

GEOSTUDIO Tutorials Results and Procedure Comparison

Angel Francisco Martinez

Application Engineer MIDAS IT Estados Unidos

Geo-Technical analysis System New eXperience

- 1. SIGMAW: Stress Bulbs beneath tank
- 2. SEEPW: Seepage through embankment
- 3. SLOPEW: Strength reduction comparison

Stress Changes in the Ground Beneath a Round Tank

(SIGMA W Comparison)

Angel Francisco Martinez

Application Engineer MIDAS IT Estados Unidos

Introduction

The primary purpose of this tutorial is to demonstrate how to get started using MIDAS GTS NX, to introduce the steps to run analysis, and to illustrate how to get results. This problem show how to obtain stress changes in the ground beneath a round tank filled with a fluid. A direct comparison will be done against Intro SIGMA/w Tutorial under same conditions.

When studying a problem that is symmetric about a vertical axis, the three-dimensional effects can be analyzed with a twodimensional finite element mesh. Axisymmetric modeling in GTS NX for this case considers the stresses in the X-Y plane as well as the circumferential stresses.

Initial model dimensions

Model Conditions

- Axisymmetric
- 5 meter radius tank
- Ground is 38 m wide, 25 m deep
- 2 layers
 - 1. Upper soil: E = 3000 kPa and Poisson's ratio v = 0.45
 - 2. Lower soil: E = 4000 kPa and Poisson's ratio v = 0.45
- 40 Kpa pressure load

Figures show the corresponding problem setup. The radius of the tank is 5 m and the applied pressure is 40 kPa. The soil region is 38 m wide and 25 m high. The upper 5 m of soil has different properties than the underlying 20 m.

GTS NX

Symmetry Axis

Start Axisymetric File

Open New

- 1. File > New
- 2. Axisymmetric
- 3. Units kN, m, sec

()		
	New (Ctrl+N)	C
	Create a new document	

Analysis Setting	×
Project Title	Engineer
Desc.	
Model Type	Gravity Direction
⊖ 3D	Y
0.20	⊖z
2 • Axisymmetric	
Unit System	
kN ~ m	~ sec ~ 3
Initial Parameters	
Gravity Acceleration(g)	9.806 m/sec ²
Unit Weight of Water	9.80665 kN/m³
Initial Temperature	0 [T]
Plane Strain Thickness	1 m
	OK Cancel

Materials and Properties

Define Materials and Properties

Add/Modify Material

Material

ID

Model Type

Define material properties of the 2 layers

- Menu > Mesh > Material> Create> Isotropic > Elastic 1.
- Define upper and lower layers as shown 2.
- 3. Menu > Mesh > Properties > Create > 2D > Axis symmetric
- 4. Create 2 Axis symmetric properties for the 2 layers

GTS NX

Upper soil: E = 3000 kPa Poisson's ratio v = 0.45Lower soil: E = 4000 kPaPoisson's ratio v = 0.45

Create... No Name Type Isotropic-Elastic 1 upper soil Isotropic 2 lower soil Isotropic-Elastic 0-11-1-1-1 2 lower soil Color Name Name upper soil Color odel Type \checkmark Elastic Elastic General Time Dependent General Time Dependent Elastic Modulus (E) 4000 kN/m² Elastic Modulus (E) 3000 kN/m² Inc. of Elastic Modulus 0 kN/m³ Inc. of Elastic Modulus 0 kN/m³ Inc. of Elastic Modulus Ref. Height 0 m Inc. of Elastic Modulus Ref. Height 0 m 0.45 Poisson's Ratio (Nu) 0.45 Poisson's Ratio (Nu) Unit Weight (Gamma) 20 kN/m³ Unit Weight (Gamma) 20 kN/m³

Х

Create/Modify 2D Property

Create Geometry Outline

Define the WORK GRID as a drawing plane with lines spaced 1m apart to create rectangles

- 1. Menu > SHOW GRID
- 2. Menu > Define Grid > Width 1m, User Define 40 m
- 3. Menu>Geometry > Rectangle
- 4. Select the 2 corner method, set 1st Location as 0,0 press Apply
- 5. Set 2nd location as 38, 25

2 hber	O Automa	atic Setting	1 m
	OUser D	efined	40 🚔
Location			
	○ 1Q	○ 2Q ○	3Q () 4Q
👳 🥖	O	Cance	Apply
 		<u></u>	
	· • • • • • • • • • • • • • • • • • • •		
	·····	· • · · · · · · · · · · · · · · · · · ·	
		· • · · · • · · · · · · · · · · · · · ·	
	· • · · · · · · · · · · · · · · · · · ·		
			Y
		· • · · · • · · · · · · · · · · · · · ·	

+ tw tg

Show/Hide Grid

田田

Define Grid

Size

2

GTS NX

Ha Define Grid

×

Create Geometry Outline

Draw additional lines to divide model into 4 segments

- 1. Menu>Geometry > Line
- Draw a horizontal line from (0,20) to (38,20) 2.
- 3. Draw a Vertical Line from (5,25) to (5,20)
- Draw a Vertical Line from (10,25) to (10,0) 4.
- 5. Geometry > Intersect > Select All > Apply

GTS NX

3

Mesh Size Control

Define Mesh Conditions

- 1. Menu> Mesh > Size Control
- 2. Define Linear Grading 0.5m -> 2m from left to right
- 3. Define Interval Length of 1m for the upper left corners
- 4. Define Interval Length of 2m for upper right corner
- 5. Define Integral length 0.5m for left horizontal lines

Mesh

Mesh

Mesh Upper and Lower Domains

- 1. Menu> Mesh > Generate > 2D > Auto Area
- 2. Mesh lower 2 areas with 1m and lower axis property
- 3. Click>> and select quadrilateral and higher order elements. Click OK > Apply
- 4. Mesh upper 3 areas with 1m and upper axis property

		2D 2D->3D Conversion of the second s
		2D (F7)
dvanced Option Merge Nodes Tolerance	0.	.0001
Element Size Growth Rate -	Coarse	1
Min/Max Element Size	Large	1
2D Mesher Delaunay Mesher		~
Element Type Quadrilateral		~
Higher-Order Element		

Boundary

GTS NX

Boundary

Apply Boundary Conditions

- 1. Menu> Static/Slope Analysis>Boundary>Constraint
- 2. Select Auto>Apply

Load

Load

Apply Pressure Load

- 1. Menu> Static/Slope Analysis>Load>Pressure
- 2. Select Axisymmetric and apply 40kN/m^2 load to upper left nodes as shown.

Analysis Case

GTS NX

Analysis Case

Create Static Analysis Case

- 1. Menu> Analysis>Analysis Case >General
- 2. Select Linear Static
- 3. Activate All
- 4. Run Analysis > Press OK

d/Modify Analys	is Case			×	Ratch Analysis
- Analysis Case Se	tting				S Out thay as
Title	linear				Perform Modeling
Description			Analysis Control	P	🔒 Results
Solution Type	Linear Static		 Output Control 	P	Analysis
Construction Sta	age Set		\sim		GTS NX Solver
					Name Type Description
Analysis Case Mo	All Sets	<< >> 3	Active Sets		linear Linear Static
Mesh Defa lowe lowe	ault Mesh Set erleft erright	Mesh Default lower le lower le lower le	Mesh Set sft ght		
Boundar	er lett er middle er right ry Condition Indary, Set-1	upper i upper i upper i upper i Se Boundary C	ent niddle ight Condition anv Set-1		Check On/Off OK
Elocation Location	bad d Set-1 Pair	Static Load	et-1		

Post Processor

Check Vertical Stresses SYY

- 1. Works Tree > Results > Stresses > S-YY
- 2. Right Click Legend > Color Type > Reverse
- 3. Activate Iso surface > Lower Part > Set to -5

GTS NX

sec

Post Processor

Check Displacements

- 1. Menu> Results>Show>Min/Max
- Works Tree > Results > Displacements > Total 2.
- 3. Change units to mm

Post Processor

Check Horizontal Displacements

- 1. Menu> Results>Advanced>Cutting Diagram
- 2. Set to X direction
- 3. Draw vertical diagram by selecting 2 points (top and bottom as shown)

Compare Results to SIGMAW Tutorial

Displacement and Stresses match exactly

with results from SIGMA W tank tutorial

10 Vertical settlement

Figure 6 shows the vertical settlements as a deformed mesh at a 20X exaggeration. The maximum settlement is about 0.076 m (76 mm) under the center of the tank.

Max:76.8338 0.4%+72.314 0.8%+67.794 0.7%+63.275 0.9%+58.755 0.9%+58.755 0.9%+54.236

GTS NX

MIDAS GTS NX

19

3D Case Study: Tanks in Clay (Colombia)

Long term consolidation analysis of water treatment tanks in soft clay

3D isometric view of tanks

2D side view of tanks in clay

	PERFIL MODELACIÓN													
Material	Espesor (m)	Wn (%)	LL (%)	IP(%)	Peso unitario total γt (kN/m3)	Es (MPa) Valor conservador	е	Presión de preconsolidación (kPa)	OCR	Сс	Cr	K (m/día)	c' (kPa)	¢,(ō)
1	12.5	67	101	69	16.7	21	1.6	322	3.6	1.08	0.17	5.6E-03	21	23
2	11.7	56	80	51	17.4	30	1.3	427	2.1	0.63	0.10	2.7E-02	37	22
3	5.5	89	162	81	15.0	26	2.3	453	1.7	1.55	0.25	1.7E-03	46	24
4	11.5	41	66	39	17.5	39	1.2	571	1.8	0.45	0.07	1.0E-03	72	21
5	4.5	33	59	30	17.2	77	1.0	644	1.7	0.50	0.10	7.8E-06	-	-
6	46 ?	-	-	-	19.7	125	-	-	1.6	-	-	7.8E-06	-	-

Material table of clay layers

3D Case Study: Tanks in Clay (Colombia)

Plane cut of layers

Initial CS stage

Stage1: Excavation

21

3D Case Study: Tanks in Clay (Colombia)

MT 830123204-8

Stage1: Excavation

10 year consolidation

Conscient

20 year consolidation

50 year consolidation

Seepage Thru Earth Embankment

(SEEPW Comparison)

Angel Francisco Martinez

Application Engineer MIDAS IT Estados Unidos

Introduction

The objective of the tutorial is look at the 2D flow through an embankment dam. This seepage analysis is a common example and consequently most users will have a good idea as to what the solution should look like. It shows how easy it is to find the downstream seepage outflow when the dam has a homogenous material. The tutorial will also look at cases were a toe under-drain is included and when the central core's hydraulic conductivities are lowered.

Initial model dimensions

Model Conditions

- 2D Steady State Seepage
- 10m tall X 47m wide Dam
- 3 layers
 - 1. Core
 - 2. Shell
 - 3. Toe Drain
- 8 m water level on right side of dam

Figures show the corresponding problem setup. The dam consists of a center core (4m wide at top, 8m wide at base), 2 shells and a toe drain on the right bottom corner. Water level on left side is 8m.

Start Axisymetric File

Open New

- 1. File > New
- 2. 2D
- 3. Units kN, m, sec

Analysis Setting	×
Project Title	Engineer
Desc.	
Model Type	Gravity Direction
() 3D	● Y
	⊖z
() Axisymmetric	
Unit System	
kN ~ m	<u> </u>
Initial Parameters	
Gravity Acceleration(g)	9.806 m/sec ²
Unit Weight of Water	9.80665 kN/m³
Initial Temperature	0 [T]
Plane Strain Thickness	1 m
	OK Cancel

Materials

	1 Geometry Mesh	🔊 core X10
Define Materials	Comp. Pro	ы core X100
	Material Property	🔊 silt k function
1. Menu > Mesh > Material> Create> Isotropic	Function *	🔊 water content
2. Define General Fill material as shown for the General tab.	Prop./CSys./Func	
2. In the Demonstrate setting Uncertained and		
3. In the Porous tab, active Unsaturated	Maine Suction Kx (m/sec) 0.1 1.00E-05	Matric Suction (kPa) VWC (m ³ /m ²
Property>ADD>Individual>User Defined and copy paste	0.14384499 9.96E-06	0.16237767 0.449683
corresponding excel shoots Press Ok	0.20691381 9.91E-06 0.29763514 9.82E-06	0.28366509 0.449748
corresponding excersivels. Fress OK	0.42813324 9.69E-06	0.6951928 0.448796
4. Repeat for core 10X less and core 100X less materials	0.61564821 9.50E-06	1.1288379 0.44738
	1 274275 8.79E-06	2.9763514 0.437809
	1.8329807 8.18E.06	4.8329302 0.424379 7.8475997 0.398415
No Name Type Create 🔻	2.6366509 7.30E.06 3.7926902 6.10E.06	12.74275 0.353926
1 granular toe Isotropic-Elastic Isotropic	× 5.4555948 4.58E-06	20.691381 0.29121 33.598183 0.222567
2 general fill Isotropic-Elastic Orthotrop	7 8475997 2 92E 06	54 555948 0 163773
3 core X10 less Isotropic-Elastic 2D Equival	11.266579 1.472-06	88.586679 0.121111 143.84499 0.092185
4 Core 100 X less Tsoropic-Elastic	23.357215 1.58E-07	233.57215 0.072563
General Porous Time Dependent	33.598183 3.63E-08 49.326302 7.28E.09	379.26902 0.058798 615.84821 0.048704
	69.51928 1.36E-09	1,000 0.040948
aterial X Unit Veget (Saturated) 44 Mum	100 2.44E-10	
ID 2 Name general fill Color Initial Void Ratio (eo) 0.1	Add/Molify Unsaturated Fairthon	×
Unsaturated Property silk function	Parkter Here Sole Pactor 2 mobile Deph Op elis function E Oth even ine write	ten Wate Canterion Option IV ans kan under ⊡t ans kan under
Model Type Elastic V Structure Drainage Parameters	Permediative Function Colo	and an all and an all and an
General Porous Time Dependent Drained	Punction Type: Liber Sethind:	
Elastic Modulus (E) 50000 kN/m ²	Postsare (004/m ²) K.Rata ^{Pr}	
Tor of Elactic Modulus 0, 17625087	2 0.1438 0.9000 4 Hot	
Inc. of Edde Products 0 KV/m ³	3 0.2053 0.5050 Here 4 0.2975 0.0000 Here	
Inc. of Elastic Modulus Ref. Height 0 m Permeability Coefficients	5 0.4281 0.0000 8 0.418 0.0000	
Poisson's Ratio (Nu) 0.3 kx ky kz		
Unit Weight (Gamma) 20 kV/m ³ 1 1 1 m/sec	Paraton Type 1366r dather	
Initial Stress Parameters	Pressure Wolfer = 1	
Ko Anisotropy	2 3.1024 3.4400 1 1.14	
Name Type Add	4 84281 84494 5.2 	
silk k function Individual ModiFy	2 0.6852 0.4468 E 1.1286 0.4474 = **	
100 X Indvidual Delete	Relies Dati	CR CANAR 27

Properties

Define Materials and Properties

- 1. Menu > Mesh > Properties > Create > 2D > Plain Strain
- 2. Create 4 2D Plain Strain properties for the layers
- 3. Match the name with the material property.

Add/Modify Property

No	Name	Туре	Sub-Type	Create
1	general fill	2D	Plane Strain	1D.
2	toe	2D	Plane Strain	2D.
3	10X	2D	Plane Strain	20
4	100X	2D	Plane Strain	30.

Create/Modify 2D Property

Х

Ŧ

.

2

GTS NX

×

1. 2.

3.

4.

5.

Create Geometry Outline 日本 19 19 一世 日 2 Define the WORK GRID as a drawing plane with lines H Show/Hide Grid Ha Define Grid spaced 1m apart to create rectangles Define Grid Menu > SHOW GRID Menu > Define Grid > Width 1m, User Define 55 m Size Menu>Geometry > PolyLine 1 m Width Select the ABS x,y method, set 1st Location as 0,0 Automatic Setting Number press Apply OUser Defined 2 55 🚔 Set End location as 23, 10 Location PolyLine \times () 1Q $\bigcirc 2Q$ O 3Q O 4Q 2D 3D B Apply Cancel 23, 10 Location Point & C 5 REL dx, dy \sim Method 💰 🐟 Polyline Make Face Link Start and End Point Line \times ~ ... Geometry Set Geometry Set-1 2D 3D ОК Apply Cancel Back Input Start Location Location 0,0 Method ABS x, y \sim

Create Geometry Outline

- 1. Input next location (4,0)
- 2. Input next location (20, -10)
- 3. Input next location (-47,0)
- 4. Press OK

PolyLine

Create Geometry Outline

- 1. Draw a Vertical Line Start (23,10) End (-2,10)
- 2. Draw a Vertical Line Start (27,10) End (-2,10)
- 3. Draw a Rectangle Start Corner (40,0) End Corner (10,-1)
- 4. Geometry > Intersect > Select All > Apply

	2D 3	3D			
	Input St	art Lo	cation		
2)	Location				23, 10
	Method	AB	Sx,y		~
	2D 3	ID.			
3	Input St	art Loc	ation		
	Location				27, 10
	Method	AB	Six, y		\sim
	Rectangle				×
4	2D				
	– Meth	od	1	\Box	
	Input O	ne Corr	her		
	Location	1			40, 0
	Method	ABS	S x, y		\sim

20 3L)	
Input End	Location	
Location		-2, -10
Method	REL dx, dy	~
ine		\times
2D 3D		
Input End	Location	
Location	-2	2, -10
Method	REL dx, dy	\sim
Rectangle		×
2D		
- Method		
Input Dia	gonally Opposite Corner	
Location	10,	-1
Method	REL dx, dy	\sim

Point & Cu

Rectangle

/ Line

	Geo	metr	у	Me	sh	St
0~	800	(a)	r	×	5	E
ĵ	00	Ø		ê	10	E
	Poin	it & (Curve	1		
e	10	-	Ċ	X	Inter	sect

ntersect		×
3D		
	Selected 7 Curve(s)	
Geometry Set	Geometry Set-1	~
🐺 🕒 📫	OK Cancel	Apply
	5	

Mesh

GTS NX

Mesh

- 1. Menu> Mesh > Generate > 2D > Auto Area
- 2. Mesh the Core with 0.5m size and General Fill Property
- 3. Repeat for Core for 10X less and 100X less property
- 4. Mesh the 2 Shells with 1m size and General Fill
- 5. Mesh Toe Drain with 1m size and Toe Property

Seepage Boundary

GTS NX

Boundary

Apply Seepage Boundary Conditions

- 1. Menu> Seepage/Consolidation Analysis>Nodal Head
- 2. Select the left Edge, apply Total head 8m as shown
- 3. Select Toe Drain Nodes, apply Total head of Om
- 4. Select right Edge, apply Review boundary

1

Analysis Case

toe base

Create 4 Seepage Steady State Analysis Cases

- 1. Menu> Analysis>Analysis Case >General
- 2. Select Seepage Steady State Solution Type
- 3. Create Case 1 and activate sets as shown. Press Apply
- 4. Create Case 2 and activate sets as shown. Press Ok

Analysis Case

- 1. Menu> Analysis>Analysis Case >General
- 2. Select Seepage Steady State Solution Type
- 3. Create Case 3 and activate sets as shown. Press Apply
- 4. Create Case 4 and activate sets as shown. Press Ok

Run Analysis

GTS NX

Run all 4

- 1. Menu > Analysis > Perform
- 2. Select All
- 3. Press OK

GTS NX Solver

 \land Description Name Type • Case 1 Homogen Seepage(Stea 2 • Case 2 Dam with t Seepage(Stea 2 Case 3 Core with Seepage(Stea Case 4 Core with Seepage(Stea $\mathbf{\nabla}$ Check On/Off ОК Cancel

 \times

Compare Results to SEEPW Tutorial

Total Head and Pore Pressure distribution match SEEPW tutorial. Shown here are Case 1 and Case 4 results.

3D Case Study: CS of Dam(S. Korea)

Buhang Dam, South Korea

Construction stage analysis of dam reflecting full water level hydrostatic pressure

GS E&C

Stage2: Banking Height 160m

Stage5: Banking Height 210m + Hydrostatic pressure

3D Case Study: CS of Dam(S. Korea)

Stage 2: Total Displacements

Stage 4: Vertical deflection

Stage 5: Horizontal Displacements

Stage 5: Hydrostatic pressure

GS E&C

3D Case Study: CS of Dam(S. Korea)

Stage 5: Total Head

S GS E&C

+9.756

+6.081

+4.921

+4.238

+3.723

+3.264

+2.859

+2.498

+2.175

+1.628

+1.397

+1.194

+1.016

+0.858 +0.714

+0.586

f0.477

f0.371

f0.236

Stage 5: Hydraulic Gradient

Strength Reduction Stability Comparison (SLOPEW Comparison)

Angel Francisco Martinez

Application Engineer MIDAS IT Estados Unidos

Introduction

Introduction Stability by strength reduction is a procedure where the factor of safety is obtained by weakening the soil in steps in an elastic-plastic finite element analysis until the slope "fails". The factor of safety is deemed to be the factor by which the soil strength needs to be reduced to reach failure (Dawson et al., 1999; Griffiths and Lane, 1999). Numerically, the failure occurs when it is no longer possible to obtain a converged solution. The finite element equations for a stressstrain formulation are in essence equations of equilibrium. Not being able to obtain a converged solution therefore infers the system is beyond the point of limiting equilibrium. An alternative way to define "failure" is the point at which the deformations become excessive. In the Strength Reduction method, the soil strength is artificially reduced, and so there is a need

to redistribute the stresses. This can be done by the Stress Redistribution algorithm, and so this option can be indirectly used to do a Strength Reduction stability analysis.

Initial model dimensions

Model Conditions

- 2D Strength Reduction Method Analysis
- 20m tall X 51m wide X 10 m Slope
- 1 layer
- 4 materials
 - 1.2
 - 1.3
 - 1.4
 - 1.5

Figures show the corresponding problem setup. It illustrates how a Strength Reduction Method analysis can be done with MIDAS GTS NX. In addition, the results are compared as the soil strength is reduced in stages. For each stage, the factor of safety is obtained for the new material. Each strength reduction analysis uses the previous analysis as its initial conditions. Lastly, the results are compared to a SLOPEW tutorial.

Start Axisymetric File

Open New

- 1. File > New
- 2. 2D
- 3. Units kN, m, sec

Analysis Setting	×
Project Title	Engineer
Desc.	
Model Type	Gravity Direction
() 3D	€Y
	⊖z
() Axisymmetric	
Unit System	
kN ~ m	✓ sec ✓ 3
Initial Parameters	
Gravity Acceleration(g)	9.806 m/sec ²
Unit Weight of Water	9.80665 kN/m³
Initial Temperature	[1] 0
Plane Strain Thickness	1 m
	OK Cancel

Materials

Define Materials

1. Menu > Mesh > Material> Create> Isotropic>Mohr Coulomb

Material

ID

6

General Porous

Cohesion (C) Inc. of Cohesion

Inc. of Cohesion Ref. Height

Frictional Angle (Phi)

Model Type

Name

Mohr-Coulomb

- 2. Define 6 materials as shown in the General tab
- 3. Define Non linear properties as shown in table

Add/Modif	y Material			×
No	Name	Туре		Create 💌
1 2 3 4 5 6	in situ srf 1.2 srf 1.3 srf 1.4 srf 1.5 srf 1.6	Isotropic-Mohr-C Isotropic-Mohr-C Isotropic-Mohr-C Isotropic-Mohr-C Isotropic-Mohr-C Isotropic-Mohr-C	oulomb oulomb oulomb oulomb oulomb	Isotropic Orthotrop 2D Equiva Interface a Import
ID ID	1 Name	in situ	Cold	r 🔽
Model T	ype Mohr-Co	oulomb	~	Structure
Gener	Porous Non	-Linear Time Depe	endent	
Elas	tic Modulus (E)		10000	kN/m²
Inc.	of Elastic Modul	JS	0	kN/m³
Inc.	of Elastic Modul	us Ref. Height	0] m
Pois	son's Ratio (Nu)		0.3334]
Unit	Weight (Gamma)	20	kN/m³

		Name	Cohesion	Friction Angle						
		In situ	5	28						
		SRF 1.2	4.17	23.9						
		SRF 1.3	3.85	22.24						
		SRF 1.4	3.57	20.8						
		SRF 1.5	3.33	19.52						
	3	SRF 1.6	3.2	18.78						
srf 1.6 mb	Color	Struct								
ear Time Dependent	t									
	3.2	kN/m² kN/m³								
ight	0	m [deg]			49					

Mesh

Comp. Prc ↔ CSys

Function *

Prop./CSvs./Func

Geometry

Material Property

Properties

Define Materials and Properties

- 1. Menu > Mesh > Properties > Create > 2D > Plain Strain
- 2. Create 6 2D Plain Strain properties for the layers
- 3. Match the name with the material property.

GTS NX

Add/Modify Property

No	Name	Туре	Sub-Type	Create 🔻
1	in situ	2D	Plane Strain	Modify
2	srf 1.2	2D	Plane Strain	Hourym
3	srf 1.3	2D	Plane Strain	Сору
4	srf 1.4	2D	Plane Strain	
5	srf 1.5	2D	Plane Strain	Delete
6	srf 1.6	2D	Plane Strain	Import

Х

eate/Modify 2	O Property		×
Plot Only(2D) G	auging Shell	Axisymmetric
Shell	Plane Stress	Plane Strain	Geogrid(2D)
ID 7	Name in sit	u	Color
Material	3	1: in situ	~ 🙋
-Material C	Sys		
(CSys	Global Rectangula	ar ~
(Angle		0 [dea]
	Plot Only(Shell ID 7 Material Material C	Plot Only(2D) G Shell Plane Stress ID 7 Name in sit Material 3 Material CSys © CSys O Angle	Plot Only(2D) Gauging Shell Shell Plane Stress Plane Strain ID 7 Name in situl Material 3 1: in situ Material CSys © CSys Global Rectangula

Create Geometry Outline

Define the WORK GRID as a drawing plane with lines spaced 1m apart to create rectangles

- 1. Menu > SHOW GRID
- 2. Menu > Define Grid > Width 1m, User Define 55 m
- 3. Menu>Geometry > PolyLine
- 4. Select the ABS x,y method, set 1st Location as 0,0 press Apply
- 5. Set End location as 0, 20

SS.	S.		Pol	Line			
	3		2	D 3D			
Poinc	ne	5		Input Nex Location	t Location (RB to	Stop)	0, 20
2D 3D		,		Method	REL dx, dy		~
Input Star Location Method	t Location ABS x, y	0,0	Ge	Make F ometry Sei	ace Link Sta t Geometry Set	-1 Cancel	Appl
	C Point Point C Polyli ne 2D 3D Input Star Location Method	Point & C Point & C	Point & C Point & C	Point & C Point & C Point & C Point & C S Point & C S Point & C S Point & C S S Point & C S S S S S S S S S S S S S	PolyLine Point & C Point & C Point & C Point & C Point & C Point & C PolyLine 1 PolyLine 1 PolyLine 1 PolyLine 1 Dual PolyLine 1 Dual PolyLine S PolyLine S PolyLine S PolyLine Method Make F Geometry Se Method ABS x, y	Point & C Point & C	Point & C Point & C

開中 弾 Show	Hide Grid		×	a # g ⊞ _g Defi	ne Grid X
	Size				
	Width				1 m
	Number	O Autor	matic Set Define	ting 255	; _
	Location				
\times		() 1Q	() 2Q	○ 3Q	○ 4 Q
	👳 🥔		ОК	Cancel	Apply
0, 20 ~ .					

(1)

Polyline points	20
 Input next location (15,0) Input next location (20, -10) Input next location (16, 0) Input next location (0, -10) Input next location (-51, 0) Press OK 	2D 3D Input Next Location (RB to Stop) Location Method REL dx, dy
PolyLine × 2D 3D Input Next Location (RB to Stop)	
Image: Decision of the second seco	2D 3D Input Next Location (RB to Stop)
2D 3D Input Next Location (RB to Stop) Location 20, -10 Method REL dx, dy	Location
PolyLine	Geometry Set Geometry Set-1 Back OK Cancel
3 Input Next Location (RB to Stop) Location 16, 0 Method REL dx dy	
THE UNITY OF	

PolyLine

GTS NX

52

 \times

0, -10

 \sim

 \times

-51, 0

 \sim

~ ...

Apply

Mesh

Mesh

- 1. Menu> Mesh > Generate > 2D > Auto Area
- 2. Mesh with 1m size and in situ Property
- 3. Select >> Advance Option and activate Higher Order Element
- 4. Repeat meshing same area with the remaining materials

Advanced Option	×
Merge Nodes	
Tolerance 0.0001]
Element Size Growth Rate	
Fine Coarse	
Min/Max Element Size	
Small Large	
2D Mesher	
Delaunay Mesher 🗸 🗸	
Element Type Tri+Quad ~	
Higher-Order Element	
Pattern Mesh Register Each Mesh Independently	
OK Cancel	
∃… 🗖 🌐 Mesh	
- 🗍 🌐 Default Mesh Set	1
ground	2
	5
1.4	6
	7
	8
□ 🗿 1.6	9

GTS NX

Boundary

Construction Stages

Create Construction Stage Analysis

- 1. Menu> Static/Slope > Construction Stage> Stage Set
- 2. Select Stress Solution Type > Define CS
- 3. Create Stage 1 and activate sets as shown. Press Save > New
- Create Stage 2 and activate sets as shown. Press Save > New 4.

GTS NX

Stage Set

Auto Set

Seepage/Consolidat

Construction Stage

📾 Simulate Stage 🕍 Volum

Static/Slope Analysis

0

Stage

Wizard

Define

Contact

Contact

Construction Stages

Continue Stages

- 1. Create Stage 3 and activate sets as shown. Press Save > New
- 2. Create Stage 4 and activate sets as shown. Press Save > New

Construction St	tage Set Name	Construction Stage	e Set-1	~						
Stage ID	3: 1.2	~ _	Move to Previous	Move to Next		New	Inser			
Stage Name	1.2						Analysis			
Stage Type	Stress	~					Output			
Set Data	.2 .3 .4 .5 .6 lefault Mesh Set round dary Condition .2 pground	Activated Data	a 2 dary Condition Load ct	Deactivated Data	a und ny Condition oad		ndition ine Water Le 0 m No ine Water Le Input Wate LDF			
1				2	Stage ID Stage Name Stage Type Set Data	4: 1.3 1.3 Stress h 1.2 1.3 1.4 1.5 1.6 Default Mesh Set ground ndary Condition 1.2 pground	Activated Dat	Move to Previous	Move to Next Deactivated Data Deactivated Data Mesh 1.2 Boundary Condition Static Load Contact	New Insert Analysis (Output C Initial Condition Define Water Lev 0 m Define Water Lev Input Water LDF Clear Displayment Slope Stability(SRM)

Construction Stages

Continue Stages

- 1. Create Stage 5 and activate sets as shown. Press Save > New
- 2. Create Stage 6 and activate sets as shown. Press Save > New
- 3. Create Stage 7 and activate sets as shown. Press Save > Close

Analysis Case

Create and Run CS Case

- 1. Menu > Analysis > General
- 2. Create Construction Case Analysis Control > Initialize Stress > In situ (Stage 1)
- 3. Menu > Analysis > Perform
- 4. Press OK

1	General 🥵 Setting	Analysis
	Analysis Case	
	💰 🕏 Batch A	nalysis
	Modeling	
3	Perform 🔂 Results	
	Analysis	

	Name	Type	Description
~	. C8	Operatuation St.	

GTS NX

s, 1.3-5RM, INCR=8 (FO5=1.1945), [UNIT] kN, m

1.5-SRM, INCR=5 (FOS=1.0297), [UNIT] kN, m

Compare Results to SLOPEW Tutorial

Compare Results to SLOPEW Tutorial

Results match SLOPEW tutorial. Compare Shear Stresses for In Situ case

GTS NX

+97.287 +92.470 +87.653 +82.836 +78.019 +73.202 +68.385 +63,568 +58.751 +53.934 +49.117 +44.300 +39.483 +34.666 +29.850 +25.033 +20.216 +15.399 +10.582 +5.765

+0.948

3D Case Study: Slope Stability (Colombia)

Construction stage excavation of slope for housing hydroelectric dam machinery

3D Case Study: Slope Stability (Colombia)

3D Case Study: Slope Stability (Colombia)

Conclusions

- Comparison between GTS NX and Geostudio 2D Suite gives comparable results for the different kinds of analysis.
- GTS NX can additionally jump to 3D case from 2D starting file, but only practical for symmetrical cases.
- GTS NX has geometry modeling features and CAD compatibility that make it easy to create analysis cases for complex 3D problems.
- GTS NX allows coupled (stress seepage slope seismic) analysis that would require multiple models in different platforms of Geostudio.

Next Sesion

THIS IS AN EXCLUSIVE TWO-PART SERIES FOR AMEC ENGINEERS ONLY THAT WILL EXAMINE VARIOUS GEOTECHNICAL PROJECTS COMMON TO NORTH AMERICAN OFFICES. ATTENDEES WILL SEE A COMPARISON BETWEEN MIDAS GTS NX AND GEOSLOPE'S GEOSTUDIO SUITE FOR PUBLISHED TUTORIALS. THE SECOND AMEC SESSION TOPIC WILL BE: COMPARING 2-D AND 3-D ANALYSES FOR A RETAINING WALL.

AMEC Session: Comparing 2-D and 3-D for a Retaining Wall August 31st 2016 12:00 pm - 1:00 pm EDT

List of Sessions

Register

GTS NX

3-D with midas GTS NX for Retaining Walls

Many Amec Foster Wheeler engineers are using GeoStudio Suite software from GeoSlope for 2D geotechnical analyses. Recent advances in computer modeling and client expectations have increased the need for state-of-the-art 3D capability. To meet this need, Amec Foster Wheeler has adopted midas GTS NX as the standard for 3D finite element analysis. The software will soon be available to all Amec Foster Wheeler geotechnical engineers. This session will show how midas GTS NX compares to software that Amec Foster Wheeler engineers currently use.

The session will show the engineers of AMEC the difference and steps of recreating a 2-D project into a 3-D project. This is a live project by AMEC in St Louis, MO for considering the retaining walls of a bridge rehabilitation and widening. There is consideration of seepage involved as well. GTS NX will be used to replicate this project in 3-D will accurate results and better graphical interface. AMEC engineers can see the steps to accomplish this project in midas GTS NX