

SLAB AND WALL ANALYSIS AND DESIGN

Angel Francisco Martinez Civil Engineer MIDASoft

midas Gen Dimensions

Material

Ρ

Define Properties

Properties

	View	Structure	Node/Element	Properties		
I	•	Define N	Aaterial			
Materi	al ies	-Conci	rete ASTM	C4500		

м	Material Section Thickness							
	ID	Name	Туре	Standard	DB			
	1	Grad	Conc	ASTM(RC)	Grade C4500			

Define 4 rectangle Sections as shown

		н	В
	Column	0.2 m	0.2 m
Section roperties	Slab girder	0.15 m	0.15 m
	Raft girder	0.3 m	0.3 m
	Wall marker	.001 m	.001 m

P	roj	perties			
	M	laterial S	Section Thickness		
		ID	Name	Туре	Shape
		1	column	User	SB
		2	slab girder	User	SB
		3	raft girder	User	SB
		4	wall marker	User	SB

• 3 thicknesses as shown

<u>_</u>]]		Thickness
Ť	Raft	0.3 m
Thickness	Wall	0.2 m
	Slab	0.15 m

Properties Material Section Thickness ID Type Thickness

1 2

3

Value

Value

Value

Import DXF CAD Layers

6	31 ≠	Import DXF File	Open
		DXF File Name :	🗧 🔶 👻 🛧 📙 > This PC > Desktop > Slab and Wall Tutorial
<u> N</u> ew Project	midas <u>G</u> en MGT File AutoCAD <u>D</u> XF File	All Layers Selected Layers	Organize 👻 New folder
<u>C</u> lose Project	SA <u>P</u> 2000(V6, V7) File SAP2000(V8) File		ConeDrive Name
Save <u>A</u> s Save Current Stage As	STAAD2000 File STAAD2002 File MSC.Nastran File	Import : Node Node & Element	Import DXF File × • • • • • • • •
 Import Slab a Select Wall La Select Raft La Select Slab La 	and Wall DXF ayer and assign ayer and assign ayer and assign	wall marker section raft girder section slab girder section	DXF File Name : Wall Tutorial\Slab and Wall.dxf Browse All Layers O CENTER_ Raft Slab < Selected Layers Vall < CENTER_ Raft Slab
			Import : Node Node & Element Numbering Start Node Number : 1 Start Element Number : 1 Properties Matl. 1 I: Grade C4500 V Sect. 4 4: wall marker V THK. 1 1: 0.3000 V

Extrude Columns

Mesh Slab

			1 ₹			
	View	Structure	Node	e/Element		
Tree Men	u			Auto-mesh	Define Sub-Domain	
Mesh				Map-mesh		l T
Auto-me	sh Planar A	rea	~	Define Domain		Hidde
					Mesh	

Mesher								
Method	Line Elements \sim							
1to66 91	1to66 91to166							
Туре	Quadri	latera	l s	/				
☐ Mesh Inner Domain ✓ Include Interior Nodes								
Auto	OUse	r						
Include I	nterior l	Lines						
Auto	OUse	r						
🗹 Include B	Boundar	y Con	nectivity					
Mesh Size								
Length	ODi	۷.	1 m					
Property								
Element Type Plate \checkmark								
Material	1	1: G	rade (\sim .					
Thickness	3	3: 0.	1500 🗸 .					

Auto Mesh Planar Area

Method: Line Elements Element Type: Plate Thickness: 0.15

Select Slab and Wall layers Mesh size 1m Domain: Slab

Extrude Walls

T Properties Section : 4 1 : column 2 : slab girder 1 3 : raft girder 1 4 : wall n 🖃 🚅 Thickness

= 1 : 0.3 = 1 : 0.3 = 1 : 0.3 = 1 : 0.3 = 1 : 0.2 = 1 : 0.2 = 1 : 0.2 = 1 : 0.3 = 1 : 0.3 = 1 : 0.3 = 1 : 0.3 = 1 : 0.3 = 1 : 0.3 = 1 : 0.3

Static Load (

日 Wind Lo

Static Loads Static Load (Assign

Select Select Plus

Unselect Unselect All

Active

Active Dive

View Structure Node/E	lement Properties Boundary Load Analysis F
Node Element Boundary Mas Line Elem> Planar Elem. Source Nove Source ✓ Remove Move	Iete I Mirror R I I I I I I I I I I I I I I I I I I
Element Attribute Element Type: Plate \checkmark Material : 1 1: Grade C4500 \checkmark Thickness : 2 2: 0.2000 \checkmark	
Type: Thick Thin	Extrude walls
With Drilling DOF	Extrude Type: Line Elem to Planar Element
	Assign Element Type: Plate
Generation Type	Thickness 0.2m
Translate Rotate Project	Select center wall laver
Equal Distance	From work tree 2
	Extrude: -2.8 m
dx,dy,dz: 0, 0, -2.8 m	
Number of Times : 1	

Extrude Walls

View Structure Node/	Element Properties Boundary Load Analysis F
Node Element Boundary Mas ✓ ✓ De Line Elem> Planar Elem. ge ⑦ Re Source ✓ Remove Move Ø Pr	elete • I• Mirror otate Scale oject Scale Table Scale Sc
Element Attribute Element Type: Plate ~ Material : 1 1: Grade C4500 ~ Thickness :	
Z 2: 0.2000 ♥	Extrude walls
With Drilling DOF	Extrude Type: Line Element to Planar Eleme
	Assign Element Type: Plate
Generation Type	Thickness 0.2m
Translation	Select center wall layer
Equal Distance	From work tree 2
O Unequal Distance	Extrude: -2.8 m
dx,dy,dz: 0, 0, -2.8 m Number of Times : 1	

ent

	Mesh Raft
View Structure Node,	/Element
Tree Menu	Auto-mesh 🔛 Define Sub-Domain
Mesh	III Map-mesh
Auto-mesh Planar Area 🗸 🗸	Define Domain
Mashar	Mesh
Method Line Elements ~	Auto Mesh Planar Area
67to90	Method: Line Elements
Type Quadrilateral V	Element Type: Plate
Mesh Inner Domain	Thickness 0.2m
☑ Include Interior Nodes	Thickness: 0.3m
Auto User	
Include Interior Lines	Select All Bottom nodes
Auto User	Mesh size 1m
Include Boundary Connectivity	Domain: Raft
Mesh Size	
● Length ○ Div. 1 m	
Property	
Element Type Plate ~	
Material 1 1: Grade (V	
Thickness 1 1: 0.3000 V	

Load Cases

Static Load Cases

Create 4 load cases Assign Self Weight to dead load case

Static Load Cases \times Add Name : Type : Modify Description : Delete No Description Type Name ٨ Dead Load Dead Load (D) 1 2 Live Load Live Load (L) Wind Load on Structure (W) 3 Wind x 4 Wind y Wind Load on Structure (W)

Node Element Boundary Mass Load Self Weight \sim Load Case Name dead \sim Load Group Name Default \sim Self Weight Factor Wgt.Z Wgt . Y Wat.X °≜х 0 Х 0 Y 0 Ζ Load Case х Y Z Group dead -1 Default 0 0 < ≻ Operation Modify Delete Add

Assign Pressure Loads

Building Generation

Make copies of the first floor

Select All except raft elements Copy 3 times at 2m Click Add Click Apply

/U 🛄 U

Mesh Wall

View Structure No	de/Element		
Auto-mesh Planar Area	Auto-mesh Define Sub-Domain		
	Map-mesh		Hidde
Mesher	Define Domain		
Method Planar Elements \checkmark	Mesh		
594to693 1803to1902 2372to2471	Auto Mesh Planar Area		
Type Quadrilateral \vee	Method: Planar Elements	Base:Ro	Assign
Mesh Inner Domain	Element Type: Plate	Nodes : 210	Select
Include Interior Nodes		Beam : 6	Select Plus
Auto User	INICKNESS: U.Z M	Properties	Unselect
Include Interior Lines		I : Grad	Unselect All
Auto User	Select All 0.2m thick elements	□ I Section : 4 I 1 : colun I 2 : slab (Active Active Plus
Include Boundary Connectivity	Mesh size 1m	I 3:raft g I 4:wall r	Inactive Active All
Mash Circ		□ = = + Thickness : = + 1 + 0.2	Delete
Mesh Size	Domain: Wall	= 2:0.2	Delete
Length O Divm			
Property			
Element Type Plate V			
Material 1 1: Grade (>			
Thickness 2 2: 0.2000 ∨			
Domain			
Name wall			

Generate story data

×

2

2

2

0

Response Spectrum Functions

Seismic Load

midas Gen

Load > Seismic > Response Spectrum Data > Response Spectrum Functions Click Add

Click Design Spectrum

Generate Design Spectrum: IBC2012(ASCE7-10)

Add/Modify/Show Response Spectrum Functions \times Function Name Spectral Data Type IBC2012(ASCE7-10) Normalized Accel. Acceleration ○ Velocity ○ Displacement Scaling Gravity Graph Options 9.806 m/sec^2 Import File Design Spectrum Scale Factor X-axis log scale Spectral Data Damping Ratio Period O Maximum Value 0 a Y-axis log scale 0.05 (sec) (g) 0.0000 0.0600 2 0.0600 0.1050 0.143 0.1200 0.1500 0.123 0.1800 0.1500 0.2400 0.1500 rg 0.103 0.3000 0.1500 Da 0.083 0.3600 0.1500 ral 0.063 0.4200 0.1500 9 0.4800 0.1500 þē 0.043 10 0.5400 0.1500 0.023 11 0.6000 0.1500 12 0.1364 0.6600 0.003 1.01 2.01 3.01 4.01 5.01 6.01 13 0.7200 0.1250 0.01 Period (sec) 0.1154 14 0.7800 Description IBC2012: Site=D,Ss=0.75,S1=0.30,Fa=1.20,Fv=1.80,Sds=0.60,Sd1=0.36,I=1.0,R=4.0 Cancel Apply OK

Design Spectrum : IBC2012(ASCE7-10)											
Design Spectral Response Acceleration											
Site Class			D	\sim							
Spectral A	cceleration	(Ss)	0.75	\sim	g						
Spectral A	cceleration	(S1)	0.3	\sim	g						
Fa 1.	20000	Sds	0.60000		g						
Fv 1.	80000	Sd1	0.36000		g						
Importance Factor (I) 1.0 V											
Response (R)	Modification	Coef.	4		~						
Long Tran. Period (TL) 4 (Sec)											
Max. Period : 6 (Sec)											

×

Add

Modify/Show

Delete

Close

Click [Close]

Response Spectrum Load Cases

	-	
View Structure Node/Element Properties	Boundary Load	
Static Loads Seismic Settlement/Misc.		
Temp./Prestress Construction Stage Load Tables	RS RS Load	
Moving Load Heat of Hydration	Functions Cases	
Seismic Load	coportie spectrum bata	
Jead > Despanse Spectrum Data >		
Load > Response Spectrum Data >	Financelus Applicia Control	
Response Spectrum Load Cases	Type of Analysis	
Load Case Name: RX	Eigen Vectors Subspace Iteration	O Ritz Vectors
Excitation Angle : 0	 Lanczos 	-
Check : IBC2012(ASCE7-10)	Eigen Vectors	
Check: Accidental Eccentricity	Number of Frequencies : 15	
Click [Add]	Search From : 0 [cps]
Load Cases Name : BV	To : 1600 [cps]
	Remove Eigenvalue Analysis D	ata OK
Excitation Angle : 90 > Click [Add]		
Check: Accidental Eccentricity		
Click [Eigenvalue Analysis control]		
Number of Frequencies: 15 > Click [OK]		

RY Load Case Name: X-Y Direction : \sim Auto-Search Angle Major Ortho teg] 90 Excitation Angle : Scale Factor : 1 Period Modification Factor : 1 Modal Combination Control Spectrum Functions Function Name (Damping Ratio) IBC2012(ASCE7-10) (0.05) Accidental Eccentricity Description : LoadCase Scale Cancel Direction RX X-Y 1 RY X-Y 1 Operations Modify Delete Add Eigenvalue Analysis Control...

Response Spectrum Load Cases

Spectrum Load Case

Boundary Condition

Add Spring Supports

Add Surface Springs Element Type: Planar Spring Type: Linear Kx = Ky = 1,500 Kz = 15,000 kN/m^3 Select Raft thickness 0.3 m Click Apply

Surface Spring Supports Boundary Group Name Default Surface Spring O Point Spring O Point Spring O Elastic Link Ae# : Effective Area per Node Ks : Modulus of Subgrade Reaction Element Type Planar Face #1 Width : 0 m Spring Type Type Linear Modulus of Subgrade Reaction : Node Local Axis(if defined) Kx : Kx : 1500		Node Element Boundary Mass Load
Boundary Group Name Default Surface Spring Convert to Nodal Spring Point Spring Elastic Link Aff Aff Elastic Link Aff Element Type Planar Face #1 Width : 0 m Spring Type Type Linear Modulus of Subgrade Reaction : Node Local Axis(if defined) Kx : Kx : 1500 kN/m^3 Kx : 1500		Surface Spring Supports ~
Default Surface Spring O Convert to Nodal Spring O Point Spring Clastic Link Ae# Ae# Ae# Element Type Planar Face #1 Width : 0 m Spring Type Type Linear Modulus of Subgrade Reaction : Node Local Axis(if defined) Kx : Kx : 1500 kN/m^3		Boundary Group Name
Surface Spring Convert to Nodal Spring Point Spring Elastic Link Aeff K=Aeff × Ks Aeff : Effective Area per Node Ks : Modulus of Subgrade Reaction Element Type Planar Face #1 Width : 0 m Spring Type Type Linear Modulus of Subgrade Reaction : Node Local Axis(if defined) Kx : 1500 kN/m^3 Ky = 1500 kN/m^3		Default \checkmark
 Convert to Nodal Spring Point Spring Elastic Link Elastic Link K=Ae# × Ks Ae# Effective Area per Node Ks : Modulus of Subgrade Reaction Element Type Planar Face #1 Width : 0 m Spring Type Type Linear Modulus of Subgrade Reaction : Node Local Axis(if defined) Kx : 1500 kN/m^3 Ky : 1500 kN/m^3 		Surface Spring
 Point Spring Elastic Link Elastic Link Ae# Ks Ae# Effective Area per Node Ks : Modulus of Subgrade Reaction Element Type Planar Face #1 Width : 0 m Spring Type Type Linear Modulus of Subgrade Reaction : Node Local Axis(if defined) Kx : 1500 kN/m^3 Ky : 1500 kN/m^3 		Convert to Nodal Spring
O Elastic Link Ae# Ae# K Ae# : Effective Area per Node Ks Ae# : Effective Area per Node Ks Ae# : Effective Area per Node Ks Modulus of Subgrade Reaction Element Type Planar Vidth O m Spring Type Type Linear Modulus of Subgrade Reaction : Node Local Axis(if defined) Kx 1500 kN/m^3 Kv 1500		Point Spring
Aff K=Aff × Ks Aff : Effective Area per Node Ks : Modulus of Subgrade Reaction Element Type Planar Face #1 Width : 0 m Spring Type Type Linear Modulus of Subgrade Reaction : Node Local Axis(if defined) Kx : 1500 kN/m^3 Ky = 1500 kN/m^2		○ Elastic Link
Element Type Planar V Face #1 Width : 0 m Spring Type Type Linear V Modulus of Subgrade Reaction : Node Local Axis(if defined) Kx : 1500 kN/m^3		K=Ae# × Ks K=Ae# × Ks Ae# : Effective Area per Node Ks : Modulus of Subgrade Reaction
Planar Vidth Face #1 Width 0 m Spring Type m Type Linear Modulus of Subgrade Reaction : Node Local Axis(if defined) Kx 1500 kN/m^3 Ky 1500 kN/m02		Element Type
Width : 0 m Spring Type Type Linear Type Linear ✓ Modulus of Subgrade Reaction : Node Local Axis(if defined) Kx : 1500 kN/m^3 Ky : 1500 kN/m^23		Planar V Face #1 V
Spring Type Type Linear Modulus of Subgrade Reaction : Node Local Axis(if defined) Kx : 1500 kN/m^3		Width : 0 m
Type Linear ✓ Modulus of Subgrade Reaction : Node Local Axis(if defined) Kx : 1500 kN/m^3 kN/m^3		Spring Type
Modulus of Subgrade Reaction : Node Local Axis(if defined) Kx : 1500 kN/m^3		Type Linear ~
Node Local Axis(if defined) Kx : 1500 kN/m^3	I	Modulus of Subgrade Reaction :
Kx : 1500 kN/m^3		Node Local Axis(if defined)
Ky 1500 kb/m 02		Kx : 1500 kN/m^3
Ky : 1500 Kiv/m··5		Ky : 1500 kN/m^3
Kz : 15000 kN/m^3		Kz : 15000 kN/m^3

Base:3F Base:4F

Base Boo

Slab [Elem=

🚛 [1] [Eler

Raft [Flem=

operties

Material : 1

Section : 4

1 : colun

1 2:slab g 1 3:raft g

== == == == == 3 : 0.15 Static Loads Assign Select

Select Plus

Unselect

Unselect A

Active Plus

Active

Inactive

Delete

Active All

Properties

Load

Load combination

Automatic Generation of Load Combinations Option Add O Replace Code Selection Concrete OSRC Steel Cold Formed Steel Footing Design Code ACI318-14 Scale Up of Response Spectrum Load Cases Scale Up Factor: 1 Factor Load Case Wind Load Factor Strength-level O Service-level Consider Lateral Soil Pressure Factor Load Factor : 0.9 Manipulation of Construction Stage Load Case ST : Static Load Case CS : Construction Stage Load Case ST Only CS Only O ST+CS Consider Orthogonal Effect Set Load Cases for Orthogonal Effect. 100 : 30 Rule SRSS(Square-Root-of-Sum-of-Squares) Generate Additional Load Combinations for Special Seismic Load for Vertical Seismic Forces Factors for Seismic Design... Will Execute Construction Stage Analysis Consider Losses for Prestress Load Cases Transfer Stage 1 Define Factors Service Load Stage ; 1 OK Cancel

Perform Analysis

Results: Deformations

Results: Axial Plate Forces

Results: Moments Y

Results: Shear Forces

Slab and wall load combinations

-97	View Structure Nod CI318-14 CI318-14	∂ =					Gen 2	2017 - [C:\Use	rs\a.martin
	View Structure	Node/Elem	ent Properties	Boundary	Load	Analysis	Results	Pushover	Design
	ACI318-14 *	SSRC79	Slab/Wall L	oad Com	binatio	on			-
	RC Design 🔻	🔍 SRC Desi	• Coloct th		na hin a	tions for	م + ام م ام		o no o nt a
	🖶 Meshed Design 👻		• Select th	le load co	mpina	luons io	r the sia	b/wall ei	ement
	MLC Serviceability Load C	combination Tj	 Design > 	Design >	Mesh	ed Desig	gn > Slal	o/Wall Lo	ad
	ML: Slab/Wall Load Com	binations	Combina	ations					
			 Select th 	e 1 st load	comh	ination	in each	column t	o consic

Х

 Select the 1st load combination in each column to consider during the slab/wall design.

Meshed Slab/Wall Load Combinations

Slab/Mat						Wall	
Strength		Serviceability		Deflection(Cra	cked)	Strength	
CLCB1	~	LCB27		CLCB27	~	CLCB1	<u>^</u>
d.CB2 d.CB3 d.CB4 d.CB5 d.CB6 d.CB7 d.CB8 d.CB9 d.CB10 d.CB11 d.CB12 d.CB13 d.CB14 d.CB15	~	dLCB28 dLCB29 dLCB30 dLCB31 dLCB32 dLCB33 dLCB34 dLCB35 dLCB36 dLCB37 dLCB38 dLCB39 dLCB39 dLCB39 dLCB40 dLCB41	>	d.CB28 d.CB29 d.CB30 d.CB31 d.CB33 d.CB33 d.CB33 d.CB34 d.CB35 d.CB36 d.CB37 d.CB38 d.CB39 d.CB40 d.CB41	~	dCB2 dCB3 dCB4 dCB5 dCB6 dCB7 dCB1 dCB1 dCB1 dCB1 dCB1 dCB1 dCB1 dCB1	0 11 2 3 4 5 5 7 8 9 0 0 11 2 3 4 4 5 5 7
Description :	SERV :(D))					
					OK		Cancel

Define Design Criteria for Rebar

	£ =					Gen 2	.017 - [C:\Use	ers\a.martin
View Structure	Node/Element	Properties	Boundary	Load	Analysis	Results	Pushover	Design
ACI318-14 RC Design ACI318-14 RC Design ACI318-14 RC Design ACI318-14 SC Design ACI318-14 SC Design Criteria for Rebars	 Specify relation Enter the for slaby Design Design C Check c For Slaby Dir. 1 	par size he standar /wall eler > Design > Criteria for off [Basic F Design: : 0.03 m,	rd sizes of nents. > Meshed r Rebar Rebar for 0.03 m	f rebar l Desig Slab]	n For Siz R S S S S S S S S S S S S S	n the de Design Criteria for F ic Rebar for Slab/Ma Dir.1: #10 Dir.2: #10	esign of r Rebars t @ 300 @ 300 @ 300 @ 300 @ 300 @ 300 @ 0000 @ 000 @ 000 @ 0000 @ 000 @ 000 @ 000 @ 000 @	einforcemen ×
	Dir. 2	: 0.05 m,	0.05 m		Dir. 1	rete Face to Center 1: 0.03, 0.0	of Rebar(dT, dB) 03 m Dir. 2 :	0.05 , 0.05 m
Slab/Mat	• For Wal	o Center I	Rebar 0.0	2m	For Ma Rebar Spacin Conc Dir. 1	at Design : #9,#10,# ng : @4",@8" crete Face to Center 1 : 0, 0	#11 of Rebar(dT, dB) m Dir. 2 :	Rebar Spacinq 0 , 0 m
dT					For Wa Vertica Horizo Spacin	all Design al Rebar : #+ ntal Rebar : #+ Ig : @	4,#5 4,#5 4°,@8°	Rebar Rebar Spacing
(Dir.2)					Concre	ete Face to Center o	of Rebar(dw) :	0.02 m

Slab/Wall Rebar Checking Data

Slab/Wall Rebar Checking Data

	Ŧ					Gen 2	017 - [C:\Use	rs\a.martin	
View Structure	Node/Element	Properties	Boundary	Load	Analysis	Results	Pushover	Design	
ACI318-14 RC Design * Meshed Design * Mu Serviceability Load Combination T Mu Slab/Wall Load Combinations Design Criteria for Rebars Slab/Wall Rebars for Checking	Select a Select a Layer To Vertical Horizon Add/Re Slab/Wall Rebars for Slab/Wall Rebars for Slab/Wall Rebars for Slab/Mat Element List : Name Valls	Dar size II 0.2m w op Dir 1 1: #3 @ tal 2: #3 place or Checking	valls from 100mm @ 100mm @ 100mm Type Name : walls BotDir.1 Top-Dir NONE @ 0.0 #4 @ 10 enter : 0.03 #3 @ 10 m 10 Replace Delete	tree m n r.2 BotDir.: 0.00000 ~ 0.00000 ~	enu				

Slab Flexural Design

Gen 2017 - [C:\Users\a.martin View Node/Element Properties Boundary Design Structure Analysis Results Pushover Load Design 🛲 Meshed Design 🤊 Serviceability Load Combination Type.. Slab Flexural Design Slab/Wall Load Combinations... Mic **Run Design** Design Criteria for Rebars... Load Cases/Combinations Slab/Wall Rebars for Checking... Select Avg. Nodal ~ ... ALL COMBINATION Serviceability Parameters... Slab Flexural Design... Flexural Design Dir 1 OElement Avg. Nodal Resistance Ratio : The ratio of the design moment to the moment ● Element ○ Width 1 m resistance when the designed rebar spacing is applied. Bottom
 Both O Top SLAB DESIGN Dir. 1 O Dir. 2 91 Type of Display 82 Legend Contour 63 54 Values 45 ai US 27 18 One-Way Flexural Design .09 00 1 🔎 Element Edge OLeft Right Both Position: Top & Bot Rebar Smoothing: As_req (m^2/m) Element (Element) O Rho_req ○ x/d Component: Resistance Ratio Direction 1 Wood Armer Moment Resistance Ratio

Procedure

[Smoothing]

Flexura	al Checking
Element	nt 🔿 Avg. Nodal
Eleme	nt C Width I m
🔿 Тор	C Bottom 🛈 Both
Dir. 1	C Dir. 2
Type of D	Display
Conto	ur 🔽 Legend
Values	5

For practical design, smooth moment distributions are preferred. By selecting the smoothing option, the program can consider the smooth moment in slab design.

Element C Avg. Nodal

Element: Design results are displayed using the internal forces calculated at each node of elements. (no smoothing)

Avg. Nodal: Design results are displayed using the average internal nodal forces of the contiguous elements sharing the common nodes.

← Element C Width 1 m

Element: Design results are produced for moments at each node of slab elements. (no smoothing) **Width:** Design result of slab elements at each node is produced using the average of the bending moments of the contiguous slab elements with the specified width.

Procedure

Design Strength \geq Required Strength

[Design strength of flexural member]

 $\Phi(Nominal Strength) \geq U$

1. Design Strength

□Flexural strength of meshed slab is calculated based on the doubly reinforced beam design method.

Procedure

[Design strength of

flexural member]

Design Strength \geq Required Strength

 Φ (Nominal Strength) $\geq U$

2. Strength reduction factor

Strength reduction factor needs to be calculated based on the tensile strain in extreme tension steel.

Interpolation on c/d_t : Spiral $\phi = 0.75 + 0.15[(1/c/d_t) - (5/3)]$ Other $\phi = 0.65 + 0.25[(1/c/d_t) - (5/3)]$

Fig. R9.3.2—Variation of ϕ with net tensile strain in extreme tension steel, ε_t , and c/d_t for Grade 60 reinforcement and for prestressing steel.

Procedure

[Design strength of

flexural member]

3. Minimum reinforcement of flexural members

$$A_{s,min} = 0.002bh \quad \text{for } f_y = 40ksi \text{ or } 50ksi$$

$$A_{s,min} = 0.0018bh \quad \text{for } f_y = 60ksi$$

$$A_{s,min} = \frac{0.0018 \times 60000}{f_y} bh \quad \text{for } f_y > 60ksi$$

$$A_{s,min} = \frac{0.0018 \times 60000}{f_y} bh \quad \text{for } f_y > 60ksi$$

$$A_{s,min} = \frac{0.0018 \times 60000}{f_y} bh \quad \text{for } f_y > 60ksi$$

4. Maximum reinforcement of flexural members

B.10.3 — General principles and requirements

B.10.3.3 — For flexural members and members subject to combined flexure and compressive axial load where ϕP_n is less than the smaller of **0.10** $f'_c A_g$ and ϕP_b , the ratio of reinforcement, ρ , provided shall not exceed 0.75 of the ratio ρ_b that would produce balanced strain conditions for the section under flexure without axial load. For members with compression reinforcement, the portion of ρ_b equalized by compression reinforcement need not be reduced by the 0.75 factor.

In midas Gen, maximum rebar ratio is limited as 75% of balanced rebar ratio as per Appendix B10.3.3.

5. Minimum Spacing Limit

Rebar spacing shall not be less than the smaller of "3*slab thickness" and 18in.

Procedure

[Wood Armer Moment]

6. Required Moment Strength calculated from Wood Armer moment

From the analysis results, following plate forces about the local axis are calculated

- mxx
- myy
- mxy

In order to calculate design forces in the reinforcement direction, angle α and ϕ will be taken as following figure:

x, y: local axis of plate element 1, 2: reinforcement direction α : angle between local x-direction and reinforcement direction 1 ϕ : angle between reinforcement direction 1 and reinforcement direction 2

Firstly, internal forces (mxx, myy and mxy) are transformed into the a-b coordinate system.

$$\begin{split} m_{a} &= \frac{m_{xx} + m_{yy}}{2} + \frac{m_{xx} - m_{yy}}{2} \cos 2\alpha + m_{xy} \sin 2\alpha \\ m_{b} &= \frac{m_{xx} + m_{yy}}{2} - \frac{m_{xx} - m_{yy}}{2} \cos 2\alpha - m_{xy} \sin 2\alpha \\ m_{ab} &= -\frac{m_{xx} - m_{yy}}{2} \sin 2\alpha + m_{xy} \cos 2\alpha \end{split}$$

Procedure

[Wood Armer Moment]

Then, Wood-Armer moments are calculated as follows:

$$\begin{bmatrix} [Bottom Rebar] \\ m_{ud1} = m_a - 2m_{ab} \cot \varphi + m_b \cot^2 \varphi + \left| \frac{m_{ab} - m_b \cot \varphi}{\sin \varphi} \right| \\ m_{ud2} = \frac{m_b}{\sin^2 \varphi} + \left| \frac{m_{ab} - m_b \cot \varphi}{\sin \varphi} \right| \\ m_{ud1} = 0 \\ m_{ud1} = 0 \\ m_{ud2} = \max \left\{ 0, \frac{m_b + \left| (m_{ab} - m_b \cot \varphi)^2 / (m_a - 2m_{ab} \cot \varphi + m_b \cot^2 \varphi) \right|}{\sin^2 \varphi} \right\} \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud1} = max \left\{ 0, \frac{m_b + \left| (m_{ab} - m_b \cot \varphi)^2 / (m_a - 2m_{ab} \cot \varphi + m_b \cot^2 \varphi) \right|}{\sin^2 \varphi} \right\} \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud1} = max \left\{ 0, \frac{m_b - \left| (m_{ab} - m_b \cot \varphi)^2 / (m_a - 2m_{ab} \cot \varphi + m_b \cot^2 \varphi) \right|}{\sin^2 \varphi} \right\} \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud2} = 0 \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud1} = 0 \\ m_{ud2}^{*} = 0 \\ \end{bmatrix} \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud1}^{*} = 0 \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud1}^{*} = 0 \\ m_{ud2}^{*} = 0 \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud1}^{*} = 0 \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud1}^{*} = 0 \\ m_{ud2}^{*} = 0 \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud1}^{*} = 0 \\ m_{ud2}^{*} = 0 \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud1}^{*} = 0 \\ m_{ud2}^{*} = 0 \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud2}^{*} = 0 \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud2}^{*} = 0 \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud2}^{*} = 0 \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud2}^{*} = 0 \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud1}^{*} = 0 \\ m_{ud2}^{*} = 0 \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud2}^{*} = 0 \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud2}^{*} = 0 \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud2}^{*} = 0 \\ When m_{ud1}^{*} O and m_{ud2}^{*} O, \\ m_{ud1}^{*} = 0 \\ m_{ud2}^{*} = 0 \\ When m_{ud2}^{*} = 0 \\ When m_{ud2}^{*} O \\ When m_{ud2}$$

Slab Serviceability Check

) 👌 🗧						Gen	2017 - [C:\Use	rs\a.martii	n
View Structur	re Node	e/Element	Properties	Boundary	Load	Analysis	Results	Pushover	Design	1
Design		<u>Run C</u>	heck						Hushed Des	i gn → ty Load Combination Typ
Slab Serviceability Checking	~	Check	UnCracke	ed					ML: Slab/Wall Lo	oad Combinations eria for Rebars
		Creep	Phi : 3						Slab/Wall R	ebars for Checking ty Parameters
ALL COMBINATION	~	Ratio					SLAB :	-0.24	Slab Flexura	il Design al Checking
🔵 Element 💿 Avg. Noda	al							-0.26	Slab Shear	Checking
Element O Width] m							-0.29 -0.31 -0.33	1 1 Slab Schree	ability enceking
◯ Top ◯ Bottom ◉ Bo	oth							-0.35 -0.37 -0.39		
Dir. 1								-0.41 -0.42 -0.44		
Type of Display							Posit: Top a Smooth	ion: Bot		
			TADIC				Fleme	nt/Avg Nodal)		
			TABLE	J.5(D) — MAXIM Type of	member	SIBLE COMPL	DIED DEFLE	ection to be considered	d	Deflection limitation
Creep (Phi: 3)			Flat roofs r likely to be	not supporting or atta damaged by large d	ched to nonstrue	ctural elements	Immediate deflec	tion due to live load L		٤/180 [°]
			Floors not likely to be	supporting or attache damaged by large d	ed to nonstructur eflections	ral elements	Immediate deflec	tion due to live load L		ℓ/360
🔾 Value 💿 Ratio			Roof or flor elements li	or construction suppo ikely to be damaged I	rting or attached by large deflection	to nonstructural	That part of the tot of nonstructural	al deflection occurring a elements (sum of the	Ifter attachment long-term	e/480‡
			Roof or floo elements r	or construction suppo not likely to be damag	rting or attached led by large defi	to nonstructural ections	deflection due to deflection due to	all sustained loads and any additional live load	the immediate	€/240 [§]
			*Limit not in water, and c †Long-term of nonstruct those being ‡Limit may b	tended to safeguard ac onsidering long-term eff deflection shall be deter ural elements. This amo considered.	ainst ponding. Por ects of all sustaine mined in accordan unt shall be detern measures are tak	nding should be che d loads, camber, cor ce with 9.5.2.5 or 9.5 mined on basis of act en to prevent damage	cked by suitable ca istruction tolerances 5.4.3, but may be rec cepted engineering a to supported or att	Iculations of deflection, in , and reliability of provision duced by amount of deflec data relating to time-deflec ached elements.	cluding added de ns for drainage. tion calculated to ction characteristic	flections due to ponded occur before attachment :s of members similar to
			[§] Limit shall does not exc	not be greater than tole ceed limit.	rance provided for	nonstructural eleme	nts. Limit may be ex	ceeded if camber is provi	ded so that total o	Jeflection minus camber

Slab Shear Checking

Procedure

[Shear strength] [Punching Shear Check(By CODE)] $\Phi Vn \ge Vu$

Vn = Vc + Vs

Where, Vc : nominal shear strength provided by concrete Vs : nominal shear strength provided by shear reinforcement

1. Shear strength of Concrete, Vc

$$V_{c} = \min \begin{cases} \Phi\left(2 + \frac{4}{\beta}\right)\lambda\sqrt{f_{ck}} \\ \Phi\left(2 + \frac{\alpha_{z}d}{b_{o}}\right)\lambda\sqrt{f_{ck}} \\ \Phi 4\lambda\sqrt{f_{ck}} \end{cases}$$

where, β : Ratio of the maximum to the minimum dimension of a column or wall b_0 : Critical perimeter

αs: 40(Interior column), 30(Edge column), 20(Corner column)

λ: 1.0 (normal weight concrete)

Procedure

[Punching Shear Check(By CODE)]

Punching shear perimeter for calculating concrete shear strength

In this method, the program takes the axial force in the column supporting the slab as the shear force (V_u). The basic control perimeter is taken at a distance d/2 from the column face (as shown in the diagram below).

Maximum Shear Strength by Concrete (ACI318-11 11.1.3.1)

 $V_n \le 6\sqrt{f_{ck}} b_o d$ $V_c \le 2\lambda \sqrt{f_{ck}} b_o d$

In midas Gen, the above limitation is applied when slab thickness is larger than 200mm.

Slab Shear Checking

2. Shear strength of reinforcement, Vs

$$V_{s} = \frac{A_{v}f_{y}d}{s}$$
$$V_{s,\min} = 4\sqrt{f_{ck}}b_{w}d$$

Shear rebar spacing limit

$$s \le 0.5d$$

$$s \le \begin{cases} 0.75d & \text{for } v_u \le 6\phi\lambda\sqrt{f_{ck}} \\ 0.50d & \text{for } v_u > 6\phi\lambda\sqrt{f_{ck}} \end{cases}$$

$$g \le 2d$$

Minimum Shear Rebar Area

$$\frac{1}{2}\phi V_c < V_u \leq \phi V_c$$

 $A_{v,\min} = 0.75 \sqrt{f_{ck}} \frac{b_w s}{f_v}$ but shall not be less than $(50b_w s) / f_y$.

In midas Gen, required rebar area is calculated by " $V_S = V_{n-} V_c$ ". Shear rebar spacing limit and minimum shear rebar area are not applied.

Procedure

[Punching Shear Check(By CODE)]

3. Required Shear Strength, Vu

Unbalanced moment between a slab and column by flexure

$$\gamma_v = (1 - \gamma_f)$$

Unbalanced moment between a slab and column by eccentricity of shear

 $\gamma_f = \frac{1}{1 + (2/3)\sqrt{b_1/b_2}}$

Factored shear stress

 $6(b_1+b_2)$

 $b_1^2 d(b_1 + 4b_2) + d^3(b_1 + b_2)$

 $6(b_1+2b_2)$

 $2b_1 + b_2$

 b_{1}^{2}

 $2(b_1+b_2)$

 $2b_1 + b_2$

 $b_1(b_1 + 2b_2)$

 $2(b_1+b_2)$

Assumed distribution of shear stress.

С

D

 $(2b_1 + b_2)e_1$

 $(b_1 + b_2)d$

 $b_1^2 d(b_1 + 4b_2) + d^3(b_1 + b_2)$

 $6b_1$

Procedure

[Punching Shear Check(By FEM)]

In these methods (The FEM Method), the Shear force along the critical section is taken and divided by the effective depth to calculate shear stress. Therefore there is no need to calculate **β** (Beta), to consider moment transferred to the column.

(There are 4 plate elements intersecting at nodes. The nodes are marked by nomenclature of Grid Lines. As the center node is denoted by B2, B on x-Axis and 2 on Y-Axis)

When slab is defined as the plate element, the program calculated stresses only at the nodes, in the analysis. So we have the stresses at B1, B2, C2 etc. (see the figure above) are calculated by the program.

Case 1 - To calculate stresses at the critical section that is u1 in the given figure, for example we take the point P in the figure which lies in a straight line. The stress at B1 and B2 are known. The values at these nodes are interpolated linearly to find the stress at point P.

Case 2- Now if the point lies in the curve such as the point Q, then the software will divide the curve into 6 parts. At each point such as Q a tangent which intersects B1-B2 and C2-B2. The value of stresses at T and V are determined by linear interpolation of stresses which are known at for T (at B1 and B2) and for V (at C2 and B2). After knowing stresses at T and V the stress at Q is determined by linear interpolation of stresses at T and V.

Procedure

[Punching Shear Check(By FEM)]

(Method 1: Average by elements.)

In this method the stresses at all the critical points is determined. The critical points divide the critical section into segments. The average value for all these segments is determined by dividing the stresses at the two ends of the segment by 2. After determining the average value for each segment, **the maximum** average value from all of the segments is reported as the Stress value for the critical Section.

a,b are stresses at the segment ends.

Average value for the segment will be (a+b)/2, and such average value for each segment is determined.

Procedure

[Punching Shear Check(By FEM)]

(Method 2: Average by Side)

In this method stresses at all critical points is determined and then average stress value is calculated by weighted mean.

To calculate weighted mean , For example we have 4 critical points a, b, c, d.

We divide the Critical section into 4 sides as shown in figure.

The weighted mean value for each side is determined and then the maximum value out of the 4 sides A, B, C, D is reported as the stress value.

Wall Design

		÷					Gen 20)17 - [C:\User	s∖a.martin	
View Struc	ture N	ode/Element	Properties	Boundary	Load	Analysis	Results	Pushover	Design	
Design							🖶 Meshed Design	-		
		<u>Run</u>	Design				MLC Serviceability L	oad Combination Type	2	
Wall Design	~	Sne	rify Desig	n Criteria	ລເ		MLC Slab/Wall Load	Combinations		
		Spe			u5		Slab Wall Reba	tor Rebars		
Load Combinations		Resi	stance Ra	itio			Serviceability Pa	arameters		
ALL COMBINATION	~						First Slab Flexural D	esign		
							Slab Flexural Cl	hecking		
⊖ Element	lodal						💽 Slab Shear Che	cking		
							Market Slab Serviceabi	lity Checking		
● Element ○ Width 1	m						Cracked Section	n Analysis Control		
							Perform Cracke	d Section Analysis		
Horizontal Vertic	ai						🖶 Wall Design			
Sig_cd (concrete)										
Type of Display								WALL	DESIGN	
🗹 Contour 🛛 🗹 Lege	end								<u>o</u> .	50
Values									8.	41
							₿}_		8.	32
○ Rebar									8:	18
○ As_req (m^2/m)									8	0g
○ Rho_req									0.	00
Resistance Ratio								Smoothin	ng:	
								Element	(Element))
								Componer	nt:	
								Horizon	tal	
								Resista	nce Ratio	2

Wall Design

Procedure

Wall Design

Wall design forces and tension reinforcements are obtained in an element subject to in-plane orthogonal stress.

The tension reinforcement in an element subject to in-plane orthogonal stresses σ_{Edx} , σ_{Edy} and τ_{Edxy} can be calculated as shown below. Compressive stresses should be taken as positive, with $\sigma_{Edx} > \sigma_{Edy}$, and the direction of reinforcement should coincide with the x and y axes.

 $f_{tdx} = \rho_x f_{yd}$ and $f_{tdy} = \rho_y f_{yd}$

where, px and py are the geometric reinforcement ratios, along the x and y axes respectively.

In locations where σ_{Edy} is tensile or $\sigma_{Edx} \cdot \sigma_{Edy} \le \tau^2_{Edxy}$, reinforcement is required. The optimum reinforcement, indicated by superscript ', and related concrete stress are determined by:

For $\sigma_{\text{Edx}} \le |\tau_{\text{Edxy}}|$ $f'_{\text{tdx}} = |\tau_{\text{Edxy}}| - \sigma_{\text{Edx}}$ $f'_{\text{tdy}} = |\tau_{\text{Edxy}}| - \sigma_{\text{Edy}}$ $\sigma_{\text{cd}} = 2|\tau_{\text{Edy}}|$

For $\sigma_{Edx} > |\tau_{Edxy}|$

$$f'_{tdx} = 0$$

$$f'_{tdy} = \frac{\tau_{Edxy}^2}{\sigma_{Edx}} - \sigma_{Edy}$$

$$\sigma_{cd} = \sigma_{Edx} (1 + (\frac{\tau_{Edxy}}{\sigma_{Edx}})^2)$$

Wall design using wall element is also supported in midas Gen.

Wall Design

Procedure

Wall Design

Minimum reinforcement for vertical and horizontal rebar is considered in accordance to ACI318-11, 14.3.2 and 14.3.3. Maximum ratio of of vertical reinforcement are applied as "0.04" and it can be modified in Design > Concrete Design Parameter > Limiting Maximum rebar Ratio.

[Minimum ratio of vertical reinforcement area]

14.3.2 — Minimum ratio of vertical reinforcement area to gross concrete area, ρ_l , shall be:

(a) 0.0012 for deformed bars not larger than No. 5 with f_y not less than 60,000 psi; or

(b) 0.0015 for other deformed bars; or

(c) 0.0012 for welded wire reinforcement not larger than W31 or D31.

[Minimum ratio of horizontal reinforcement area]

14.3.3 — Minimum ratio of horizontal reinforcement area to gross concrete area, ρ_t , shall be:

(a) 0.0020 for deformed bars not larger than No. 5 with $f_{\rm v}$ not less than 60,000 psi; or

(b) 0.0025 for other deformed bars; or

(c) 0.0020 for welded wire reinforcement not larger than W31 or D31.

[Maximum ratio of vertical reinforcement area]

0.04

