MIDAS Structure Training Series

SUBSTRUCTURE ANALYSIS

SUBSTRUCTURE ANALYSIS

ANGEL F. MARTINEZ CIVIL ENGINEER MIDASOFT

CONTENTS

FOOTING DESIGN PILE RAFT ANALYSIS & DESIGN BASEMENT WALL ANALYSIS & DESIGN

FOOTING DESIGN

Dimensions

21m

18m

Unit System

Length	Force (Mass)
(€ m	○N (kg)
Cm	● kN (ton)
Omm	⊖kgf (kg)
	O tonf (ton)
⊖ft	◯ lbf (lb)
() in	⊖kips (kips/g)

Inspect Properties

	30		à ÷	-
	View	Structure	Node/Element	Properties
Materia Properti	• al es	Materia -Conc	l rete ASTM	C4000

Pro	perties				
Μ	Naterial Se	ection Th	nickness		
	ID	Name	Туре	Stan	DB
	2	Grad	Concrete	ASTM	Grade C4000

• 3 rectangle Sections

		Н	В
I	Column	0.45 m	0.6 m
Section	Beam	0.4 m	0.35 m
Properties	Girder	0.3 m	0.2 m

Pro	perties				Section ID
M	laterial S	Section Thicknes	s		Name co
	ID	Name	Type	Shape	
	2	beam	User	SB	
	3	girder	User	SB	H H
	8	column	User	SB	

1

• 1 thickness

<u></u>		Thickness
Ť	Wall	0.2 m
hickness		

Properties

Material Section	Thickness		
ID	Туре	Thickness(m)	Offset
1	Value	0.200000	No

Т

Material

Start file

Boundary Conditions

	/iew	Structure	Node/Element	Properties	В	oundary
Define Suppo De	Poin fine Sup	र इड्ड at_Surface oports ng	General Spring * "Pile Spring Suppor	ts	Rigid Link	General Link *
Supports		Spring	Supports		Link	

• Assign fixed all SUPPORTS to bottom nodes (footing)

Supports	
Boundary Group Name	
Options Add Replace Delete	
Support Type (Local Direction)	
Ry Dy Y Rz	
V D-ALL Dx V Dy V Dz V	
✓ R-ALL Rx ✓ Ry ✓ Rz ✓	
Rw 🔽	

Perform Analysis

Message Window

-----S O L U T I O N T E R M I N A T E D YOUR MIDAS JOB IS SUCCESSFULLY COMPLETED.....C:\Users\a.martinez\Desktop\substructs\Edificio+Zapatas TOTAL SOLUTION TIME..: 19.07 [SEC]

Results: Displacements

3.67

3.33

3.00 2.67

2.33 2.00

1.67

1.33

1.00

0.67

0.33 0.00

Results: Axial Forces

Results: Moments Y

Results: Reactions

Load combination

Analysis

Gen

Results

utomatic Generation of L	oad Combir	nations X
Option		
Add C Replace		
Code Selection		
O Steel O Concr	ete ⊖S	RC
O Cold Formed Steel	OF	ooting
Design Code : ACI	318-14	~
Scale Up of Response	Spectrum Loa	ad Cases
Scale Up Factor: 1		\sim
Factor Load Case		Add
		Modify
		Delete
Wind Load Factor		
Strength-level	🔾 Servi	ice-level
Consider Lateral Soil Pr	essure Facto	r
Load Factor : 0.9	~	
Maria dalla della del		10
ST : Static Load Case	ion Stage Loa	ad Case
CS : Construction Stage	Load Case	
ST Only C	5 Only	⊖ ST+CS
Consider Orthogonal E	Effect	
Set Load Cases fo	or Orthogonal	Effect
🖲 100 : 30 Rule		
SRSS(Square-Root-o	f-Sum-of-Squ	iares)
	ad Combinati	ions
for Special Seismic Lo	ad	
for Vertical Seismic Fo	orces	
Factors for	Seismic Desig	n
Will Execute Constructio	n Stage Anal	ysis
Consider Losses for Pr	estress Load	Cases
Transfer Stage :	1	Define
Service Load Stage :	1	Factors
	ОК	Cancel

Footing Design: CODE CHECK

Footing Design: CODE CHECK

Footing Design: AUTO DESIGN

Footing Design: AUTO DESIGN

-	DO		£ ∓					Gen 2	2017 - [C:\Use	rs\a.martir	ń
L	View	Structure	Node/Element	Properties	Boundary	Load	Analysis	Results	Pushover	Design	1
ACI318-14	4 • • • esign • • • • • • • • • • • • • • • • • • •	SSRC79 SRC Design ~ In Factors laterial Rebar Ratio Section Size Rebar Rebars by Member at Joints rition Factor Factor neters ombination Factor r Data bar Data Data Data Data Data Data Data Method by Wall ID tbles sign eck -Weak Beam	• AUT 2.3mX2	O DESIGN 2.3mX0.4m	 Geometry Material Dim. Dim. Allow. Soil C Surcharge V Design Code Selected No Design Code Selected No Design Load Service Factored Applied Load Ps = 1003 Msx = 50.5 Msy = 31.5 Soil Bear Actual Press Qs(max) = Qs(min) = 2 Design Pres Qu(max) = Qu(min) = 1 Shear Ch One Way Sh Vuy = 310 Vux = 350 Punching Sh 	y and Mate fd = 20594, fy 2.3 * 2.3 * 0.4 m Qe = 300 kN Ws = 50 kN/ Condition e : ACI3 de No : 20 e No : 20 (C d Combination : 101 l : 11 l ds .10, Pu = 1219 .527, Mux = 64 .092, Muy = 57 ring Pressu .289.505 kN/m^2 289.505 kN/m^2 .290.701 kN/m^2 .200 kN < pt .200 kN <	erials = 392266 kN/m ² n (Do = 0.08 m) l/m ² im ² 18-02 column Size: 0.45*0 p.os11: (0) + 0.75L - 0.7 p.os11: (0) + 0.75L - 0.7 p.os11: (120 - 1.0(1.0)(EC 0.75 kN .5765 kN-m .3458 kN-m IFE Check 2 < Qe = 300.000 2 > 0.00 kN/m 2 2 = 0.75) hiVny = 415.999 kN hiVnx = 399.489 kN	0.5 m) 50.7(1.0)(EQX(R8)+EQ 2X(R8)+EQX(E8))+1.01 2X(R8)+EQX(E8))+1.01 2X(R8)-EQX(E8))+1.01 2X(R8)-EQX(E8))+1.01 2X(R8)-EQX(R8)-EQ 2X(R8)-EQ 2X(R8)-EQX(R8)-EQ 2X(R			
					Vu = 105	8.66 kN < ph	iVn = 1189.41 kN	О.К			

PILE RAFT ANALYSIS & DESIGN

Dimensions

Inspect Properties

View Structure Node/Element Properties Material -Concrete ASTM C4000

Material Properties

Material

P

6 rectangle Sections

		Н	В
_	C30X70	0.3 m	0.7 m
I Section roperties	V35X50	0.35 m	0.5 m
	B20X50	0.2 m	0.5 m
	N10X25	0.1 m	0.25 m
	Pile	D = 0.5 m	
	C45X70	0.45 m	0.7 m

Properties Material Section Thickness ID Name Type Stan... DB 2 Grad... Concrete ASTM.... Grade C4000

• 2 thickness

<u> </u>		Thickness
₹	Wall	0.2 m
Thickness	Raft	0.3 m

MIDAS

Properties

M	laterial Section	n Thickness		
	ID	Туре	Thickness(m)	Offset
	1	Value	0.200000	No
	2	Value	0.300000	No

Start file

Extrude Piles

Node/Element	Properties	Boundary	/ Loa	d Anal	ysis
X Delete • • • M Rotate Sc Project	irror	odes Cre able Element	✓ C isate eents	Translate	t Extrude
		e Liement	boundar	y Iviass L	
	ſ		Element		-
	l		Remove	Move	-
		Reverse I-]	move	
	-	Element Attrib	ute		
	1	Element Type:	Beam		•
	1	Material :			
		2 2: 0	srade C400	0 🔻	
		7 7: F	Pile	-	
		Rota Angle :	0		
		Second angle 1	-	[De	L L
					Ξ
		Generation Ty	pe		\leq
		Translate	Rotate	e 🔘 Projec	t
	ſ	Franslation			
		Equal Distan	ice		
) Unequal Dis	tance		
		d., d., d.,	0.01	_	
		ux,ay,az:	0, 0, -1	n	1
		Number of T	imes :	10 🌲	
	>				
ΜIDΛ	S				

Select column nodes to extrude piles Select pile Section Extrude -1m in dz 10 times

Auto-Mesh Slab

Auto-mesh Define Sub-Domain	Select beams on the base by line elements Mesh size 1m Thickness 0.3 m
Mesh Auto-mesh Planar A Mesher Method Line E 6to8 15to17 19t Type Quadr Mesh Inner Don Mesh Inner Don Mesh Inner Don Mesh Indude Interior Auto Usa Include Interior Auto Usa Include Bounda Mesh Size Length D Property Element Type Material 2 Thickness 2	rea rea rea rea rea rea rea rea rea rea rea

Boundary Conditions

Boundary Conditions

Perform Analysis

View Structure Node/Flem	ent Properties	Bounda	rv Load A	Gen 2017 - [C:\Users\		
Main Control Data	Heat of Moving No lydration Load	nlinear Co	nstruction Bound Stage Ass	ary Change Analysis		
Check Changed Story Information Entered story data does not match to the current mode story data if it has been correctly entered.	Automatic Generation of Story Dat	a Selected List		3		
Update Story Data Continue	No Level	No Name 1 IF 2 2F 3 3P 4 4F 5 5F 6 6F	Level Height -10 1 -9 1 -8 1 -7 1 -6 1 -5 1		Performing Analysis	×
	<u>~</u>	7 7F 8 8F 9 9F 10 10F 11 11F 12 12F	-4 1 -3 1 -2 1 -1 1 0 2.8 2,8 2.8	<u>(w)</u>	Stop Execution !	
	Include Seismic Accidental Eccent	ndty :	5 % of Plan Dimension 15 % of Plan Dimension OK Cancel	n n		
Message Window YOUR MIDAS JOB IS SUCCESSFULLY COMP TOTAL SOLUTION TIME: 101.63 [SEC	S O L U T I LETEDC:\Us	ON 1 ers\a.ma	TERMINA artinez\Deskto	I E D p\substructure gen	training may	
MIDAS						

Results: Displacements

midas Gen					
POST-PROCESSOR					
DISPLACEMENT					
RESULTANT					
6.21 5.64 5.08 4.52 3.95 3.39 2.82 2.26 1.70 1.13 0.57 0.00					
SCALEFACTOR=					
2.8554E+001 RS: EQX					
MAX : 2257					
MIN : 2838					
FILE: BUILDING PIL~					
UNIT: cm					
DATE: 04/26/2017					
VIEW-DIRECTION					
X:-0.796					
Y:-0.547					
Z: 0.259					

niden Com

32.93 26.90

20.88 14.86

> 8.83 0.00

-3.22 9.24

15.26 21.29

-27.31 -33.34

Results: Axial Forces

Results: Moments Y

BEAM DIAGRAM				
MOMENT-y				
22.92 19.00 15.08 11.16 7.23 3.31 0.00 -4.53 -8.46 -12.38 -16.30 -20.22				
SCALEFACTOR=				
2.8941E+001 RS• FOX				

MAX :	59	
MIN :	1197	
FILE:	BUILDING	PIL~
UNIT:	tonf*m	

Load combination

Gen

Results

	nations X					
Option						
Add C Replace						
Code Selection						
Steel Oconcrete	SRC					
O Cold Formed Steel	Footing					
Design Code : ACI318-14	~					
Scale Up of Response Spectrum Lo	ad Cases					
Scale Up Factor : 1	\sim					
Factor Load Case	Add					
	Modify					
	Delete					
Wind Load Factor						
Strength-level Oserv	vice-level					
Consider Lateral Soil Pressure Factor	or					
Manipulation of Construction Stage Lo	ad Case					
ST : Static Load Case						
CS : Construction Stage Load Case						
CS : Construction Stage Load Case	⊖ st+cs					
ST Only Cansider Orthogonal Effect	⊖st+cs					
State Load Case C5 : Construction Stage Load Case ST Only CS Only Consider Orthogonal Effect Set Load Cases for Orthogonal	ST+CS					
ST Only CS Only Set Load Cases for Orthogonal Set Load Cases for Orthogonal Only	O ST+CS					
CS : Construction Stage Load Case ST Only CS Only Consider Orthogonal Effect Set Load Cases for Orthogona 0 100 : 30 Rule SRSS(Square-Root-of-Sum-of-Sq	O ST +CS					
CS : Construction Stage Load Case CS : Construction Stage Load Case ST Only CS Only Consider Orthogonal Effect Set Load Cases for Orthogona 100 : 30 Rule SRSS(Square-Root-of-Sum-of-Squ Capacrate Additional Load Combinal	ST+CS					
CS : Construction Stage Load Case CS : Construction Stage Load Case ST Only CS Only Consider Orthogonal Effect Set Load Cases for Orthogona 100 : 30 Rule SRSS(Square-Root-of-Sum-of-Squ Generate Additional Load Combinat for Special Seismic Load	O ST +CS al Effect uares) tions					
ST Only CS Only CS Only CS Only CS Only CS Only CS Only CS Only CS Only Orthogonal Effect Set Load Cases for Orthogona 100 : 30 Rule SRSS(Square-Root-of-Sum-of-Squee) Generate Additional Load Combinal for Special Seismic Load for Vertical Seismic Forces	O ST+CS al Effect uares) tions					
CS : Construction Stage Load Case ST Only CS Only Consider Orthogonal Effect Set Load Cases for Orthogona 0 100 : 30 Rule SRSS(Square-Root-of-Sum-of-Squ Generate Additional Load Combinal for Special Seismic Load for Vertical Seismic Forces Factors for Seismic Desig	ST+CS					
CS : Construction Stage Load Case CS : Construction Stage Load Case ST Only CS Only Consider Orthogonal Effect Set Load Cases for Orthogona 100 : 30 Rule SRSS(Square-Root-of-Sum-of-Squ Generate Additional Load Combina for Special Seismic Load for Vertical Seismic Forces Factors for Seismic Desig Will Execute Construction Stage Ana	ST+CS					
CS : Construction Stage Load Case CS : Construction Stage Load Case ST Only CS Only Consider Orthogonal Effect Set Load Cases for Orthogona 100 : 30 Rule SRSS(Square-Root-of-Sum-of-Sq Generate Additional Load Combinat for Special Seismic Load for Vertical Seismic Forces Factors for Seismic Desig Will Execute Construction Stage Ana C Consider Losses for Prestress Load	ST+CS					
CS : Construction Stage Load Case ST Only CS Only Consider Orthogonal Effect Set Load Cases for Orthogona 100 : 30 Rule SRSS(Square-Root-of-Sum-of-Square-Root-of-Root-Root-of-Root-Root-Root-Roo	ST+CS					
CS : Construction Stage Load Case ST Only CS Only Consider Orthogonal Effect Set Load Cases for Orthogonal 0 100 : 30 Rule SRSS(Square-Root-of-Sum-of-Sq Generate Additional Load Combinal for Special Seismic Load for Vertical Seismic Forces Factors for Seismic Desig Will Execute Construction Stage Ana Consider Losses for Prestress Load Transfer Stage : 1 Service Load Stage : 1	ST+CS					
CS : Construction Stage Load Case ST Only CS Only Consider Orthogonal Effect Set Load Cases for Orthogona 100 : 30 Rule SRSS(Square-Root-of-Sum-of-Squ Generate Additional Load Combina for Special Seismic Load for Vertical Seismic Forces Factors for Seismic Desig Will Execute Construction Stage Ana Consider Losses for Prestress Load Transfer Stage : 1 Service Load Stage : 1	ST+CS					

Pile: Rebar Data

6

MID/

Pile: Code Check

J

		Ŧ							Gen	2017 -	[C:\Use	rs\a.ma	rtin			
	View Structure N	ode/Elerr	nent Pro	perties	Boundar	y Load	d Analy	/sis F	Results	Pusl	nover	Desig	n			
Selec • R(• Co • Co	View Structure N	ode/Elem ACI318-00 RC Desi ACI318-00 C Desi Strer Mod Limit Desi Desi Desi Desi Sam Sam Mon Serv Mod Mod Mod Mod Mod Mod	nent Pro	perties SSRC79 SRC D Factors aterial Rebar Ratio Section Size Rebar Rebars by M t Joints tion Factor Factor t Joints tion Factor Factor Data Data Data Data	ember Factor	y Load	d Analy	vsis F Design +	Results	Pusi	nover Optimal I esign tion P P F F	Desig		teel/Co	old Fe sign C	
		Con Con	ang Wall Mark L Indary element l Increte Design Tal	Vata Method by V bles ign	Vall ID											
	IDAS	RC S	strong Column-	ck Weak Beam	+	E Beam C	hecking h Checking	Ctrl+Sh Ctrl+Sh	iift+1 iift+2							

Pile: Code Check

Pile: Code Design

ACI318-08 RC-Column Design Result Dialog			— 🗆 🗙 ile	and Raft Final n
Code : ACI318-08 Unit : tonf , m Pr Sorted by OProperty	rimary Sorting Option		s IIQ IQ	Steel/Cold Forn Concrete Desig
MEMB SE Section fc fy LC Pu Pu SECT L Bc Hc Height fys B Rat-P Rat-P	Mc Ast V-Rebar	LC Vu.end Rat-V.end As-H. B Vu.mid Rat-V.mid As-H. 10 22.6432 0.629 0.00	end H-Rebar.end mid H-Rebar.mid 14 2.#3 @100	SRC Design Res
Run Pile/Column Design	ACI318-0 RC D Des Stre Mo Lim Des San San Mo Mo	08 • SSRC79 Design • SSRC79 sign Code ength Reduction Factors odify Concrete Material niting Maximum Rebar Ratio niting Minimum Section Size sign Criteria for Rebar sign Criteria for Rebar sign Criteria for Rebar sign Criteria for Rebar sign Criteria for Rebar sby Member me Beam Rebar at Joints oment Redistribution Factor rsion Reduction Factor rviceability Parameters ocertainly Load Combination Factor odify Beam Rebar Data	AISI-CFSD86 Cold Formed Steel Design *	
Connect Model View Re-calculation Select All Unselect All Re-calculation Graphic Detail Summary <	esult View Option II Mo All OK NG II Mo Copy Table Mo	odify Column Rebar Data odify Brace Rebar Data odify Wall Rebar Data odify Wall Mark Data		
MIDAS	Cor Cor Cor	undary element Method by Wall ID ncrete Design Tables ncrete Code Design ncrete Code Check	Beam Design Ctrl+	1

Pile: Code Design

ACI318-08 RC-Column Design Result Dialog

BASEMENT WALL ANALYSIS & DESIGN

Inspect Properties

Properties

Material Section Thickness

12	BØ		£ =	-
	View	Structure	Node/Element	Properties
	•	Materia	ato ASTM	C4000
Materia Properti	al es			C+000

4 rectangle Sections

		н	В
	V35X50	0.35 m	0.5 m
	B20X50	0.2 m	0.5 m
Section	N10X25	0.1 m	0.25 m
Properties	C45X70	0.45 m	0.7 m

• 2 thickness

<u> </u>		Thickness
[™]	Slab and Wall	0.2 m
Thickness	Basement Wall	0.3 m

MIDAS

Material

Properties

Μ	aterial	Section	Thickness		
	ID		Туре	Thickness(m)	Offset
	1		Value	0.200000	No
	2		Value	0.300000	No

Close

Start file

Extrude Piles

Node/Element	Properties	Boundary	Load	Analy	sis
Delete I M Contacte So Project	irror , , , , , , , , , , , , , , , , , ,	odes Create		Translate	t Extrude
Node <mark>Element</mark> Boun	idary Mass Loa	d			
Extrude Type		^			
Node -> Line Element	~				
Source Remove	Move				
Element Attribute					
Element Type: Bear	n ~				
Material :					
1 1: Grade C30	~ 000				
Section :					╟╌┡╋
8 8: C45x70	~			_	
Beta Angle : 0	∨ [Deg]			-3	
Generation Type				•	3
Translate Rota	te OProject				ΙΓ
Translation					
Equal Distance					
O Unequal Distance					
dx,dy,dz: 0, 0, -2.	8 m				
Number of Times :	2 ≑				

Select column and slab corner nodes to extrude Select C45x70 Section Extrude -2.8m in dz 2 times

Auto-Mesh Basement Walls

Auto-Mesh Basement Walls

Auto-Mesh Slab

Boundary Condition

View Structure Node/Element Properties Boundary
Define Supports Point Spring Surface Spring Pile Spring Supports Image: Construction of the supports Supports Spring Supports Spring Supports Image: Construction of the supports
Node Element Boundary Mass Load
Surface Spring Convert to Nodal Spring Point Spring Elastic Link Distributed Spring
Element Type
Width : ⁰ m
Spring Type Type Linear V Modulus of Subgrade Reaction :
Node Local Axis(if defined)
Kx : 80 tonf/m^3
Ky : 80 tonf/m^3 Kz : 800 tonf/m^3

Add Spring Supports

Element Type: Planar Spring Type: Linear Kx = Ky = 80 Kz = 800 ton/m^3 Select bottom raft

Boundary Condition

Node Element Boundary Mass Load
Surface Spring Convert to Nodal Spring Point Spring Elastic Link
 Distributed Spring
Auff K K=Auff × Ks Auff : Effective Area per Node Ks : Modulus of Subgrade Reaction
Element Type
Planar V Face #1 V
Width : 0 m
Spring Type
Type Componly ~
Direction : Normal(+) \lor
Modulus of Subgrade Reaction :
800 tonf/m^3

MID/

Element Type: Planar Spring Type: Compression Only Direction: Normal + K = 800 ton/m^3 Select basement walls in sequence

Basement Loads

Load	Analysis	Results	Pushover	De	sign	Query	Tools	
	🕊 Self Weig	iht 🖁	- Nodal Body F	orce	€∃w	ind Loads	🛄 Element	🔂 Pressure Loads 🔻
	🔥 Nodal Loa	ads 🥐	Loads to Mas	ses 👻	¥目 Se	ismic Loads	🛄 Line	A Hydrostatic Pressure
ing Load Ibinations	↓ Specified	Displ.					🕂 Typical	Assign Plane Loads
l Cases	Stru	cture Load	ds / Masses			ateral	Beam Load	Pressure Load

Pressure loads due to the fluid potential at the connection nodes of plate elements

The application conditions for hydrostatic pressure loads are as follows:

Hydrostatic Pressure = P₀ + g(H - h)

Where, H > h (position of the element connection nodes)

Gradient Direction: Assign the gradient direction of the hydraulic potential - increasing direction from the fluid surface

Global (-X)

Global (-Y)

Global (-Z)

Reference Level(H): Reference level for the pressure due to the hydraulic potential of fluids (enter with the mouse or keyboard)

Constant Intensity(P0): Pressure acting on the fluid surface

Gradient Intensity(g): Specific weight of fluid

Basement Loads

Lateral soil pressure with or without ground water pressure can be applied using this functionality.

Note

When lateral soil pressure is entered as Hydrostatic Pressure Loads, Element Type must be Plate, and the structure must be divided into a reasonable number of elements to properly reflect its flexural behavior.

Direction represents the direction of acting force. Gradient Direction is generally selected in the direction of gravity (Global-Z).

Constant Intensity (Po) represents surcharge (soil overburden), which is subject to soil pressure coefficient. Gradient Intensity (g) is also obtained by applying the soil pressure coefficient. Depending on the presence of ground water, the following is entered:

on the presence of ground water, the following is entered:	Sand with gravel, dry	1650 (kg/m³)
 Only soil is present without ground water Soil: g = soil pressure coefficient * unit density of soil 	Sand with gravel, wet	2020 (kg/m³)
2) To consider ground water (separately enter values for soil and water Soil: g = soil pressure coefficient * unit density of soil under water	Earth Pressure Co efficient	1
Water: g = unit density of water	Surcharge Po	600 (kg/m^3)
(In case of water, Reference level (H) locates the level of ground water.)	

Basement Loads

Apply Hydrostatic Pressure Load Case: earth pressure Select Basement walls -600 kgf/m² constant intensity -2020 kgf/m^3 gradient intensity

O Replace

Concrete

Load Case

0.9

CS Only

Set Load Cases for Orthogonal Effect.

Factors for Seismic Design...

1

1

OK

ACI318-14

OSRC Footing

O Service-level

O ST+CS

Define

Factors

Cancel

~

Load combination

Load

Perform Analysis

Message Window

-----SOLUTION TERMINATED

YOUR MIDAS JOB IS SUCCESSFULLY COMPLETED.....C:\Users\a.martinez\Desktop\substructure gen training may 17\Building with basement wall TOTAL SOLUTION TIME..: 119.91 [SEC]

Results: Deformations

Reactions Deformations Forces Stresses Displacement Contour -.... Load Cases/Combinations ST: earth pressure • [...] Step Ŧ O Velocity Displacement Acceleration Absolute Acceleration Components O DX O DY 🔘 DZ RX RY RZ O RW O DXY O DXZ O DYZ DXYZ Type of Display Contour Deform Values Legend Undeformed Animate Mirrored Plate Cutting Diagram Current Step Displ. Stage/Step Real Displ.

Check Deformations

		6.7	7577E-	+001
ST:	E2	ARTH	PRES	5~
MAX	:	1264	14	
MIN	:	1297	78	
FILE	::	BUII	DING	~
UNIT	:	mm		

Results: Axial Plate Forces

Results: Soil Pressure

Slab and wall load combinations

Ga	BG		à ÷					Gen 2	2017 - [C:\Use	ers\a.martir
	View	Structure	Node/Element	t Properties	Boundary	Load	Analysis	Results	Pushover	Design
	ACI318-14	*	SSRC79	Slab/Wall L	oad Com	binati	on			_
	RC Des	ign ▼ d Design ▼	SRC Desi	Select th	e load co	mbina	tions fo	r the sla	ıb/wall el	ement
	ML: Service	eability Load Co	ombination Ty	 Design > 	Design >	Mesh	ed Desi	gn > Slal	b/Wall Lo	ad
	ML: Slab/Wall Load Combinations Comb				ntions					

Meshed Slab/Wall Load Combinations								
Slab/Mat	One investigation	Deflection (Conclusio)	Wall					
Strength	Serviceability		Strength					
 ✓ cLCB1 ✓ cLCB2 ✓ cLCB3 ✓ cLCB4 ✓ cLCB5 ✓ cLCB6 ✓ cLCB7 ✓ cLCB7 ✓ cLCB10 ✓ cLCB11 ✓ cLCB12 ✓ cLCB13 ✓ cLCB15 	 ▲ ✓ CLCB27 CLCB28 CLCB29 CLCB30 CLCB31 CLCB32 CLCB33 CLCB34 CLCB36 ✓ CLCB37 ✓ CLCB38 ✓ CLCB39 ✓ CLCB40 ✓ CLCB41 	▲ ✓ CLCB27 ▲ □ CLCB28 □ □ CLCB30 □ □ CLCB31 □ □ CLCB31 □ □ CLCB32 □ □ CLCB33 □ □ CLCB34 □ □ CLCB35 ✓ ✓ CLCB37 ✓ ✓ CLCB39 ✓ ✓ CLCB40 ▼	<pre></pre>					
Description :								
			OK Cancel					

Define Design Criteria for Rebar

	£ ≑					Gen 2	:017 - [C:\Use	rs\a.martin
View Structure	Node/Element	Properties	Boundary	Load	Analysis	Results	Pushover	Design
ACI318-14 RC Design T Meshed Design T Muc Serviceability Load Combinations Design Criteria for Rebars Slab/Wat Slab/Wat	 Specify rel Enter the for slab Design (Design (Check (For Slab Dir. 1 Dir. 2 For Wal Face to the statement of the sta	bar size ne standa /wall eler > Design : Criteria fo off [Basic o Design: : 0.03 m, : 0.05 m, Il Design o Center	rd sizes o ments. > Meshec r Rebar Rebar for 0.03 m 0.05 m Rebar 0.0	f rebar I Desig Slab] 02m	rs used in Meshed In Top - Bot Bot For Sk Rebar Spacir Con Dir. For W Vertic Horizo Spacir Conr	Design Criteria for bic Rebar for Slab/Ma Dir.1: #10 Dir.2: #10 Dir.2: #10 Dir.2: #10 ab Design : : #4,#5 ng : : #9,#10, : : : </th <th>esign of re Rebars at @ 300 @ 3</th> <th>einforcemer ×</th>	esign of re Rebars at @ 300 @ 3	einforcemer ×
WIIDAS								

Slab/Wall Rebar Checking Data

Slab/Wall Rebar Checking Data

midas Gen

Gen 2017 - [C:\Users\a.martin View Node/Element Properties Boundary Results Design Structure Analysis Pushover Load 🛲 Meshed Design 🤊 Design Mic Serviceability Load Combination Type... Run Design Slab/Wall Load Combinations... Mic Slab Flexural Design Design Criteria for Rebars... Select Avg. Nodal Slab/Wall Rebars for Checking... Load Cases/Combinations Serviceability Parameters.. Dir. 1 ALL COMBINATION \sim Slab Flexural Design... 1. Select Rebar Ratio > Apply Flexural Design 2. Click: Update rebar Element O Avg. Nodal OWidth 1 m Element Both OBottom SLAB DESIGN O Dir. 2 Dir. 1 \$50101 Type of Display \$50152 Contour ✓ Legend \$40101 Values \$50203 Rebar \$40152 One-Way Flexural Design As_reg (m^2/m) \$50304 Element Edge O Rho_req \$40203 Both OLeft _ x/d \$58406 Resistance Ratio None Rebar Wood Armer Moment Design Result Design Force MIDAS Update Rebar

Slab/Wall Rebar Checking Data

Wall Design

	\$				Gen 2017 - [C:\Users\a.mart		
View Structure	Node/Element Properties	Boundary	Load	Analysis	Results	Pushover	Design
Wall Design Load Combinations ALL COMBINATION	Run Design Specify Desig 1. Select Rek 2. Click: Upd	gn Criteria bar Ratio > ate rebar	Apply		Meshed Desig Mc Serviceability Mc Slab/Wall Loa Design Criter Slab/Wall Rel Serviceability Slab Flexural	n v Load Combination Typ ad Combinations ria for Rebars bars for Checking Parameters Design	e
Element O Avg. Nodal Element O Width 1 m					Slab Flexural Slab Shear Ch Slab Servicea	Checking hecking bility Checking ion Analysis Control	
Horizontal Overtical Sig_cd (concrete)					Perform Crack	ked Section Analysis	
Contour Legend					I		
Rebar						WALL DESI	GN
OAs_req (m^2/m)		Contract of the second				#5 @203	
Resistance Ratio				Concern Street		#4 @203	
Design Result						None	
Design Force					I		
Update Rebar							
MIDAS	•						