static Load Case 1 [Seff Weight : Seff Weight]
General Link General Link General Link General Link General Link General Link Content	Pushover Hinge Data Option Default Stiffness Reduction Ratio of Skeleton Curve Trilinear / Sip Trilinear Type Symmetric (+) (-) Alpha1 0.1 0.1 Alpha2 0.05 0.05	Point Spring Support : Nonlinea Data for Auto-Celculation of Strength Reference Location only for Distributed Hit Beam [Lend	rType] ges		Static Load Case 2 [Pushover :] Static Load Case 3 [Service 1 :] estressing Tendon Tendon Poperty :3 esponse Spectrum Analysis Pesponse Spectrum Functions : 1 Pesponse Spectrum Load Cases : 2 mon Load Analysis
Point Spring Support Hinge Properties Type	tilinear / Sip tilinear Type Symmetric (+) (-)	Calc. Yield Surface of Beam considering	Budding		Moving Load Code [AASHTO LRFD] Vehicles 3 shover Analysis
hinge Apply	Abha1 0.05 0.05 Remove Pushover Global Control]ок	Cancel	다	Pushover Global Control [Max. terston=100] Pushover Load Case: 1 [27] EQ y [Displacement] Define Pushover Hinge Properties: 1 [27] Hinge [Bean-Column: PC ; PM : Dir-0000
e in in	• »>		1	8.8	B2031_Hinge Properties : 1
Tree Menu Task Pane For Help, press F1	S S S S S S S S S S S S S S S S S S S	98 / None! UR-14.016, 85.928, -	99.96 GI -14.016, 85	928, 99.96 kapa • in •	H +1 → +1 + non + 2 + 1 ↓ / 2 =

• Midas - Pushover Analysis – Perform Analysis

• Midas - Pushover Analysis – Results – Pushover

• Midas - Pushover Analysis – Results – Force Effects

• Midas - Pushover Analysis – Single Column

• Midas - Pushover Analysis – Frame

٠

٠

٠

Pushover Analysis in Midas Civil 3D

• Midas - Pushover Analysis – Full Plate Model

ine + n + + + 10 10 in men + 12 1 1 1 7 2 1

• Additional Shear Capacity Available

Midas - Pushover Analysis – Full Plate Model

Transverse Shear

Longitudinal Shear

- Midas Pushover Analysis Full Plate Model
 - Column Loses Shear Capacity at Step 33
 - Continues to Load backwall
 - Element model is required for Backwall Hinging

• Moment Curvature

• Pushover Analysis

- Both methods resulted in nearly V=90k per column
- Slight Variations from Interaction with Model Elements

Trial 1						
P_ot	P_top	P_bott	Mo_top	Mo_bott	Vo	
kips	kips	kips	k-ft	k-ft	kips	
-99.52	2 170	179	588.9	593.5	83.27	
-33.17	237	245	623.5	627.8	88.12	
33.17	303	312	657.1	661.1	92.83	
99.52	370	378	688.4	692.4	97.24	
Total					361.46	

Reasons for differences

- Steel Model
 - Xtract Bilinear with Strain Hardening
 - GSD Kent and Park with Strain Hardening
 - Results vary by 25% without strain hardening
- Variations in calculations

Shear Design and Element Detailing

Shear Design

• Followed AASHTO LRFD Guide Spec – Section 8.6

- Concrete Strength (Vc)
- Rebar Strength considering spirals only (Vs)

Column Detailing - Section

Nafmer Lowl Case	V DRI :		
Plot Type			Capacity Curves
Cabality Garve \$40	99		12
· Date Dream vs.	Displacement		
D Shew Coeffici	ent us. Drift	#C	1 1 1 1 1 1 1 1 1 1
Classifiane ve	Deplecement		
Additional Cur	ies at Other Nodes	0)	R
1.1	3.0	8	
Denity Spectrum	opor)		
C for Performan	a Point (70MA)		
Denund Spectrum			e =
200	e facili Spectrat		
(Denird besta)	Internet Saltes C	10	
1	1. 10	1.00	
The second second		4.	2 68 1 18 2 49 3 40 4 49 1 68 9 69 7 70 8 80 8 10 11 11 11
11 Constant versions	The second second second	4.	Monitored Displacement(D)
19.5	1104		Second to Design Design
Evaluation of Perfor	manue Poert		Careford in Links Control
III Tricebyy (- 10 m e	odyrell.	Tithen Minute Darksment #CE.X
and a second second			Performance Point Grant Display College
Derperg Parameters	W	10	Dest. Cardnal Hode: 1800 Dk .: Dr
Siterent + Additional Denging (%)		1	Load Pathene State Load 🗰 Back 🔅 With
Structural Behavior Type 0 -		A	4,0 Owner Graph Trie
			Se.St Overge Graph Range
			telf.bell
			LATE DETERMINED IN THE PARTY OF A CARDINE

Element Detailing

- Columns
 - Caltrans SDC Section 8
 - Longitudinal Embedment 8.2
 - AASHTO LRFD Guide Spec Section 8.8
 - Spiral terminations 8.8.7

Column Detailing - Section

Column Detailing

MIDAS ch2m:

Element Detailing

- Corbel Beam
 - AASHTO LRFD Guide Spec Section 8.13
 - Determine Level of Detailing
 - Principal Stress Checks for SDC D
 - Calculated Based on Column Moments

Element Detailing

- Slabs
 - Caltrans SDC Section 8
 - AASHTO LRFD Guide Spec Section 8.8

Summary

- Elastic Analysis
- Inelastic Analysis
- Midas Civil 3D Pushover Analysis
- Result Checking
- Shear Design

Acknowledgements

- Midasoft
- Central Federal Lands
- CH2M
- Design Workshop
- LEAP CONSPAN
- CSiBridge
- TxDOT
- XTRACT

References

- 1. AASHTO (American Association of State Highway and Transportation Officials). (2012). AASHTO LRFD Bridge Design Specifications, Customary U.S. Units, 6th Edition. AASHTO, Washington, D.C.
- 2. AASHTO (American Association of State Highway and Transportation Officials). (2011). "Guide Specifications for Seismic Design of Highway Bridges", AASHTO, Washington DC.
- 3. California Amendments. (2012). (to the AASHTO LRFD Bridge Design Specifications Sixth Edition).
- 4. Caltrans. (2013). Seismic Design Criteria Version 1.7. Sacramento, CA: Caltrans.
- 5. CFLHD CA SR 89/SR 28 Intersection Area, Truckee River Bridge. (2016). Geotechnical Report, prepared by Shannon & Wilson, April, 2016.
- 6. HEC-18. (2012). "Evaluating Scour at Bridges" Hydraulic Engineering Circular No. 18, FHWA-HIF-12-003, April 2012, Fifth Edition.
- 7. HEC-23. (2009). "Bridge Scour and Stream Instability Countermeasures: Experience, Selection, and Design Guidance", Hydrualic Engineering Circular No. 23, FHWA-NHI-09-111, September 2009, Third Edition
- 8. Inverted Tee Bent Cap Design Example. (2009). Design example is in accordance with the AASHTO LRFD Bridge Design Specifications, 5th Ed. (2010). TxDOT Bridge Design Manual LRFD, May, 2009.
- 9. XTRACT. (2004). A Tool for Axial Force Ultimate Curvature Interactions, Chadwell, C. and Imbsen, R. Structures 2004. May 2004, 1-9

Questions

Jon.Emenheiser@ch2m.com