MIDAS Structure Training Series

SUBSTRUCTURE ANALYSIS

SUBSTRUCTURE ANALYSIS

ANGEL F. MARTINEZ CIVIL ENGINEER MIDASOFT

CONTENTS

1. FOOTING DESIGN
2. PILE RAFT ANALYSIS \& DESIGN
3. BASEMENT WALL ANALYSIS \& DESIGN

FOOTING DESIGN

Inspect Properties

- 3 rectangle Sections

- Material
-Concrete ASTM C4000

II		H	B
	Column	0.45 m	0.6 m
Section Properties	Beam	0.4 m	0.35 m

Properties

ID	Name	Type	Stan...	DB
2	Grad...	Concrete	ASTM...	Grade C4000

```
Material |Section | Thickness |
Material Section Thickness 
```

Properties

Material	Section	Thickness	
ID Name Type	Shape		
2	beam	User	SB
3	girder	User	SB
8	column	User	SB

Name column

- 1 thickness

Thickness

Thickness
Wall 0.2 m

Properties

Material \| Section
Thickness
ID

Start file

Boundary Conditions

- Assign fixed all SUPPORTS to bottom nodes (footing)

Perform Analysis

Message Window

YOUR MIDAS JOB IS SUCCESSFULLY COMPLETED........ C: \Users \backslash a.martinez \backslash Desktop \backslash substructs \backslash Edificio + Zapatas
TOTAL SOLUTION TIME..: 19.07 [SEC]
MIIDAS

Results: Displacements

Gen :

$4+$		ZQBeam/Element * 1. Local Direction..	\square_{\square} Plate Local Axis
Load Combination	1 Deformed Shape	Displacement Participation Factor	
Combination	\triangle Displacement Contour	Detail	

Tree Menu

Reactions Deformations Forces Stresses

Results: Axial Forces

Results: Moments Y

Results: Reactions

c胢									Gen '
	View	Structure	Node/E	ement	Properties	Boundary	Load	Analysis	Results
Tree Menu									
Reaction	5 Deformations Forr		Forces Stresses		¢ Reactions -	${ }^{51}$	2 Beam/Elem		
Reaction Forces/Moments				\cdots	t Reaction Forces/Moments				
Load Cases/Combinations				Af Search Reaction Forces/Moments Soil Pressure					

Step

Components

Mb
\square Local (if defined)
Type of Display
\square Values $\quad . . \square$ Legend $\quad .$.
Arrow Scale Factor: $\quad 1.000000$
midas Gen
POST-PROCESSOR
REACTION FORCE
FORCE-XYZ

MIN. REACTION
$\mathrm{NODE}=2714$

FX: -2.47
FY: -0.00
FZ: $\quad 3.18$
FXYZ: 4.02

MAX. REACTION NODE $=20$
FX: 0.81
FY: $\quad-11.37$
FZ: 196.28
FXYZ: 196.61
ST: LL
MAX : 20
MIN : 2714
FILE: BUILDING ~
UNIT: kN
DATE: $05 / 16 / 2017$

Load combination

Automatic Generation of Load Combinations

Footing Design: CODE CHECK

Footing Design: CODE CHECK

Footing Design: AUTO DESIGN

ACl318-14	SSRC79
R ${ }^{3}$ RC Design *	SRC Design *

Select Node 20

- AUTODESIGN

Footing Design: AUTO DESIGN

- AUTO DESIGN
2.3mX2.3mX0.4m

PILE RAFT ANALYSIS \& DESIGN

Dimensions

MIIDAS

Inspect Properties

View Structure Node/Element Properties

- Material
-Concrete ASTM C4000

Properties
Material |Section | Thickness |

ID	Name	Type	Stan...	DB
2	Grad...	Concrete	ASTM...	Grade C4000

- 6 rectangle Sections

- 2 thickness

Thickness

Thickness

	Thickness
Wall	0.2 m
Raft	0.3 m

Properties

Material \mid Section
Thickness ID Type Thickness(m) Offset 1 Value 0.200000 No 2 Value 0.300000 No

Start file

Extrude Piles

Select column nodes to extrude piles Select pile Section Extrude -1m in dz 10 times

Auto－Mesh Slab

丑Auto－mesh 㨇 Define Sub－Domain
＂．Map Auto－mesh Planar Area雷 Define DomaIn

Mesh

Select beams on the base by line elements
Mesh size 1 m
Thickness 0.3 m

Boundary Conditions

- Select Pile Spring Supports and apply to piles

Soil Type: Sand
Ground Level: 0m
Unit weight: 2 tonf/m^3
Ko: 0.4
Kh: 800 tonf/m^3
Friction Angle: 30 deg K1: Dense

Boundary Conditions

w	Structure	Node/Element	Properties		Boundary
-3	इन्ध		[fist]	-10	砤析
Point Spring	Surface Spring		Elastic Link	Rigid Link	General Link ${ }^{*}$
Surface Spring Supports...			Link		

- Select Surface Springs and apply to raft

Point Spring Kx: 80 tons $/ \mathrm{m}^{\wedge} 3$
$\mathrm{Ky}: 80$ tons $/ \mathrm{m}^{\wedge} 3$
Kz: 800 tons/m^3

Perform Analysis

Automatic Generation of Story Dats

Please wait! FEA solver is running...
Stop Execution!

SOLUTION TERMINATED
YOUR MIDAS JOB IS SUCCESSFULLY COMPLETED.......C:\Users\a.martinez\Desktop\substructure gen training may TOTAL SOLUTION TIME..: 101.63 [SEC]

M/IDAS

Results: Displacements

Reactions Deformations Forces Stresses

midas Gen POST-PROCESSOR DISPLACEMENT RESULTANT

	5.21
	5.08
	4.32
	3.93
	3.39
	2.82
	2.26
	1.70
	1.13
	0.37
	0.00

SCALEFACTOR=

RS: EQX
MAX : 2257
MIN : 2838
FILE: BUILDING PIL~
UNIT: cm
DATE: 04/26/2017
VIEW-DIRECTION
X: -0.796
$Y:-0.547$
Z: 0.259

Results: Axial Forces

Gen :

Reactions Deformations		Forces	Stresses		
					今 Reactions * 9 Stresses *
Beam Diagrams			\checkmark	...	F Deformations * Diagram *
Load Cases/Combinations					FIForces * HY Results *
					F_ Truss Forces
RS: EQX		\checkmark	\ldots		F I Beam Forces/Moments
Step		\checkmark			\cdots Beam Diagrams

midas Gen POST-PROCESSOR BEAM DIAGRAM

AXIAL

32.93
25.90
20.88
14.86
8.83
0.00
-3.22
-9.24
-13.26
-21.29
-27.31
-33.34

SCALEFACTOR=
2. $9554 \mathrm{~F}+001$

RS: EQX
MAX : 58
MIN : 60
FILE: BUILDING PIL~
UNIT: tonf
DATE: 04/26/2017
VIEW-DIRECTION
X:-0.796
Y: -0.547

Results: Moments Y

Load combination

Automatic Generation of Load Combinations

Pile: Rebar Data

Gen 2017 - [C:\Users\a.martin

View Structure Node/Element Properties Boundary Load Analysis
Results Pushover Design

Select Piles

- RC Design > Modify Column Rebar
- Main \#4
- Ties/Spirals \#3 @100

Add / Replace

Pile: Code Check

Gen 2017 - [C:\Users\a.martin

Select All Piles

- RC Design
- Concrete Code Check
- Column Check

Pile: Code Check

Pile: Code Design

Pile: Code Design

1. Click Re-Calculation

 Pile rebar was redesigned based on code 2. Click Update Rebar to see new rebar data created for pile
\square Connect Model View

Select All	Unselect All	Re-calculation	
Graphic...	Detail...	Summary...	\lll
Draw PM Curve...	Update Rebar	Close	

Result View Option
© All OK ONG

Copy Table
hodify Column Rebar Data

SECT	Name	Bar
1	C30×70	-
7	Pile	In
8	C45×70	-
\square	\square Create Sub Section	
		\square
		\square

Rebar			Data			
Main	Numbers		10	\#5		
	Rows		0			
	Corner		\square			
Ties/ Spirals	End(I \& J)	y	2	\#3	@	88.9
		z	2			
	Center(M)	y	2	\#3		
	Center(M)	z	2	\#3	@	88.9

BASEMENT WALL ANALYSIS \& DESIGN

Dimensions

Inspect Properties

Properties
Material |Section | Thickness |

ID	Name	Type	Stan...	DB
2	Grad...	Concrete	ASTM...	Grade C4000

- 2 thickness

Thickness

Thickness

Slab and Wall	0.2 m
Basement Wall	0.3 m

Properties
Material \mid Section Thickness

ID	Type	Thickness (m)	Offset		
1	Value	0.200000	No	No	0.300000

Start file

M/IIDAS

Extrude Piles

Select column and slab corner nodes to extrude Select C45x70 Section
Extrude - 2.8 m in dz 2 times

Generation Type

- Translate \bigcirc Rotate Project

Translation

- Equal Distance

Unequal Distance
$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}:$ \qquad m

Number of Times : $\stackrel{\rightharpoonup}{\bullet}$

Auto-Mesh Basement Walls

Select node method: Draw rectangle by clicking 4 corners of side CCW

 Mesh size 1 mThickness 0.2 m

Auto-Mesh Basement Walls

Auto－Mesh Slab

N／IDNS

Select 4 corner nodes of base as shown
 Mesh size 1 m

Thickness 0.3 m

Boundary Condition

Add Spring Supports

 Element Type: Planar Spring Type: Linear$\mathrm{Kx}=\mathrm{Ky}=80 \mathrm{Kz}=800 \mathrm{ton} / \mathrm{m}^{\wedge} 3$
Select bottom raft

Boundary Condition

Con

Element Type: Planar
Spring Type: Compression Only Direction: Normal +
K = 800 ton/m^3
Select basement walls in sequence

Modulus of Subgrade Reaction :
\qquad

Basement Loads

Load	Analysis	Results	Pushover De		Query	ols			
sing Load mbinations				E月Wind Loads朝 Seismic Loads		III Element III Line 和 Typical	471 Pressure Loads＊		
				A Hydrostatic Pressure					
				8\％Assign Plane Loads					
d Cases	Structure Loads／Masses						ateral	Beam Load	Pressure Load

\checkmark Loads

Pressure loads due to the fluid potential at the connection nodes of plate elements

The application conditions for hydrostatic pressure loads are as follows：
Hydrostatic Pressure $=\mathrm{P}_{0}+\mathrm{g}(\mathrm{H}-\mathrm{h})$
Where， $\mathbf{H}>\mathbf{h}$（position of the element connection nodes）
Gradient Direction：Assign the gradient direction of the hydraulic potential－increasing direction from the fluid surface

Global（－X ）
Global（－Y）
Global（－Z ）
－Reference Level（H）：Reference level for the pressure due to the hydraulic potential of fluids （enter with the mouse or keyboard）

Constant Intensity $\left(P_{0}\right)$ ：Pressure acting on the fluid surface
Gradient Intensity（g）：Specific weight of fluid

Basement Loads

tateral soil pressure with or without ground water pressure can be applied using this functionality.

Note

When lateral soil pressure is entered as Hydrostatic Pressure Loads, Element Type must be Plate, and the structure must be divided into a reasonable number of elements to properly reflect its flexural behavior.

Direction represents the direction of acting force. Gradient Direction is generally selected in the direction of gravity (Global-Z).

Constant Intensity (Po) represents surcharge (soil overburden), which is subject to soil pressure coefficient. Gradient Intensity (g) is also obtained by applying the soil pressure coefficient. Depending on the presence of ground water, the following is entered:

1) Only soil is present without ground water Soil: $\mathrm{g}=$ soil pressure coefficient * unit density of soil
2) To consider ground water (separately enter values for soil and water)

Sand with gravel, dry	$1650\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$
Sand with gravel, wet	$2020\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$

Surcharge Po $\quad 600\left(\mathrm{~kg} / \mathrm{m}^{\wedge} 3\right)$ (In case of water, Reference level (H) locates the level of ground water.)

Basement Loads

Load combination

Automatic Generation of Load Combinations
Save irootn \quad Aimgernection
Soundtheetrom

Manipulation of Construction Stage Load Case

ST : Static Load Case

C5: Construction Stage Load Case
© ST Only Cs Only
ST+CS
\square Consider Orthogonal Effect

Set Load Cases for Orthogonal Effect..

(100 : 30 Rule
SRSS(Square-Root-of-Sum-of-Squares)
\square Generate Additional Load Combinations \square for Special Seismic Load
\square for Vertical Seismic Forces
Factors for Seismic Design..
Will Execute Construction Stage Analysis
\square Consider Losses for Prestress Load Cases
Transfer Stage

Service Load Stage :| 1 |
| :--- |
| 1 |
| $\square O K$ |

Perform Analysis

	9654 ¢ 6	$\bar{\square}$				Gen 2017 - [C:\Users)	
	Structure	Node/Element	Properties	Boundary	Load	Analysis	Results
			8			Bes	\square
Main Control Data	P-Delta Buckling Eigenvalue Heat of Moving Nonlinear Construction Boundary Change Hydration Load Stage Assignment						Perform Analysis

Check Changed Story Information
Entered story data does not match to the current model. Please check the story data if it has been correctly entered.

-S OLUTION TERMINATED
YOUR MIDAS JOB IS SUCCESSFULLY COMPLETED.......C:\Users \backslash. martinez \backslash Desktop \sin. TOTAL SOLUTION TIME..: 119.91 [SEC]

MIDAS

Results: Deformations

Reactions	Deformations	Forces Stresses
Displacement Contour \quad...		
Load Cases/Combinations		
ST: earth pressure		
Step		\checkmark
Displacement Acceleration Absolute Acceleration		

Check Deformations

ST: EARTH PRESS~
MAX : 12644
MIN : 12978
FILE: BUILDING ~
UNIT: mm

Results: Axial Plate Forces

Check Axial Forces

© Local	
UCS	Current UCS
	\checkmark Print UCS Axis

(O) Element
Avg. NodalAvg. Nodal Active Only

Components		
() Fxx	(Fyy	(Fxy
(0) Fmax	Fmin	(FMax
() $M x x$	()Myy	() Mxy
() max	- Mmin	() M Max
$\bigcirc \mathrm{V} x \mathrm{x}$	($\mathrm{V} y \mathrm{y}$	OMax

() Wood Armer Moment

MIDAS

PLATE FORCE
FORCE-Max

$$
-194.41
$$

$$
-228.58
$$

$$
-262.76
$$

SCALEFACTOR=
$5.1788 \mathrm{E}+001$

ST: EARTH PRESS~ ELEMENT

MAX : 14725
MIN : 15457
FILE: BUILDING ~
UNIT: kN/m

Results: Soil Pressure

Slab and wall load combinations

c

$5665 \square$

View Structure Node/Element Properties Boundary Load Analysis Results Pushover Design

SSRC79
SRC Desi

- Meshed Design 7

Muc: Serviceability Load Combination Ty
Muc Slab/Wall Load Combinations...

Slab/Wall Load Combination

- Select the load combinations for the slab/wall element design.
- Design > Design > Meshed Design > Slab/Wall Load Combinations

Define Design Criteria for Rebar

प664
Results Pushover Design

$\neq-=$ Meshed Design
Mlc Serviceability Load Combinatic Muc: Slab/Wall Load Combinations ([) Design Criteria for Rebars...

- Enter the standard sizes of rebars used in the design of reinforcement for slab/wall elements.
- Design > Design > Meshed Design
> Design Criteria for Rebar
- Check off [Basic Rebar for Slab]
- For Slab Design:

Dir. 1: $0.03 \mathrm{~m}, 0.03 \mathrm{~m}$
Dir. 2 : $0.05 \mathrm{~m}, 0.05 \mathrm{~m}$

- For Wall Design

Face to Center Rebar 0.02m

Meshed Design Criteria for Rebars

For Slab Design

For Mat Design

Slab/Wall Rebar Checking Data

View Structure Node/Element Properties Boundary Load Analysis Results Pushover Design

ACl318-14		SSRC79
圆 RC Design -		\checkmark SRCDes
\ddagger Meshed Design *		
Mle Serviceability Load Combination Muc Slab/Wall Load Combinations... \square Design Criteria for Rebars...		
[5] Slab/Wall Rebars for Checking...		

Specify rebar size

- Select all 0.3 m slab from tree menu
- Layer Top Dir 1
- Add Rebar 1: \#3 @ 100
- Add Rebar 2 \#3
- Add/Replace

Slab/Wall Rebar Checking Data

BL

ACl318-14		
R RC Design -		-
\ddagger Meshed Design *		
Mis Serviceability Load Combination T:		
	Slab/Wall Load Combinations...	
[5] Design Criteria for Rebars...		
	ab/Wall Rebars	hecking

- Select all 0.2 m walls from tree menu
- Layer Top Dir 1
- Vertical 1: \#3 @ 100mm
- Horizontal 2: \#3 @ 100mm
- Add/Replace

Slab/Wall Rebars for Checking

M/IDAS

Slab Flexural Design

Slab/Wall Rebar Checking Data

ACI318-14

 RC Design " \ddagger Meshed DesignMle Serviceability Load Combination T?

Muc. Slab/Wall Load Combinations...
[5] Design Criteria for Rebars...
(0) Slab/Wall Rebars for Checking...

Rebar Update

New sets of reinforcement were automatically created for parts of slab

Wall Design

