Contents

Step 1: Overview

Step 2: Modeling Methodologies

Step 3: Composite Girder Design

Step 4: Cross Frame Design

Step 5: Pier and Pier Table Design

Curved Steel Composite I-Girder Bridge Design

http://en.midasuser.com

2015 v1.1

Aug. 05, 2014

Program Version

Revision Date

Overview

This tutorial demonstrates the design capabilities of midas Civil for a steel composite I girder curved bridge.

Unless otherwise specified, the considerations comply with AASHTO LRFD 2012 Bridge Design Specification 6th Edition (US).

Bridge Specifications

Bridge Type :	2-Span Steel Composite I girder curved bridge
Number of main girder :	4, Steel Composite I girder
Curvature radius :	170'
Skew :	0º (No skew)
Unbraced length :	223"
Longitudinal stiffener :	No
Shear connector :	Yes, 7/8" x 7", Pitch = 5" (Section 2-2)
Transverse stiffener :	Yes, 1.5" x 5", Fy = 36ksi, pitch = 90"
CS Analysis :	Yes
Time Dependent Material :	Long-term modular ratio of 3n considered through "Section Stiffness Scale Factor".

Material Properties

Structural Steel		
	Web :	ASTM09(S), A709, Grade HPS70W
	Flange :	ASTM09(S), A709, Grade 50W
Concrete		
	Pier & Pier 1	able :fc' = 4.0ksi. ASTM(RC). Grade C4000
	Deck :	fc' = 4.0ksi, ASTM(RC), Grade C4500
Reinforcing Steel		
•	Main Rebar:	ASTM(RC), Grade 60, Fy = 60ksi
	Sub-Rebar :	ASTM(RC), Grade 50, Fy = 50ksi

Overview

R= 170'

Bridge Specifications

Image 1-2. 4 Steel Composite I Girders, Cross Frames & Bracings

Cross Section

Section 1-1 :	Section in positive flexure
Section information (Section	n 1-1)

	d (in)	h (in)	
	uiiii		
		· · /	
Tau flamma	· · · · ·	1 16	
TOD Hange		1 10	
i op nange	_		
A & Z & Z	<u> </u>	0.5	
W/eh	hy		
VVCD	00	0.0	
	-	10	
Rottom tlange		1 18	
Dottom nange	<u> </u>	1 10	
	_		
Concrete deals		111	
Concrete deck	3	1 14	
	_		
11 1	0.5		
Haunch	/ / 3		
naunon	2.0		
		-	

Section 2-2 : Section in negative flexure

Section informa	tion (Sect	ion 2-2)	
	d (in)	b (in)	
Top flange	2.5	18	
Web	69	0.5625	
Bottom flange	2.5	20	
Concrete deck	9	114	
Haunch	2.5		

Note: Midas Civil provides an option to enter Girder number and CTC in the section data definition for composite section. This is only needed to consider the lateral stiffness of the bridge. **The number is kept as '1' and CTS as '0'** if the cross beams have been modelled to consider the lateral stiffness, i.e. this option is not to be used for lateral stiffness consideration if the cross beams have been modelled.

Loads

- **DC1_1** : Self Weight acting on the non-composite section
- DC1_2 : Wet concrete weight acting on the non-composite section

DC2: Dead load of components and attachments acting on the long term composite section

DW: Wearing surface load acting on long term composite section

Moving Load :

Code: AASHTO LRFD No. of lanes : 1, wheel spacing = 72", eccentricity = 9" Vehicle Load:2, HL-93TDM, HL-93TRK Multiple presence factor: 1.2

2. Modeling Methodologies

MIDAS Civil provides three methods by which the initial modelling can be done. These methods are just to consider different types of analysis cases. They have no effect on the design methodology. Thus, irrespective of the method you choose, the design procedure followed by the software will be same.

- A. Sequential Analysis + Accurate time dependent material
- B. Sequential Analysis + Long-term Modular Ratio of 3n
- C. Composite Action w/o Sequential Analysis

A. Sequential Analysis + Accurate time dependent material

This modeling methodology is helpful when you want to have the Construction Stages along with accurate Time Dependent Material definition. The important steps for such modeling method are mentioned below.

□Go to Properties > Time Dependent Material > Creep/Shrinkage

Define the time dependent material properties for considering creep and shrinkage through the construction stages.

□Go to Load > Construction Stage > Define C.S. and Composite Section For C.S.

Define the Construction stages and composite section for construction stage.

Go to Analysis > Construction Stage Analysis Control

Check the box for inclusion of Time Dependent Effects in the CS Analysis. Define Erection Loads. All the load cases which are to be distinguished from Dead Load for CS output can be specified here. Specifically for composite bridges, all the permanent loads after composite action which are to be distinguished from the permanent load before composite action are added here. Refer to the image 2-1.

Note: Two main load types to be used for composite bridges are: DC: Component and Attachment Dead load acting on the long-term composite section. DW: Wearing Surface Load acting on the long-term composite section.

This classification is necessary for Auto Generation of load combination. When you choose to Auto-generate the load combination, the software uses the load type from erection load definition to generate the load combinations.

i lai Stage				Cable-Pretension Force	Control	
• Last Stage	Other Stage	CS1		Inte Define Erect	ion Load	23
Restart Construction Sta	ge Analysis	Select S	tages for Restart	Initial Fo	Name Erection Lo	ad 1
nalysis Ontion				Load Type	for C.S. Dead Load	of Component and Attachmen 💌
Include Nonlinear Analysi	s h	Ionlinear Analysis	Control	Char Assignmen	t Load Cases	
🕼 Independent Stage		C Accumulative	Stage	Appl Load Case		
📕 Include Equilibrium El	ement Nodal Fo	rces		Initial Dis	oad Case	Selected Load Case
Include P-Delta Effect Or	ly	P-Delta Ana	lysis Control	Initia IDC1		DC2
Include Time Dependent	Effect	Time Depender	it Effect Control	@ AL		U.S.L
oad Cases to be Distinguishe	d from Dead Lo	ad for C.S. Outpu	it	La La		
No Load Case Name	Type	Case 1	Cas	- Appl	->	
1 Frection Load 1	DC	DC2	Add			
	DIM	DW	Modify	C Lin		
2 Erection Load 2	DW					
2 Erection Load 2	DW		Delete	-Beam Se		
Erection Load 2	DW		Delete	Beam Se		
Erection Load 1 Erection Load 2	DW		Delete	Beam Se		
Erection Load 2	DW		Delete	Beam Se Cc Frame O		
Erection Load 2	bw		Delete	-Beam Se ← Cc Frame O ← Calc ↓ Calc		OK Cancel

Image 2-1. Construction Stage Analysis Control

No	Name	Active	Type	Description			LoadCase	Factor	
1	scl CB1	Stren	Add	Strength-I:1 75M[1] 1	25(cD) 1		MVI (MV)	1 7500	Π
2	scl CB2	Stren	Add	Strength-II:1 35M[1] 1	25(cD) 1	1 H	Dead Load	1 2500	
3	scl CB3	Stren	Add	Strength-IV:1.50(cD) 1	50(cEl 1		DC2(CS)	1 2500	
4	scl.CB4	Servi	Add	Service-I:1 00M[1] 1 0	0(cD) 1 0		DW(CS)	1 5000	
5	scLCB5	Servi	Add	Service-II:1.30M[1].1.0	0(cD) 1.0		Tendon Se	1.0000	
6	scLCB6	Servi	Add	Service-III:0.80M[1].1/	00(-D) 4		10 0	0.5000	
7	scLCB7	Servi	Add	Service-IV:1.00(cD).1	Automatic Gene	ration o	of Load Combinat	ions	Σ
8	scLCB8	Servi	Add	Fatique-I:1.50M[1].1.	Option				
9	scLCB9	Servi	Add	Fatique-II:0.75M[1].1	Add	C Re	place		
٠		.111			Design Code Manipulation of C ST Only ST : Static Lo Load Modifier : = Elucad Factor Load Factor for Structural PI - Condition for	: of Const ad Case s for Pe Settlem ate Box	AASHTO-LRFE	Case C ST+CS struction Stage ox Culverts)	

Image 2-2. Load Combinations

Go to Results > Load Combinations > Composite Steel Girder Design

You can manually add the load combinations or choose to Auto-Generate the load combinations. Auto Generation of load combinations for composite steel girder design in midas Civil is as per Table 3.4.1.1.

Note: Extreme Event Load Combinations are not considered in midas Civil for Composite Steel Girder Design.

Note: Midas Civil provides an option to manipulate with the load cases for auto generation of load combination. There you can choose to generate the combinations using "Static only", "CS only" or "Static + CS" load cases. But for auto generation of load combinations in "Composite Steel Girder Design" tab, "CS Only" should be used with construction stage. Refer to Image 2-2.

Note: Software distinguishes the pre-composite, short-term and long-term loads from the construction stage definition.

B. Sequential Analysis + Long-term Modular Ratio of 3n

This modeling methodology is helpful when you want to have the Construction Stages analysis with time dependent effects considered only for composite section through the ratio of modulus of elasticity of steel and concrete. The important steps for such modeling method are mentioned below.

Go to Properties > Section Properties > Add > Composite Section

Define the composite section and check the box for Multiple Modulus of Elasticity.

Enter the long-term modular ratio (3n) i.e. Es/Ec for long term. Refer to the image 2-3.

After you click OK for the composite section definition, the software automatically generates Section Stiffness Scale Factors in discrete boundary groups. These factors take into account the varying section properties for the composite sections. Refer to the image 2-4.

Go to Load > Construction Stage

Activate these boundary groups in their respective construction stages. $\ensuremath{\text{OR}}$

Go to Load > Construction Stage > Composite section for Construction stage

Click on Update Long Term. Doing so, all the effective width scale factor boundary groups automatically get activated in respective stages. Refer to the image 2-5.

Note: Construction Stage Analysis Control and Load Combination definition is same as the previous method.

Note: Software distinguishes the pre-composite, short-term and long-term loads from the construction stage definition. All the loads activated before the composite action in the CS are considered as Dead(Before) and use steel only section properties. Loads activated after the composite action in the CS are considered as Erection Load and use long-term composite section properties. All the loads acting in Post-CS are considered as temporary loads and use short-term composite section properties

C. Composite Action w/o Sequential Analysis

This modeling methodology is helpful when you don't have Construction Stages defined. The long term effect consideration in the section data using modular ratio is same as that in methodology B. The important steps for such modeling method are mentioned below.

Go to Load > Settlement/Misc. > Pre-composite Section

Select the static load cases which are to be considered before composite action i.e. DC1. Refer to image 2-6.

□Go to Analysis > Boundary Change Assignment

Assign the boundary groups representing the section stiffness scale factor, to the after composite static load cases i.e. DC2 and DW. Refer to image 2-7.

Note: All the static load cases selected in "Load Cases for Pre-Composite Section" are considered as Dead(Before) and use steel only section properties. Load cases assigned with section stiffness scale factor boundary groups through Boundary Change Assignment are considered as permanent loads and use long-term composite section properties. All the remaining static load cases are considered as temporary loads and use short-term composite section properties.

Image 2-7. Boundary Change Assignment

Note: Modeling method B is demonstrated through this tutorial and modeling method C is demonstrated thorough the box girder tutorial.

Composite Design

Composite bridge is one where a reinforced concrete deck slab sits on top of steel I-beams, and acts compositely with them in bending.

Preliminary sizing is part of the concept design, and is often based on crude estimations of load distribution, and resulting bending moments and shear forces. However, for steel composite highway bridges, preliminary design charts are available to facilitate far more accurate initial girder sizes.

Detailed design is effectively design verification to the AASHTO LRFD, which is more of a checking process than original creative design. Modelling and analysis is carried out for the selected structural arrangement for the various loading conditions (including fatigue) taking full account of any curvature and skew. The adequacy of the main members (composite beams, box girders etc.) is then checked in detail to ensure that they are adequate to carry the applied moments and forces. Details such as shear connector and stiffener sizes, are chosen at this stage to suit the global actions of the main members.

Design Steps:

- A. Define Longitudinal Stiffeners
- B. Define Effective Width Scale Factors
- C. Input Span Information
- D. Modify Construction Stage
- E. Define Construction Stage Analysis Control
- F. Generate Load Combinations
- G. Input Design Information
- H. View Design Results

A. Elastic Modulus Ratio

You can manually define the effective width scale factors to consider the long term effects like creep and shrinkage for the composite sections or use the **Section Data Dialog Box** to automatically define the Effective width Scale Factors to consider the same. In this tutorial we will use **Section Data Dialog Box**.

Material > Check ☑ Multiple Modulus of Elasticity Material > Es/Ec (Creep) > 23.8749

Note: Long term modular ratio; 3n = 3*7.9583 = 23.8749

Click Refer to image 3-3.

Repeat steps A and B for Section 2-2.

Click Qose Refer to image 3-4.

B/User Composite	1					
Section ID 1	Name Section 1-1					
	Section Type : Steel-I					
Bc Tto	Slab Width 114 in	Properti	es			
B1 Hh	Girder:Num 1 📩 CTC 0 in	Mater	ial Section Thickness			
tw Hw	Bc 114 in					
	tc 9 in		ID Name	Compo	Shape CP I	<u>A</u> dd
B2	Hh 2.5 in		2 Section 2-2	Compo	CP_I	Modify
	Girder		3 End Diaphragm 4 Angle sec	DB	L	Delete
	Hw 69 tw 0.5 in		5 P1_C	User	SB	Сору
	B1 16 B2 18 in		6 P1 7 Dummy Crossbeam	User	SR	Import
	671 0 672 0 In +f1 2 +f2 2 in					Renumber
	Bf3 0 in				-	Echamber
	Stiffener					1
43						146
195 - 75 E	Maked					₩ ¥~~> Y
	Select Material from DB					t.
Display Centroid	Es /Ec 7.9583 Ds /Dc 0					4 3
	Ps 0 Pr 0					
C FEM C Equation	✓ Multiple Modulus of Elasticity					Close
	Es/Ec (Creep) 23.8749					
	Es/Ec (Shrinkage)	N	1			
Offset : Center-Top	Consider Shear Deformation.		image 3-2. S	ection P	roperties D	ialog Box
Change Offset						

Image 3-1. Section Data Dialog Box

B. Define Effective Width Scale Factors

To check the Auto Generated Section Stiffness Scale Factors,

Go to Properties > Section Manager > Stiffness

Target Section & Element > Double Click on 1 : Section 1-1

Target Section & Element > Click on element numbers to see the stiffness scale factors. Refer to image 3-5.

Repeat the same for Section 2-2 to see the stiffness scale factors for that section.

Note: These Stiffness Factors are automatically added into boundary groups which will be activated in post composite Construction Stage to take into account the long term effects.

Mode	Part		Tendon		Stiffness Scale Factor
Stiffness	▼	1/2 C 3/4 C j	Property Name	🗖 Duct Hall	Boundary Group Default
Target Section & Element	View Point ⊂ i -> j (local x)	(j -> i (local x)	Reinforcement Bar		Scale Factor (I, J)
≫4 °≫5 °≫6		© B		🔽 Snap	Area Asy Asz Ixx Iyy Izz Weight W 0.628/ 0.628/ 0.938/ 0.367/ 0.746 0.341 1 0 0.628/ 0.628/ 0.938/ 0.367/ 0.746 0.341 1 0
7 7 8 7 9 7 18 7 19 7 20 7 21 -7 22 21 -7 31 7 31 32			2 + Y		Iside O.224 O.326 O.326 O.326 I O I=J IJ fAre fAsy fAsz fixx fiyy fizz fWgt 0 J 0.63 0.63 0.94 0.37 0.75 0.34 1.00 0 J 0.63 0.63 0.94 0.37 0.75 0.34 1.00 0 I <td< td=""></td<>
> 33 > 34 -> 35 -> 45 -> 46 -> 47 -> 48 -> 57					Coordinate Centroid C Left-Bottom Tendon Rebar Profile Property y(in) z(in) Area(in^2)
→ 58 → 59 → 60 → 61 → 62 → 63	-				
Copy Scale Factor to	Section 1-1	G: -62.949, 1.023	6	SELECT	Show Stiffness

Image 3-3. Section Manager Dialog Box

C. Input Span Information

Span information is required for the program to distinguish the end and interior panes. Separate shear check formulae are needed for the panels depending upon their location. Span information is used for viewing the Composite Design Results and Design Result Diagram as per Span.

 \Box Go to Structure > \Box Composite Bridge > Span Information

Girder Name > S1-L

Assign Elements > Check
[©] Number

Assign Elements > 98to111 436to449

Assign Elements > Click Add/Replace

Assign Elements > Support > Click on the box for support and change the support position from 'None' to 'I' and 'J' for Elements 98 (first element) and 449 (last element) respectively.

Refer to image 3-6.

Girder Information > Click

Repeat the above steps for other girders with the help of data below:

Girder Name > S1-R;	Assign Elements > 40to52 382to394
Girder Name > S2-L;	Assign Elements > 83to96 422to435
Girder Name > S2-R;	Assign Elements > 27to39 369to381
Girder Name > S3-L;	Assign Elements > 68to81 408to421
Girder Name > S3-R;	Assign Elements > 14to26 356to368
Girder Name > S4-L;	Assign Elements > 53to65 119 395to407 450
Girder Name > S4-R;	Assign Elements > 1to13 343to355

der Na	me St	I-L			
Assian I	Elements				
By S	election	œ	Number	-	
09to 1	1 426+044	0			-
90101	1 4301044	,			
A	dd/Replace	<u> </u>		Delete All	
No.	Element	Leng	th(in)	Support	Â
1	98	58.32	22778	1 -	1
2	436	58.32	22778	None	
3	99	58.32	22778	None	
4	437	58.32	22778	None	
5	100	58.32	22778	None	
6	438	58.32	22778	None	
7	101	58.32	22778	None	
8	439	58.32	22778	None	
9	102	58.32	22778	None	
10	440	58.32	22778	None	
11	103	58.32	22778	None	
pan by	Element Le	ength			
17	49.65	2.34			in
- 5					
Exa	ct Span				
17	49.65				in
(ex	: 2, 3@4, 5	5)			
Inner D	irection of I	Multiple (Girders –		
æ	(-)Local-y		0	(+)Local-y	
Girder I	nformation				
No.	Name	Eler	ment List	6	1 -
1	S1-L	98,	436, 99	, 437, 100	
2	S1-R	40,	382, 41,	, 383, 42,	-
2	52-L	٥٥,	722, 84,	, 723, 85,	*
A	dd	Mo	dify	Delete	

der Na	me S1-	L		
Ssign	Elements — Selection	Number	ər	
DRto 1	11.476to440		- A.S.	
	11 15000 115	1	D.	
P	log/Replace		Delete All	_
No.	Element	Length(in)	Support	^
19	107	58.322778	None	1
20	445	58.322778	None	
21	108	58.322778	None	
22	446	58.322778	None	1
23	109	58.322778	None	1
24	447	58.322778	None	
25	110	58.322778	None	
26	448	58.322778	None	_
27	111	116.62723	None	1
28	449	116.62723	J 🔻	
2				-
oan by	Element Ler	nath		
17	49.65			in
Exa	ct Span			
17	49.65			in
	: 2, 3@4, 5)			
(ex				
(ex	irection of M	ultiple Cirdoro		
(ex nner D	irection of M	ultiple Girders	(1))	
(ex nner D (•	irection of M (-)Local-y	ul <mark>ti</mark> ple Girders C	(+)Local-y	
(ex nner D (• irder J	irection of M (-)Local-y Information -	ultiple Girders	(+)Local-y	
(ex nner D (• irder J No.	irection of M (-)Local-y information - Name	ultiple Girders	(+)Local-y	
(ex nner D (• irder J No.	irection of M (-)Local-y information - Name S1-L	Ultiple Girders	(+)Local-y st 9, 437, 100	
(ex nner D (• irder J No.	irection of M (-)Local-y information - Name S1-L S1-R S2-L	Element Lis 98, 436, 9 40, 382, 4	(+)Local-y st 9, 437, 100 1, 383, 42,	_ ^
(ex nner D (• irder J No. 1 2 3	irection of M (-)Local-y information Name S1-L S1-R S2-L	Element Lis 98, 436, 9 40, 382, 4 83, 422, 8	(+)Local-y st 9, 437, 100 1, 383, 42, 4, 423, 85,	_ ^ ~
(ex nner D (• irder J Vo. L 2 3 4	irrection of M (-)Local-y information - Name S1-L S1-R S1-R S2-L add	Liple Girders	(+)Local-y it 9, 437, 100 1, 383, 42, 4, 423, 85, Delete	_ ^ +

Image 3-4. Span Information Dialog Box

C. Model View of Span Information

Image 3-5. Span Information

D. Modify Construction Stage

Section Stiffness Scale Factors need to be activated in the stage when the composite action begins. Composite action for both the composite sections starts in Construction Stage 3. Thus these stiffness scale factors should be activated in this stage.

 \Box Go to Load > Construction Stage > \llbracket Define C.S.

Construction Stage Dialog Box > Select CS3 Click Modify/Show in Construction Stage Dialog Box Compose Construction Stage > Click Boundary Group List > Select Creep 1 and Creep 2 Activation > Click Add Refer to image 3-7 Click OK

Construction Stage	x		
Name Duration Date Step Result	Add		
CS1 1 1 0 Stage, CS2 1 2 0 Stage,	Insert Prev		
CS3 1 3 0 Stage,	Insert Next		
-	Generate		
	Modify/Show		
	Close		
Image 3-6. Construction Stage Dialog Bo	х		
	•		
Compose Construction Stage			×
Stage		Additional Steps	
Stage : CS3		Day: 0	<u>A</u> dd <u>D</u> elete
Name: CS3		(Example: 1, 3, 7, 14)	Step Dav
	day(s)	Auto Generation	
Save Result		Step Number : 0 🔆	
		Generate Steps	
Current Stage Information			I
Element Boundary Load			r
Group List	Activation	Deactivation	
BG1 BG2	Support / Spring Position	med	
Elastic Rigid	Creue List	Crown Lint	
	Name Position	Name	
	Creep 1 Deforme	ed	
1	Add Modify 1	Delete Add	Delete
		OK Cano	el Apply

Image 3-7. Compose Construction Stage Dialog Box

E. Define Construction Stage Analysis Control

All the after composite loads have to be distinguished form the before composite dead loads, i.e. DC2 and DW have to be separated from DC1. This is done in midas Civil by defining DC2 and DW as erection loads in the construction stage analysis control.

□Go to Analysis > *G* Construction Stage

Load case to be distinguished from Dead Load for C.S. Output > Click Add Define Erection Load > Load Case Name > DC2 Define Erection Load > Load Type for Post CS > Dead Load of Component & Attachments
Define Erection Load > Assignment Load Cases > Select DC2 > Click Refer to image 3-8. Click
Load case to be distinguished from Dead Load for C.S. Output > Click Add
Define Erection Load > Load Type for Post CS > Dead Load of Wearing Surface & Utilities
Define Erection Load > Assignment Load Cases > Select DW > Click ->
ClickK
Go to Analysis > Perform Analysis

Load Case Name	DC2
Load Type for C.S. Assignment Load Cases Load Case	Dead Load of Component and Attachmen
DC1_1 DC1_2	>> <
	OK Cancel

Image 3-8. Erection Load Definition for DC2

Load Case Name	DW
Load Type for C.S. Assignment Load Cases Load Case	Dead Load of Wearing Surfaces and Utiliti
DC1_1 DC1_2	DW
	> <
1	

Image 3-9. Erection Load Definition for DW

F. Generate Load Combinations

In this tutorial we will Auto Generate Load Combinations for Composite Design as per AASHTO LRFD 2012.

□Go to Results >	Load Combinations

Click	Composite Steel	Girder Desigr
-------	-----------------	---------------

Automatic Generation of Load Combinations > Design Code > AASHTO-LRFD 12 Automatic Generation of Load Combinations > Manipulations of CS Load Cases > Select cs only Refer to image 3-10

Click OK

You ca	n view the	e Auto generat	ed load comb	pinations as in	image 3-11
Click	Close]			

Option	
Add C Replace	
Code Selection	
C Steel C Concrete	C SRC . Steel Composite
Design Code :	ASHTO-LRFD12 💌
- Maninulation of Construction	Store Load Care
C ST Only	
CT + Statis Land Case	CE + Construction Stage
51, 51840 2080 2852	co , construction stage
Load Modifier :	1
ELoad Factors for Permane	nt Loads (Yp)
.oad Factor for Settlement :	1
Structural Plate Box Struct	ures(Metal Box Culverts)
-Condition for Temperature -	
C Deformation Check	All Other Effects

Image 3-10. Auto Generation Load Combinations Dialog Box

neral .oad (Stei Combi	el Design ination List	Concrete Des	sign SRC	Design Composite Steel Girder Design		Load	Cases and Factors	-	1	
	No	Name	Active	Туре	Description	<u>^</u>		LoadCase	Factor		
•	1	scLCB1	Strengt	Add	Strength-I:1.75M[1],1.25(cD),1.25(cEL		+	MVL(MV)	1.7500		
	2	scLCB2	Strengt	Add	Strength-II:1.35M[1],1.25(cD),1.25(cE			Dead Load	1.2500		
	3	scLCB3	Strengt	Add	Strength-IV:1.50(cD), 1.50(cEL1), 1.50(DC2(CS)	1.2500		Image 3-11
- Ĉ	4	scLCB4	Service	Add	Service-I:1.00M[1],1.00(cD),1.00(cEL1			DW(CS)	1.5000		Auto
	5	scLCB5	Service	Add	Service-II:1.30M[1],1.00(cD),1.00(cEL			Tendon Se	1.0000		Generated
	6	scLCB6	Service	Add	Service-III:0.80M[1],1.00(cD),1.00(cEL			Creep Sec	0.5000		Load
	7	scLCB7	Service	Add	Service-IV:1.00(cD),1.00(cEL1),1.00(c			Shrinkage	0.5000		Combination
	8	scLCB8	Service	Add	Fatigue-I:1.50M[1],1.00(cD),1.00(cEL		*				
	9	scLCB9	Service	Add	Fatigue-II:0.75M[1],1.00(cD),1.00(cEL			76	· · · · · · · · · · · · · · · · · · ·		

G. Input Design Information	G. Input Design Information
Go to Design > 🤤 Composite Design > 💷 Design	Click in Hybrid Factor Window
Parameters	Concrete Material Selection > Code > ASTM(RC) Concrete Material Selection > Grade C4500
Composite Steel Girder Design Parameters > Code >	
AASHTO-LRFD12 Composite Steel Girder Design Parameters	Reinforcement Selection > Code > ASTM(RC) Concrete Material Selection > Grade of main Rebar >
> Click Update by Code	Grade 60
Ontion For Strongth Limit State > Chook	Concrete Material Selection > Grade of sub Rebar >
Appendix A6 for Negative Flexure Resistance in Web Compact	Grade 50
/ NonCompact Sections	Click Modify in Modify Composite Material Window
 Post-buckling Tension-field Action for Shear Resistance(6.10.9.3.2) 	Click Close Refer to image 3-14
Click Refer to image 3-12.	
Go to Design > 🔂 Composite Design > 陆 Design	<i>Note:</i> Hybrid Factor is used when the material of top flange, bottom flange and web are different. If the material
Material	for all the three components are same then single material
Select the SPC material in the 'Material List'	can be defined without the use of hybrid factor.
Steel Material Selection > Code > ASTM09(S)	Go to Design > 😾 Composite Design > 💷 Load
Steel Material Selection > Check V Hybrid Factor	Combination Type
Steel Material Selection > Click	Software automatically classifies the auto generated load combinations into Strength, Service and Fatigue
Flange(Top) > Grade > A709-HPS70W	categories. Here, you can choose the load combinations to
Flange(Bot) > Grade > A709-HPS70W	be considered for Composite Design.
Refer to image 3-13	Click Refer to image 3-15
	-

G. Input Design Information

Composite Steel Girder Design Parameters			
Code : AASHTO-LRFD 12 Update by Code Strength Resistance Factor 0.95 Resistance factor for yielding (Phi_y) 0.95 Resistance factor for fracture(Phi_u) 0.8 Resistance factor for axial comp. (Phi_c) 0.9 Resistance factor for shear (Phi_y) 1 Resistance factor for shear (Phi_y) 1 Resistance factor for shear (Phi_b) 1 Resistance factor for shear (Phi_b) 1 Girder Type for Box/Tub Section • C Single Box Sections • ✓ Consider St. Venant Torsion and Distortion Stresses • Option For Strength Limit State • More A6 for Negative Flexure Resistance in Web Compact •	Modify Composite Material Material List ID Name SEC A709-50W Grade C4500 Grade 60 Grade Sattion Steel Material Selection Steel Material Selection Grade : A709-50W Grade : A709-50W Fy Hybrid Factor Image: Sattion Grade : A709-50W Es : Image: Sattion Fy : Image: Sattion Fy : Image: Sattion	Hybrid Factor X Flange(Top) Flange(Top) Grade : A709HPS700 + Es : 29000 kinslin^2 Fu : 85 kips/in^2	Image 3-13. Hybrid Factor Dialog Box
/ NonCompact Sections I M <1.3RhMy in Positive Flexure and Compact Sections(6.10.7.1.2-3)	Concrete Material Selection Code : ASTM(RC) Specified Compressive Strength (fc/fdk) : 4.5 kips/in^2 Reinforcement Selection Code : ASTM(RC) Grade of Main Rebar : Grade 60 Grade of Sub-Rebar : Grade 50 Modify Close	Fy : 70 kips/in^2 Flange(Bot)	Load Combination Type Steel Composite Design Load Combination List StcB1 sclCB1 sclCB2 sclCB3
lmage 3-12. Design Parameter Dialog Box	image 3-14. Composite Material Dialog Box	Fy : 50 kips/in^2 OK Close Image 3-15. Load Combination Type Dialog Box	d e Service Limit State ScLCB4 scLCB5 scLCB6 scLCB7 Fatgue 1 Limit State ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB4 ScLCB5 ScLCB5 ScLCB5 ScLCB5 ScLCB5 ScLCB6 ScLCB8 ScLCB6 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB8 ScLCB9 ScL

G. Input Design Information

Go to Design > 🐙 Composite Design > Longitudinal Reinforcement

In this tutorial, the longitudinal reinforcement will be provided in the negative flexure sections only i.e. Section 2-2.

Target Section & Element > Select '2 : Section 2-2'; Refer to image 3-16 Longitudinal Reinforcement > Select
Input Method A Ref. Y > Left Y > 3in

Ref. Z > Top

Z > 4.37in

Num > 19: 'Num' stands for number of reinforcement bar Spacing > 6in

Dia > #8

Part > Part 2: Part 2 is the concrete deck and Part 1 is the steel girder

Click Add Click Apply Click Close

Go to Design > \Box Composite Design > \Box Transverse Stiffener

Transverse stiffeners are required for considering the tension field action in interior stiffened panels for Strength Limit State check.

G. Input Design Information

Target Section & Element > Select '1 : Section 1-1'; Refer to image 3-17

Iransverse Stiffener > Check M web	
Transverse Stiffener > Click	
Stiffener Type > Flat	
Transverse Stiffener > Select • One stiffener	
Transverse Stiffener > Fy > 36ksi	
Transverse Stiffener > Pitch > 90in	
Transverse Stiffener > H > 5in	
Transverse Stiffener > B > 1.5in;	

Click OK Click Apply

Target Section & Element > Select '2 : Section 2-2' Transverse Stiffener > Check web Transverse Stiffener > Click Stiffener Type > Flat Transverse Stiffener > Select Transverse Stiffener > Fv > 36ksi Transverse Stiffener > Pitch > 90in Transverse Stiffener > H > 5in Transverse Stiffener > B > 1.5in

Click	OK
Click	Apply
Click	Close

G. Input Design Information

G. Input Design Information

Fig : Section 1-1 Model View

Fig : Section 2-2 Model View

G. Input Design Information

Fig : Element 368; Section 2-2; Negative Flexure

Fig : Positions for Design Output Model View

G. Input Design Information

```
□ Go to Design > 🔀 Composite Design > 😨 Fatigue Parameters
```

Select a	all the composite gire	ders.
Check	Both end parts(i & j) have the sar type	ne

```
Shear Connector > Category > C'
Shear Connector > (ADTT)SL > 1000
Shear Connector > N(n/cycle) > 1
```

Click Apply

This curved bridge information allows the software to consider the bridge as a curved bridge for Composite Design. Radius inputted here doesn't affect the design forces (lateral moment) due to Curvature. Design forces are solely calculated from the analysis results.

Select all the composite girders. Check R both end parts(i & j) have the same type

Curved Bridge Info. > Girder Radius > 2040in

Click Apply

Go to Design > 🔀 Composite Design > Design Tables > Design Force/Moment

You can check the design forces used for Composite Design in this table. Refer to image 3-18.

□ Go to Design > 😾 Composite Design > 🔝 Design

Perform Composite Design.

"Composite steel girder design has been successfully completed"; this message in the message window indicates the completion of Composite Design.

					Moment(My)			Moment(Mz)			Shear	
1	Elem	Part	Lcom	Dead(Before) (in*kips)	Dead(After) (in*kips)	Short Term (in*kips)	Dead(Before) (in*kips)	Dead(After) (in*kips)	Short Term (in*kips)	Dead(Before) (kips)	Dead(After) (kips)	Short Terr (kips)
	1	[2]	scLCB1(m	140.7937	58.4912	92.6644	-61.0510	-24.2211	26.1604	-57.1407	-39.6709	5.132
	1	[2]	scLCB1(mi	140.7937	58.4912	-31.7870	-61.0510	-24.2211	-74.3615	-57.1407	-39.6709	-2.909
	1	[2]	scLCB2(all	140.7937	58.4912	71.4840	-61.0510	-24.2211	-57.3646	-57.1407	-39.6709	-2.244
	1	[2]	scLCB2(m	140.7937	58.4912	71.4840	-61.0510	-24.2211	20.1809	-57.1407	-39.6709	3.959
	1	[2]	scLCB2(mi	140.7937	58.4912	-24.5214	-61.0510	-24.2211	-57.3646	-57.1407	-39.6709	-2.244
	1	[2]	scLCB3	168.9524	66.9712	0.0000	-73.2612	-27.9107	0.0000	-68.5689	-45.0644	-0.000
	1	[2]	scLCB4(all	112.6349	44.6475	52.9511	-48.8408	-18.6071	-42.4923	-45.7126	-30.0429	-1.662
	1	[2]	scLCB4(m	112.6349	44.6475	52.9511	- <mark>4</mark> 8.8408	-18.6071	14.9488	-45.7126	-30.0429	2.93
	1	[2]	scLCB4(mi	112.6349	44.6475	-18.1640	-48.8408	-18.6071	-42.4923	-45.7126	-30.0429	-1.66
	1	[2]	scLCB5(all	112.6349	44.6475	68.8364	-48.8408	-18.6071	-55.2400	-45.7126	-30.0429	-2.16
	1	[2]	scLCB5(m	112.6349	44.6475	68.8364	- <mark>4</mark> 8.8408	-18.6071	19.4334	-45.7126	-30.0429	3.81
	1	J[253]	scLCB1(m	2920.8817	1962.8703	204.7846	-45.6722	-4.6840	64.0978	-47.0099	-31.6730	5.13
	1	J[253]	scLCB1(mi	2920.8817	1962.8703	-208.6071	-45.6722	-4.6840	-251.8048	-47.0099	-31.6730	-2.90
	1	J[253]	scLCB2(all	2920.8817	1962.8703	157.9767	-45.6722	-4.6840	-194.2495	-47.0099	-31.6730	-2.244
	Design	Force/M	loment /				•					

Image 3-18. Design Force/Moment Table

H. View Design Results

	Go to	Design	>
F	Results	Table	

Design Results Table has the following results in tabular

 \Box Go to Design > \square Composite Design > \blacksquare Print Result

Print Result option generates a detailed design report for the design positions which were selected in Positions for Design Output. Detailed design report encompasses all the relevant clauses from AASHTO LRFD 2012 and all the formulae used for the Composite Design.

Note: In this tutorial, the results in the Design Results Table and the Design Report will be discussed simultaneously. *Note:* Any check which fails to satisfy the requisite condition for Composite Design is in red and the CHECK is reported to be NG(Not Good).

H. View Design Results

🐺 Span Checking...

This table shows the most critical members in positive and negative flexure for each span. The advantage is that, just by looking at this table you can notice all the spans which are failing in any check.

Records Activation Dialog > Choose the Spans as per Span Information and the condition of Positive/Negative; Refer to image 3-19

The Span Checking Results Table is as shown in image 3-20.

F Total Checking...

This table summarizes all the check results for each and every element in a single table.

Records Activation Dialog > Choose the Elements, part of the elements and the condition of Positive/Negative for which the Total Checking Results are to be viewed .; Refer to image 3-21

The Span Checking Results Table is as shown in image 3-22.

Note: Span Checking and the Total Checking results are not available in the Design Report.

H. View Design Results

Image 3-19. Records Activation Dialog

OK

Cancel

				Depitive/No		St	rength		Strength Li	imit(Shear))		Servi	ce Limit		I	Fatigue Lim	it		Const	ructibility(F	lexure)		Construc	tibility(She
Records Activation Dialog		Elem	part	gative	СНК	x	Mu/phiMr	Lcom	Vu/phiVn	bt	It	Lcom	tcw Ratio	tcf Ratio	tft Ratio	Lcom	Gamma(Delta_f)	Vcr Ratio	CS	tcw Ratio	tcf Ratio	tft Ratio	tdeck Ratio	CS	Vu/phiVr
Records Activation Dialog					-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-					_	1 0.0060	scLCB3	0.1337	OK	OK	scLCB5	-	0.0007	0.0068	scLCB8	0.0020	0.1451	CS2	0.0008	0.0088	0.0072	1.0824	CS2	0.0808
Element	Part	Number	Po	sitive/Negativ	/e			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Par	t i		Pos			3 0.0247	scLCB3	0.1089	OK	OK	scLCB5	-	0.0133	0.0213	scLCB8	0.0062	0.1191	CS2	0.0171	0.0210	0.0187	2.8030	CS2	0.0665
	✓ Par	tj	Ì	Neg				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
No 3to96 98to111 119 343to450			_	-		_	3 0.0473	scLCB3	0.0936	OK	OK	scLCB5	-	0.0249	0.0413	scLCB8	0.0121	0.1057	CS2	0.0322	0.0488	0.0428	6.4096	CS2	0.0587
								-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Select Type							3 0.0703	scLCB3	0.0688	OK	OK	scLCB5	-	0.0336	0.0673	scLCB8	0.0183	0.0797	CS2	0.0435	0.0769	0.0667	9.9924	CS2	0.0444
Add								-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							3 0.0881	scLCB3	0.0698	OK	OK	scLCB5	-	0.0405	0.0834	scLCB8	0.0241	0.0746	CS2	0.0529	0.0930	0.0807	12.0894	CS2	0.0411
Delete								-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							3 0.0921	scLCB3	0.0450	OK	OK	scLCB5	-	0.0466	0.0848	scLCB8	0.0239	0.0486	CS2	0.0604	0.0944	0.0826	12.3809	CS2	0.0268
Replace								-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							3 0.1347	scLCB3	0.0490	OK	OK	scLCB5	-	0.0674	0.1207	scLCB8	0.0304	0.0644	CS2	0.1150	0.1524	0.1309	19.5321	CS2	0.0316
Intersect								-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							3 0.1527	scLCB3	0.0202	OK	OK	scLCB5	-	0.0717	0.1418	scLCB8	0.0322	0.0286	CS2	0.1225	0.1712	0.1464	21.8425	CS2	0.0155
								-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							3 0.1658	scLCB3	0.0265	OK	OK	scLCB5	-	0.0734	0.1511	scLCB8	0.0342	0.0384	CS2	0.1265	0.1859	0.1584	23.6357	CS2	0.0127
				OK	Cance			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							3 0.1551	scLCB1	0.0125	OK	ОК	scLCB5	-	0.0747	0.1407	scLCB8	0.0267	0.0201	CS2	0.1280	0.1737	0.1489	22.2117	CS2	0.0034

Image 3-21. Records Activation Dialog

Image 3-22. Total Checking Results Table

H. View Design Results

Strength Limit State(Flexure)...

This table shows the Check results for Strength Limit State in flexure as per Article 6.10.6.2.

The Check Results Table for Strength Limit State(Flexure), is as shown in image 3-23.

The design report for Strength Limit State in Positive and Negative flexure is as shown in image 3-24.

Where,

My : yield moment Mp : plastic moment Mu : moment due to the factored loads phiMn : nominal flexural resistance of a section multiplied by phi of flexure fbu : largest value of the compressive stress throughout the unbraced length in the flange under condition, calculated without consideration of flange lateral bending phiFn : nominal flexure resistance of a flange Dp :distance from the top of the concrete deck to the neutral axis of the composite section at the plastic moment Dt : total depth of the composite section

Elem	part	Positive/Ne gative	Lcom	Туре	СНК	My (in∙kips)	Mp (in·kips)	Mu (in∙kips)	phiMn (in∙kips)	fbu (kips/in²)	phiFn (kips/in²)	Dp (in)	0.42Dt (in)
346	[256]	Pos	scLCB	-	ОК	-	-	-	-	10.5535	68.3557	12.6431	35.4900
346	J[22]	Neg	-	-	-	-	-	-	-	-	-	-	-
346	J[22]	Pos	scLCB	-	ОК	-	-	-	-	11.4329	68.3557	12.6431	35.4900
347	[257]	Neg	-	-	-	-	-	-	-	-	-	-	-
347	[257]	Pos	scLCB	-	ОК	-	-	-	-	11.3462	68.3557	12.6431	35.4900
347	J[23]	Neg	-	-	-	-	-	-	-	-	-	-	-
347	J[23]	Pos	scLCB	-	OK	-	-	-	-	10.3109	68.3557	12.6431	35.4900
348	[258]	Neg	-	-	-	-	-	-	-	-	-	-	-
348	[258]	Pos	scLCB	-	ОК	-	-	-	-	10.0635	68.3557	12.6431	35.4900
348	J[24]	Neg	-	-	-	-	-	-	-	-	-	-	-
348	J[24]	Pos	scLCB	-	OK	-	-	-	-	10.0089	68.3557	12.6431	35.4900
349	[259]	Neg	-	-	-	-	-	-	-	-	-	-	-
349	[259]	Pos	scLCB	-	ОК	-	-	-	-	9.0196	68.3557	12.6431	35.4900
349	J[25]	Neg	-	-	-	-	-	-	-	-	-	-	-
349	J[25]	Pos	scLCB	-	OK	-	-	-	-	7.1898	68.3557	12.6431	35.4900
350	[260]	Neg	-	-	-	-	-	-	-	-	-	-	-
350	[260]	Pos	scLCB	-	ОК	-	-	-	-	5.9060	68.3557	12.6431	35.4900
350	J[26]	Neg	-	-	-	-	-	-	-	-	-	-	-
350	J[26]	Pos	scLCB	MY-M	ОК	-	-	-	-	4.6368	68.3557	12.6431	35.4900

Image 3-23. Strength Limit State(Flexure) Results Table

H. View Design Results

Strength Limit S	ate - Flexi	ural Resist	tance							IV. Stre	ngth Limit	State - Fle	xural Resista	nce						
1. Flexure										1.	Flexure									
Positive mon	ent										Negative I	noment								
1) Design Forces	and Stresse	25								1) [Design Forc	es and Stres	ises							
Loadcombinat	on Name :	scLCB1									Loadcomb	nation Nam	ne : scLCB1							
Loadcombinat	on Type	MY-MA	x								Loadcomb	nation Type	: MZ-MIN	1						
-				N	A. (kips-	in)		V	т		2000000		I		M	I., (kipsi	in)		V.,	Т
Compon	ent int	Steel (M-) Lon	na-term	1 (Men	Short-term	Sum	(kips)	(kips in)		Comp	onent	Steel (M-) Lor	na-term	(M)	Short-term	Sum	(kips)	(kips in)
Forces	(+)	23950 6	517	15626	865	13374 975	52952 456	-77.268	-355.313		Forces	(-)	-50886	247	-3257	2.063	-13011.546	-96469.856	379.884	141.034
(dices	(+)																			
					f (kei									313		f. (ba)				
Compon	ent ·····	Steel (M	1	a tara	1CT (153)	Short term					Comp	onent	Steel (M) !!	a tora	(M)	Short torm			
	Tee	Steel (IVID)		ig-term	1 (19102)	0.001	50m						Steel (IVID	270	ig-tern	0.1.5.4	3000-000	30m		
Stresses	тор	-9.1	146	-4	.398	-0.801	-12.544				Stresses	lop	14	2/8		8.154	2.669	25.101		
	Bot	8.4	¥//	4	1./10	3./38	16.925				CONCOURSES!	Bot	-13	283		8.288	-3.183	-24./55		
										12.5						_				
2) Cross-section	Proportions									2) (Cross-section	n Proportion	ns							
(1) Web Proport	ions (AASH	TO LRFD B	Bridge, 2	2012, 6	.10.2.1)					0	Web Propo	ortions (AAS	HTO LRFD Br	idge, 201	2, 6.10	0.2.1)				
D	20 000	1	200						OK		D	122667		200						0
tw	58.000	-	500						OK		t _w	122.00/	,	500						01
(2) Flange Propo	rtions (AAS	HTO LRED	Bridge.	2012	6.10.2	2)				2	Flange Pro	portions (A	ASHTO LEED	Bridge 20	012 6	10.2.2)				
b.	205-00-		1						1.00		b.			-						
2+ =	4.500	1	12						ОК		2+ =	4.000	1	12						Oł
2 w	16.000	1	D/6	1	1150	0			OK	-	L	18.000		D/C	1222	11 50	20			0
Dr =	2.000	2	1.14	=	0.55				OK OK		D1 =	10.000	2	0/0	=	11.50				04
<u></u> ч =	2.000	2	1.16		0.55				OK		फ =	2.500	2	1.1t _w	=	0.61	19			OF
$I_{uc} = \frac{t_{ic}}{}$	D ₁₆ =	682.667	in ⁴								L = t	<u>· b₁₂° =</u>	1666.667	in ⁴		_				
1	2										252 0	12	100000000000000000000000000000000000000	1000		_				
L. = tn -	bπ ³ =	972,000	in ⁴								L = t	• b ₁₁ ³ _	1215 000	:_4						
7 1	2										2.	12								
01 /	Le	0.702		100					OK			Le	1.373	9	100			· · · · · · · · · · · · · · · · · · ·		0
0.1 3	La	0.702		10.0					OK		0.1	La	= 1.5/2	<u></u>	10.0					ON
3) Flexural Strend	th Limit Sta	ate in positi	ive flexu	ire						3	Minimum 1	Jegative Fle	xure Concrete	Deck Re	inforce	ment (AASHTO LRED	Bridge 2012	61017)	
Section Classifi	ation (AAS	HTO LRFD	Bridge.	2012	6.10.6.	2)					A_ =	15.010	>	0.01A	Anna I	- 1	1160 in ²			OK
min (Fue , F	-) =	70.000	ksi	4	70.	0 ksi			OK		in which :									
D		and the second		100	11						A .	1116	000 :-2							
= 1	38.000 4	1	150						ОК		Ade :	= 1110.	ooo in							
		12 12	1		-															
2 0 cp =	0.000) ≤	3.	76 √		76.531			ОК	3) F	lexural Stre	ngth Limit 3	state in negati	ve flexure						
T _W				1	Tye .				1	• 5	ection Class	ification (AA	ASHTO LRFD	Bridge, 20	012 6.1	.0.6.3)				
in which :											min (Fyp F	/t) =	70.000	5		70.0	ksi			OK
D _{cp} =	0.000) in									L _{ye} =	137 >	0.3							
											I _{yt}									
ўЕ Noncompa	ct section	for Curve	d Bridge	e							2 D _c	104	752			E,	116.019			
											tw	- 121.	/55 >		5./ V	F _{vc} =	116.018			NG
- Iliderial Protect	DE CAREUT	o into n.	idaa a	010 C	10110	43					ta subtab					-				
> 75	J 368	B_I S	hear C	onne	ctors	Longit	udinal Stiffe	eners	\oplus	€	7	5_J 3	68_I Sh	ear Cor	nnecto	ors	Longitud	linal Stiffene	rs	$(\mathbf{+})$

Image 3-24. Strength Limit State-Flexure Resistance Design Report

H. View Design Results

Ŧ Strength Limit State(Shear)...

This table shows the Check results for Strength Limit State in Shear as per Article 6.10.6.3.

The Check Results Table for Strength Limit State(Flexure), is as shown in image 3-25.

The design report for Strength Limit State in Positive and Negative flexure is as shown in image 3-26.

Where,

Vu : shear due to the factored load

phiVn : nominal shear resistance multiplie

bt lim1 : 2.0+(D/30) as per Eq. 6.10.11.1.2-1 bt lim2 : 16tp as per Eq. 6.10.11.1.2-2 bt lim3 : bf/4 as per Eq. 6.10.11.1.2-2 bt : projected width of transverse stiffener as per Article 6.10.11.1.2 It lim : limiting moment of inertia of transverse stiffener It : Moment of Inertia of transverse stiffener as per Article 6.10.11.1.3

ed	by p	hi							Vp	= 0.58Fyw 2D · t _w	· D · t _w =	1000.500	kips 2.500	
	Elem	part	Lcom	Туре	СНК	Vu (kips)	phīVn (kips)	bt_lim1 (in)	bt_lim2 (in)	bt_lim3 (in)	bt (in)	lt_lim (in^4)	lt (in^4)	
	20	J[272]	scLCB1	FZ-MAX	ОК	92.4433	708.3549	4.3000	24.0000	4.0000	5.0000	62.1816	62.5000	
	21	[37]	scLCB1	FZ-MAX	OK	111.9422	708.3549	4.3000	24.0000	4.0000	5.0000	62.1816	62.5000	
	21	J[273]	scLCB1	FZ-MAX	OK	126.5699	708.3549	4.3000	24.0000	4.0000	5.0000	62.1816	62.5000	
	22	[38]	scLCB1	FZ-MAX	OK	151.0565	708.3549	4.3000	24.0000	4.0000	5.0000	62.1816	62.5000	kips OK
	22	J[274]	scLCB1	FZ-MAX	OK	165.6846	708.3549	4.3000	24.0000	4.0000	5.0000	62.1816	62.5000	
	23	[39]	scLCB1	FZ-MAX	OK	186.7036	850.3163	4.3000	24.0000	4.5000	5.0000	62.1816	62.5000	Longitudinal Stiffeners (+)
	23	J[275]	scLCB1	FZ-MAX	OK	201.9425	850.3163	4.3000	24.0000	5.0000	5.0000	62.1816	62.5000	
	24	[40]	scLCB1	FZ-MAX	OK	242.8536	850.3163	4.3000	24.0000	5.0000	5.0000	62.1816	62.5000	
	24	J[276]	scLCB1	FZ-MAX	OK	258.0930	850.3163	4.3000	24.0000	5.0000	5.0000	62.1816	62.5000	
	25	[41]	scLCB1	FZ-MAX	OK	282.8914	850.3163	4.3000	24.0000	5.0000	5.0000	62.1816	62.5000	
	25	J[277]	scLCB1	FZ-MAX	OK	298.1313	850.3163	4.3000	24.0000	5.0000	5.0000	62.1816	62.5000	
	26	[42]	scLCB1	FZ-MAX	OK	365.6245	850.3163	4.3000	24.0000	5.0000	5.0000	62.1816	62.5000	
	26	J[278]	scLCB1	FZ-MAX	OK	380.8649	850.3163	4.3000	24.0000	5.0000	5.0000	62.1816	62.5000	
	27	[6]	scLCB1	FZ-MIN	OK	-279.3709	850.3163	4.3000	24.0000	5.0000	5.0000	62.1816	62.5000	
	27	J[279]	scLCB1	FZ-MIN	OK	-263.6937	850.3163	4.3000	24.0000	4.5000	5.0000	62.1816	62.5000	
	28	[43]	scLCB1	FZ-MIN	OK	-221.6682	850.3163	4.3000	24.0000	4.5000	5.0000	62.1816	62.5000	
	28	J[280]	scLCB1	FZ-MIN	OK	-205.9909	850.3163	4.3000	24.0000	4.5000	5.0000	62.1816	62.5000	
	29	[44]	scLCB1	FZ-MIN	OK	-166.2912	850.3163	4.3000	24.0000	4.5000	5.0000	62.1816	62.5000	Image 2 25 Strength Limit
	29	J[281]	scLCB1	FZ-MIN	OK	-150.6137	850.3163	4.3000	24.0000	4.5000	5.0000	62.1816	62.5000	
	30	[45]	scLCB1	FZ-MIN	OK	-115.8761	850.3163	4.3000	24.0000	4.5000	5.0000	62.1816	62.5000	State(Snear) Results
	30	J[282]	scLCB1	FZ-MIN	ОК	-100.1984	850.3163	4.3000	24.0000	4.5000	5.0000	62.1816	62.5000	Table

Image 3-26. Strength Limit State-Shear Resistance Design Report

V. Strength Limit State - Shear Resistance

H. View Design Results

7 Service Limit State...

This table shows the Check results for Service Limit S as per Article 6.10.4.2.

The Check Results Table for Service Limit State, is as shown in image 3-27.

The design report for Service Limit State is as shown image 3-28.

Where,

fs : bending stress on web plate

fcrw : bending stress limit on web plate

fcf : compression-flange stress

fcf_lim : limitation of comp.-flange stress

fct : tension-flange stress

fct_lim : limitation of tension-flange stress

						1.00		<u> </u>	vi. serv	ice	Limit S	tate																	
						Ima	age 3-2	ð.	E F	Posi	itive mo	oment																	
						Sei	rvice Lin	nit –	1) D	Desid	gn Forc	es and s	Stresse	es															
						Sta	te Desi	gn –		oac	dcombii	nation N	lame :	SCLCE	35														
							Report		1	oad	dcombi	nation T	vpe	MY-N	1AX														
													/pc -	1							M	(kins-in)/f.	(ksi	i)				
											Co	mponer	it			Steel			T	Lor	na-te	erm	(/ ·c,t	Sho	rt_ter	m		Sum	
										_	Forces	1	()			101	160	402		201	1104	61 540		ino	0025	606	1	410	7 720
											FUICES		(+)			191	-00	495			1190	1.005			995.	0.090		410.	0 747
imit	S	Stat	e							S	Stresses		тор				-/.	317				-1.835			-(0.595			-9.747
	Ŭ												Bot				6.	/82	_			3.605				2.777			13.163
																								_					
									2) P	erm	nanent	deforma	tion (/	AASHI	O L	RFD Bri	idge	e, 20	12,	6.10	.4.2))							
									• Fl	ang	je Latera	al bendi	ng Str	ess (A	ASH	TO LRF	DB	Iridge	e, 2	012,	6.10	0.1.6)							
io c	.								E	Beca	ause of	discrete	ly brac	ced ter	nsior	n flange	e.												
, 15 0	15	>									M _w		Mw			88.73	35				_								
										Τ	=	=t,	.(b.) ² /	6	= -	108.0	000	=		14.2	52	KSI							
										+	-1	4		-	+			-	-										
										f.	_	14 252			-	0.6E -	+	_	42	000	kci			+					OK
										9	-	14.232		2	_	0.0Fyf		-	- 1 2.	500	KSI			+	_	_			UK
าดพr	n i	in										-											++				+		
	• •								• C	om	pression	n Flange	(AAS	HTO L	RFD	Bridge	, 20	12, (6.10	0.4.2.	2)			_		_			
									f	ŧ	=	-9.747	ksi		≤	0.9	95 F	ζ _h F _{yf}	=		64.9	38 ks	i						ок
									• Te	ensi	on Elan		нто і	LRFD E	Bridg	ge, 2013	2, 6	.10.4	1.2.	2)									
											ULL FIAL	ige (nna																	
									f	+ f ₁	/4 =	20	0.290	ksi		≤	0.	95 R	ь F,	a =	6	64.938	ksi						ок
									i i	+ f _i n w	/ 2 = /hich :	20	0.290	ksi		≤	0.	95 R	ь F,	4 =	6	64.938	ksi	_		_			ок
									i i	+ f _i n w	hich :	20).290	ksi due to	the	≤ Sen/ice	О.	95 R	h Fy	f =) ed v	64.938 vithout	ksi	der	ation	of fla		 Iteral h	OK
									i i	+ f _i n w	/ 4 = /hich : f _f =	flange s).290 tress c	ksi due to	the	≤ Service	0. e II	95 R oads	h Fy cal	f =	ed v	64.938 vithout	ksi consi	dera	ation	of fla	ange la	 iteral b	OK ending
									i i	+ f _i n w	1/4 = hich : $f_f =$ $F_{yf} =$	flange s).290 tress d d mini	ksi due to imum	the yield	≤ Service d streng	0. e II l gth	95 R oads of a	h Fy cal	r = Iculat nge (k	ed v (si)	64.938 vithout	ksi consi	dera	ation	of fla	ange la	iteral b	OK endin <u>c</u>
									il i	+ f _i n w	$f_{f} =$ $F_{yf} =$	flange s	0.290 tress d d mini	ksi due to imum	the yield	≤ Service d streng	0. e II l gth	95 R oads of a	s Fy cal flar	rf = Iculat nge (k	ed v (si)	64.938 vithout	ksi consi	dera	ation	of fla	ange la	iteral b	OK endin <u>c</u>
									• ct	+ f _I n w I	$f_{f} = f_{yf}$ $F_{yf} = f_{yf}$	flange s specifie	0.290 tress d d mini	ksi due to imum te decl	the yield	≤ Service d streng	0. e II l gth	95 R oads of a	h Fy cal	r = Iculat nge (k	ed v (si)	64.938 vithout	ksi consi	dera	ation	of fla	ange la	iteral b	OK endin <u>c</u>
									• ct	+ f _i n w 1 hecł	$f_f = f_{yf}$ $F_{yf} = f_{yf}$	flange s specifie of the c omposit	0.290 tress o d mini oncrei e secti	ksi due to imum te decl	the yield k posi	≤ Service d streng tive flex	0. e II l gth xure	95 R oads of a	+ Fy cal flar izec	rf = Iculat nge (k	ed v (si)	64.938 vithout	ksi : consi tructic	dera	ation	of fla	ange la	iteral b	ending
	_		Positive/				fc	fcrw	• ct	+ fi n w 1 heck	fr = k stress fcf lim	flange s specifie of the c omposit	0.290 tress of d mini oncret e secti	ksi due to imum te decl ion in	the yield k posi	≤ Service d streng tive flex 0.6 f	0. e II l gth xure f _e '	95 R oads of a utili	 F_y cal flan izec 	r = lculat nge (k l in sl 2.7	ed v (si) hore	64.938 vithout d cons	ksi : consi tructic	dera	ation	of fla	ange la	ateral b	OK
Elen	m	part	Positive/ Negative	Lcom	Туре	СНК	fc (kips/in^2)	fcrw (kips/in^2)	• ch	+ f ₁ n w 1 hecl	$f_f =$ $F_{yf} =$ $F_{yf} =$ $F_{zf} =$ $f_{zf} =$ $f_{zf} =$ $f_{zf} =$	flange s specifie of the c omposit).290 tress of d mini concret e secti f in^2) ((ksi due to imum te decl ion in ftf_lim kips/in'	the yield k posi	≤ Service d streng tive flex 0.6 f	0. e II l gth xure f _e '	95 R oads of a utili	cal	f = lculat nge (k d in sl 2.7	ed v (si) hore	64.938 vithout ed cons ksi	ksi consi	dera	ation	of fla	ange la	iteral b	OK endin <u>c</u> OK
Elen	m 1	part	Positive/ Negative Pos	Lcom scLCB5	Туре МZ-МАХ	СНК	fc (kips/in^2)	fcrw (kips/in^2)	• cł	+ f ₁ n w 1 hecl	$f_{f} =$ $f_{f} =$ $F_{yf} =$	20 flange s specifie of the c omposit (kips/ 0 9.2	0.290 tress (d mini concret e secti f in^2) (ksi due to imum te decl ion in ftf_lim kips/in/ 64.93i	the yield k posi	≤ Service d streng tive flex 0.6 f	0. e II l gth xure	95 R oads of a utili =	r Fy cal flar izec 24.	# = lculat nge (k 1 in sl 2.7 380	(red v (si) hore 700	64.938 vithout ed cons ksi	ksi consi tructio	dera	ation	of fla	ange la	iteral b	OK
Elen 7 7	m 7 1 (2 7 J(part [24] J[259]	Positive/ Negative Pos Neg	Lcom scLCB5 -	Type MZ-MAX	СНК ОК -	fc (kips/in^2) -	fcrw (kips/in^2) -	• ch (kips/in^ -4.248	+ f _I n w 1 heck Com	$f_f =$ $f_f =$ $F_{yf} =$	20 flange s specifie of the c composit 2) (kips/ i0 9.2).290 tress (d mini concret e secti f in^2) (078 -	ksi due to imum te decl ion in ftf_lim kips/in*	the yield k posi 1 2) 30 3 -	≤ Service d streng tive flex 0.6 1 97.245 22.879	0. e II gth xure f _c '	95 R oads of a utili = (h Fy cal flar izec 24.	# = lculat nge (k l in sl 2.7 380 958	ed v (si) hore (00)	64.938 vithout ed cons ksi	ksi consi tructic	dera	ation	of fla	ange la	iteral b	OK
Elen 7 7 7 7 7	m 7 [(2 7 J[7 J[part [24] J[259] J[259]	Positive/ Negative Pos Neg Pos	Lcom scLCB5 - scLCB5	Type MZ-MAX - MZ-MAX	СНК ОК - ОК	fc (kips/in^2) - -	fcrw (kipsín^2) - - -	• ch (kips/in^ -4.248	+ f ₁ n w 1 heck Com	i / 1 = thich : fr fr = k stress stress npact cc fcf_lim 64.938 64.938	20 flange s specifie of the c composit (kips/ 0 9.2 - 0 7.8).290 tress (d mini oncrei e secti f in^2) (ksi due to imum te decl ion in ftf_lim kips/in* 64.93	the yield k posi 2) - L	≤ Service d streng tive flex 0.6 f 97.245 22.879 58	0. e II gth f _c '	95 R oads of a • • utili =	+ Fy cal flar izec 24. 7.	# = lculat nge (k d in sl 2.7 380 958	ed v (si) (00) ()	od cons ksi	ksi consi tructio	dera on	ation ksi	of fla	ange la	ateral b	endin <u>c</u>
Elen 77 77 78 88	m 7 [[2 7 J[7 J[8 [[2	part [24] J[259] J[259] [25]	Positive/ Negative Pos Neg Pos Neg	Lcom scLCB5 - scLCB5 -	Type MZ-MAX - MZ-MAX -	СНК ОК - ОК	fc (kips/in^2) - - -	fcrw (kips/in^2) - - -	• ch • ch	+ f ₁ n w 1 hecl Corr 2) - 33 - 33 -	f_{f} = f_{hich} : f_{f} = F_{yf} = k stress hpact co fcf_lim (kips/in^2) 64.938	20 flange s specifie of the c composit (kips/ 0 9.2 - 0 7.8 - 0 7.8	0.290 tress (d mini oncrei e secti f in^2) (078 - 234 -	ksi due to imum te decl ion in ftf_lim kips/in/ 64.931	the yield k posi 2) - L 80 30 2	≤ Service d streng tive flex 0.6 1 97.245 22.879 58	0. e II gth f _c '	95 R oads of a e utili =	izec	r = lculat nge (k 1 in sl 2.7 380 958	(ed v (si) (00))	ed cons ksi	ksi consi tructio	dera on	ation	of fla	ange la	ateral b	OK
Elen 7 7 7 8 8	m 7 [[2 7 J] 8 [[2 8 [[2	part [24] [259] [259] [25] [25]	Positive/ Negative Pos Neg Pos Neg Pos	Lcom scLCB5 - scLCB5 - scLCB5	Type MZ-MAX - MZ-MAX - MY-MAX	СНК ОК - ОК	fc (kips/in^2) - - - - -	fcrw (kips/in^2) - - -	• ch • ch	+ f ₁ n w 1 heck Com 2) - 33 - 35	Image: A stress Image: A stress Fyr Fyr Image: A stress Image: A stress <td>20 flange s specifie of the c composit (kips/ 0 9.2 - 0 7.8 - 0 5.7</td> <td>0.290 tress of d mini concrei e secti f in^2) (0078 - 234 - 738</td> <td>ksi due to imum te decl ion in ftf_lim kips/in/ 64.934 64.934</td> <td>the yield k posi 1 2) - L 2 30 30</td> <td>≤ Service d streng 0.6 1 97.245 22.879 58</td> <td>0. e II gth fc') ·</td> <td>95 R 0ads of a 9 utili =</td> <td>h F_y cal flar izec 24. 7.</td> <td>ri = lculati nge (k 1 in sl 2.7 380 958</td> <td>ed v csi) hore (00</td> <td>64.938 vithout ed cons ksi</td> <td>ksi consider truction -0.31</td> <td>dera</td> <td>ation</td> <td>of fla</td> <td>ange la</td> <td>iteral b</td> <td> OK</td>	20 flange s specifie of the c composit (kips/ 0 9.2 - 0 7.8 - 0 5.7	0.290 tress of d mini concrei e secti f in^2) (0078 - 234 - 738	ksi due to imum te decl ion in ftf_lim kips/in/ 64.934 64.934	the yield k posi 1 2) - L 2 30 30	≤ Service d streng 0.6 1 97.245 22.879 58	0. e II gth fc') ·	95 R 0ads of a 9 utili =	h F _y cal flar izec 24. 7.	ri = lculati nge (k 1 in sl 2.7 380 958	ed v csi) hore (00	64.938 vithout ed cons ksi	ksi consider truction -0.31	dera	ation	of fla	ange la	iteral b	OK
Elem 7 7 7 8 8 8 8 8 8	m [17 7 [17 7][7][8 [17 8 [17 8][8][part [24] J[259] J[259] [25] [25] J[260] J[260]	Positive/ Negative Pos Neg Pos Neg Pos Neg Pos	Lcom scLCB5 - scLCB5 - scLCB5 - sclCB5	Type MZ-MAX - MZ-MAX - MY-MAX - MY-MAX	CHK 	fc (kips/in^2) - - - -	fcrw (kips/in^2) - - - -	-4.248 -3.936	+ f ₁ n w 1 heck Corr 22) (333 - 335 - 23	64.938 64.938	20 flange s specifie of the c composit (kips/ 0 9.2 - 0 7.8 - 0 5.7 - 0 5.4	0.290 tress (d mini oncrei e secti f (078 - 234 - 738 - 158	ksi due to imum te decl ion in ftf_lim kips/in' 64.931 64.931	the yield k posi - 2) - 30 - 30 - -	≤ Service d streng tive flex 0.6 f 97.245 22.879 58 nnector	0. e II gth f _c '	95 R oads of a e utili =	A Fy cal flar izec 24. 7.	# = lculat nge (k 1 in sl 2.7 380 958	ed v (si) (00)) dina	64.938 vithout ed cons ksi · =	ksi consi tructio	dera	ation ksi	of fla	ange la	ateral b	OK
Elen 77 77 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	m [7] 7 [2] 8 [2] 8 [2] 8 [2] 9 [2]	part [24] [259] [259] [25] [260] [260]	Positive/ Negative Pos Pos Pos Neg Pos Neg Pos Neg	Lcom scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5	Type MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX -	CHK OK - OK - OK - OK	fc (kips/in^2) - - - - - -	fcrw (kips/in^2) - - - - -	-4.248 -3.936 -2.822	+ f ₁ n w 1 heck Com 22) - 33 - 33 - 33 - 23 -	I / 2 = thich : fr fr = Fyr = k stress hpact cc fcf_lim (kips/in*) 64.938 64.938 64.938 64.938	20 flange s specifie of the c composit (kips/ 0 9.2 - 0 7.8 - 0 5.7 - - 0 5.4	0.290 tress c d mini oncrei e secti f f	ksi due to imum te decl ion in ftf_lim 64.931 64.931 64.933	the yield k posi - 2) - 30 - 30 - - - -	≤ Service d streng tive flex 0.6 fl 97.245 22.879 58	0. e II gth f _c ') ·	95 R oads of a e utili =	a cal flar ized 24. 7.	# = lculat d in sl 2.7 380 958	ed v (si) (00))	64.938 without ed cons ksi =	ksi c consi tructic -0.31	dera	ksi	of fla		ateral b	ending
Elen 77 77 88 88 88 89 99 99	m 7 ((2) 7 J(7 J(8 ((2) 8 J(8 J(8 J(9 ((2) 9 ((2) 9 ((2)	part [24] [259] [259] [250] [260] [260] [261] [26]	Positive/ Negative Pos Neg Pos Neg Pos Neg Pos Neg Pos	Lcom scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5	Type MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX	СНК ОК - ОК - ОК - ОК - ОК - ОК	fc (kips/in^2) - - - - - - - - - -	fcrw (kipsin*2) - - - - - - - - - -	• ch • ch	+ f ₁ n w theck Com - - - - - - - - - - - - - - - - - - -	I / 2 = thich : fr fr = Fyr = k stress hpact co fcf_lim (kips/in*) 64.938 64.938 64.938 64.938 64.938 64.938	flange s specifie of the c composit 2) (kips/ 0 9.2 - - 0 7.8 - - 0 5.7 - - - 0 5.4 - - 0 5.4 - -	0.290 tress c d mini oncrei e secti f in^2) (078 - - 738 - 158 - 322	ksi imum te decl on in ftf_lim kips/in/ 64.93i 64.93i 64.93i 64.93i	the yield k posi - 2) - 2) - 30 - 30 - 30 - - 30 - 30 - 30 - 30 -	≤ Service d streng tive flex 0.6 fl 97.245 22.879 58	0. e II gth f _c '	95 R oads of a • utili = • (cal flar izec 24. 7.	# = lculat nge (k lin sl 2.7 380 958 gitud 1	(ed v (si) hore (00))	64.938 vithout d cons ksi · =	ksi c consi tructic -0.31	dera	ksi	effla			OK
Elen 7 7 7 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9	m (1) 7 (1) 8 (1) 8 (1) 8 (1) 8 (1) 9 (1) 9 (1) 9 (1) 9 (1)	part [24] [259] [259] [25] [260] [260] [261] [261]	Positive/ Negative Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg	Lcom scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - -	Туре MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - - MZ-MAX -	CHK OK - OK - OK - OK - OK -	fc (kips/in^2) - - - - - - - - - - - - - -	fcrw (kips/in^2) - - - - - - - - - - - - -	• ch (kips/in^ -4.248 -3.936 -3.403 -2.822 -1.979	+ f _I n w 1 heck Com 22) - 33 - 35 - 23 - 99 -	I / I = I / I = thich : fr fr = Fyr = k stress npact cc fcf_lim = 64.938 64.938 64.938 64.938 64.938 64.938	flange s specifie of the c composit (kips/ 0 9.2 - - 0 7.8 - - 0 5.7 - - 0 5.4 - - 0 5.4 - - 0 4.4 -	0.290 tress c d mini oncre' e secti f - 234 - 234 - 158 - 322 - 322 -	ksi imum te decl on in ftf_lin kips/in' 64.93i 64.93i 64.93i	the yield k posi - 2) - - - - - - - - - - - - - - - - -	≤ Service d streng 0.6 f 97.245 22.879 58 nnector	0. e II gth f _c '	95 R oads of a e utili ((a cal flar izec 24. 7.	# = lculat nge (k lin sl 2.7 380 958	(ed v (csi)) (00)))	64.938 vithout d cons ksi - =	ksi c consi tructic -0.31	dera	ation ksi	effla			OK
Elen 7 7 7 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9	m (1) 7 (1) 7 J(7 J(8 (1) 8 J(8 J(9 (1) 9 J(9 J(9 J(9 J(9 J(9 J(part [24] [259] [259] [260] [260] [261] [261] [261]	Positive/ Negative Pos Neg Pos Neg Pos Neg Pos Neg Pos	Lcom scLCBS - scLCBS - scLCBS - scLCBS - scLCB5 scLCB5	Type MZ-MAX - - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX	СНК - ОК - ОК - ОК - ОК - ОК - ОК	fc (kips/in^2) - - - - - - - - - - - - - - - - - - -	fcrw (kips/in^2) - - - - - - - - - - - - - - - - - - -	- ch (kips/in^ -4.248 -3.936 -3.403 -2.822 -1.979 -1.084	+ f _I n w 1 heck Com 2) - 33 - 33 - 33 - 33 - - 23 - - 23 - - 14	$\begin{array}{l} (1/4) = \\ + 1/4 = \\$	flange s specifie of the c composit (kips/ 0 9.2 - - 0 5.4 - - 0 5.4 - - 0 5.4 - - 0 5.4 - - 0 5.4 - - 0 5.4 - -	0.290 tress c d mini oncre' e secti f	ksi due to imum te decl ion in ftf_lim kips/in/ 64.93i 64.93i 64.93i 64.93i 64.93i	the yield k posi 2) - 30 - 30 - 30 - 30 - 30 - 30	≤ Service Service d streng 0.6 f 97.245 22.879 58	0. e II gth f _c '	95 R oads of a e utili e (a Cal flar izec 24. 7.	r = lculat nge (k j in sl 2.7 380 958	(ed v (si)) (00))	64.938 vithout d cons ksi - =	ksi c consi tructic	dera	ation ksi	of fla	ange la		ending
Elem 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9	m 7 ((2) 7 J(8 ((2) 8 J(8 J(8 J(9 J(9 J(9 J(9 J(9 J(9 J(9 J(9	part [24] [259] [25] [25] [260] [260] [261] [261] [261] [261]	Positive/ Negative Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Neg Neg	Lcom scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 scLCB5 scLCB5	Type MZ-MAX - MZ-MAX - MY-MAX - MZ-MAX - MZ-MAX MZ-MAX MZ-MAX	CHK - OK - OK - OK - OK - OK - OK	fc (kips/in^2) - - - - - - - - - - - 0.6659	fcrw (kips/in^2) - - - - - - - - - - - - - - - - - - -	- ch (kips/in^ -4.248 -3.936 -3.403 -2.822 -1.979 -1.084 -0.665	+ f ₁ n w 1 heck Corr 2) - 33 - 35 - 35 - 23 - 99 - 44 59	$(x_1 - x_1) = (x_1 - x_1) + $	flange s specifie of the c composit (kips/ 0 9.2 - - 0 5.4 - - 0 5.4 - - 0 5.4 - - 0 5.4 - - 0 5.4 - - 0 5.4 - - 0 5.4 - - 0 5.4 - - 0 5.4 - - 0 5.4 - - - 0 5.4 - - - - - - - - - - - - - - - - - - -	0.290 tress c d mini oncre e secti f in^2) (0078 - 234 - 738 - 322 - 3222 - 6660 531	ksi due to imum te decl ion in ftf_lim kips/in/ 64.93i 64.93i 64.93i 64.93i 64.93i 64.93i 64.93i	the yield k posi - 2) - 30 - - - - - - - - - - - - - - - - -	≤ Service d streng tive flex 0.6 f 97.245 22.879 58	0. e II gth f _c '))	95 R oads of a e utili e (a Cal flar ized 24. 7.	f = lculat nge (k l in sl 2.7 380 958	(ed v (si))))	64.938 vithout d cons ksi - =	ksi c consi tructic -0.31	dera	ation ksi	of fla	ange la		ending
Elen 77 77 88 88 88 88 99 99 99 99 99 99 99 100	m 7 I(2 7 J(7 J(7 J(8 I(2 8 J(9 I(2 9 J(9 J(9 J(9 J(9 J(9 J(9 J(1 0 I(2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	part [24] [259] [259] [250] [260] [260] [261] [261] [261] [271] [271] [27]	Positive/ Negative Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos	Lcom scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 scLCB5 scLCB5 - scLCB5 -	Type MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX -	CHK OK - OK - OK - OK - OK - OK - OK - OK	fc (kips/in^2) 	fcrw (kips/in^2) - - - - - - - - - - - - - - - - - - -	-1.0845	+ f _I n w 1 heck Corr 22) (33 - 33 - 33 - 33 - 23 - 99 - 14 59 - -	$(x_1 - x_1)^{-1}$ $(x_1 - x_1)^{-1}$ $(x_1$	2(C 2(C 2(C 2(C) 2(C	0.290 tress c d mini oncre e secti f in^2) (0078 - 234 - 234 - 322 - 3222 - 6660 531 - 555	ksi imum te decl ion in ftf_lim ft4.93i 64.93i 64.93i 64.93i 64.93i 64.93i 64.93i 64.93i 64.93i 64.93i	the yield k posi - 30 - 30 - - - -	≤ Service d streng tive flex 0.6 fl 97.245 22.879 58	0. e II l gth f _c ') ·	95 R oads of a e utili = ((a cal flar izec 24. 7.	a = loculatinge (k	(ed v ssi) hore (00))	64.938 vithout d cons ksi - =	ksi consi tructic -0.31 ners	dera	ation	€			ending
Elen 77 77 88 88 88 99 99 99 99 99 100 100 100	m 7 U(1 7 J(7 J(8 U(1 8 J(8 J(8 J(9 U(1 9 J(9 J(9 J(9 J(9 J(9 J(0 U(1 1 0 U(1 1 0 U(1 1 0 J(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	part [24] [259] [259] [260] [260] [261] [261] [261] [27] [27] [27] [27] [262]	Positive/ Negative Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos	Lcom scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - -	Type MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - - - - - - - - - - - - - - - - - - -	CHK OK - OK - OK - OK - OK - OK - OK - OK	fc (kips/in^2) - - - - - - - - - - - - - - - - - - -	fcrw (kips/in*2) - - - - - - - - - - - - - - - - - - -	-1.909	+ f _I n w theck Corr 22) (333 - 35 - 35 - 35 - - 23 - - - 14 59 - - 14	$\begin{array}{l} (h) + (a) \\ + (h) + (b) \\ + (h) + (b) \\ + (h) + (h) \\ + (h) + (h)$	2(C 2(C 2(C 2(C) 2(C) 2(C) 2(C) 2(C) 2(C	0.290 trress c d mini oncrei e secti f f	ksi imum te decl ion in ftf_lim 64.93i 64.93i 64.93i 64.93i 64.93i 64.93i 64.93i 64.93i 64.93i 65.23;	the yield k posi - 30 - 30 - 30 - - 25 - - 25	≤ Service d streng 0.6 f 97.245 22.879 58 nnectoi	0. e II l gth f _c ') ·	95 R oads of a e utili = ((A Fy cal flar ized	a = loculat Inge (k 1 in sl 2.7 380 958	(ed v (si) (00))	64.938 vithout d cons ksi - =	ksi consi tructic -0.31	dera	ation ksi	€			ending
Elen 7 7 7 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9	m 7 ((2) 7 J(8 ((2) 8 J(8 J(9 ((2) 9 J(9 J(9 J(9 J(9 J(0 ((2) 0 ((2)))))))))))))))))))))))))))))))))))	part [24] [259] [25] [26] [26] [26] [26] [26] [26] [27] [27] [27] [27] [27] [27] [27] [27	Positive/ Negative Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg	Lcom scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 -	Type MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - FZ-MAX - FZ-MAX - MY-MIN -	CHK - OK - OK - OK - OK - OK - OK - OK	fc (kips/in*2) - - - - - - - - - - - - - - - - - - -	fcrw (kips/in^2) - - - - - - - - - - - - - - - - - - -	-1.909 -3.419	+ f ₁ n w 1 heck Com 2) (33 - 33 - 33 - 33 - 23 - 23 - 23 - 23	1/4 = -1/4 = -1/4 1/4 = -	2(C 2(C 2(C 2(C) 2(C) 2(C) 2(C) 2(C) 2(C	0.290 tress c d mini oncrei e secti f m^2) (0078 - - 738 - - 738 - - 660 531 - - 665	ksi due to imum te decl ion in ft_lim kips/in/ 64.93i 64.93i 64.93i 64.93i 64.93i 64.93i 64.93i 65.23; 65.23;	the yield k posi 30 3 30 - - - - - - - - - - - - - - - -	≤ Service Service distreng 0.6 f 97.245 22.879 58	0. e II l gth f _c '	95 R oads of a e utili = (A Fy cal flar izec 24. 7.	a = lculat lculat 1 in sl 2.7 380 958	ed v (si) (00)	64.938 vithout d cons ksi · =	ksi consi tructic -0.31	dera	ksi	of fla	ange la		endin
Elem 77 77 88 88 88 99 99 99 99 99 100 100 100 100 101 111	m 7 ([2 7 J] 7 J] 8 ([2 8 J] 9 ([2 9] 9 [[2 9 J] 9 J] 9 J] 9 J] 0 ([2 1] 1 ([2 1] 1] 1] 1] 1]	part [24] [259] [259] [25] [260] [260] [261] [261] [261] [261] [262] [262] [262] [262] [262] [262] [262] [262]	Positive/ Negative Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos	Lcom scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - -	Type MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - FZ-MAX - FZ-MAX - -	СНК - ОК - ОК - ОК - ОК - ОК - ОК - ОК -	fc (kips/in*2) - - - - - - - - - - - - - - - - - - -	fcrw (kips/in^2) - - - - - - - - - - - - - - - - - - -	-1.979 -3.414	+ f ₁ n w 1 heck Corr 2) - 33 - 35 - - 23 - - - - 44 - - - - - - - - - - - - - -	1/1 = $1/2$	2(C flange s specifie of the c omposit of the c omposit of the c omposit of the c omposit of the c omposit of the c of the).290 trress c d mini oncret e secti f - 234 - 234 - 234 - 234 - 322 - 322 - 322 - 531 - - 531 - 531 - 531 - 531 - 531 - 531 - 531 - 531 - 531 - 531 - 531 - 531 - 531 - 531 - 531 - 531 - 531 - 5 - 531 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	ksi due to imum te decl ion in ft_lin kips/in/ 64.931 64.931 64.933 64.933 64.933 64.933 65.232 65.232	the yield k posi 22) - - - - - - - - - - - - - - - - - -	≤ Service d streng Utive flex 97.245 58 nnector	0. 2 II gth xure f _c ' 1) ·	95 R oads of a e utili = (a F _y cal flar izec 24. 7.	a = lculat lculat d in sl 2.7 380 958	ed v (si) (00))	64.938 vithout d cons ksi	ksi consi tructic -0.31	dera	ation ksi	of fla			OK
Elem 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 9 100 100 100 100 100 101 111 11	7 1(2 7 1 7 1 7 1 8 1 8 1 9 1 9 1 9 1 9 1 10 1 11 1 11 1	part [24] [259] [259] [25] [260] [260] [260] [261] [261] [261] [262] [262] [262] [262] [262] [263]	Positive/ Negative Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Neg	Lcom scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 -	Type MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - - - - - - - - - - - - -	CHK - OK - OK - OK - OK - OK - OK - OK -	fc (kips/in^2) - - - - - - - - - - - - - - - - - - -	fcrw (kips/in^2) - - - - - - - - - - - - - - - - - - -	-1.909 -3.414 -5.123	+ f ₁ n w 1 heck Com 22) 4 - - - - - - - - - - - - - - - - - -	$\begin{array}{l} (k) + (k) +$	2(C 2(C 2(C 2(C) 2(Kips/) 2(Kips/) 2)(Kips/) 0 9.2.2 - 0 5.7.7 - 0 5.13.1 - 5 1.3.5 - 5 4.0.5 - 5 5.4.0).290 tress of d mini oncrei e secti f in^2) (078 - 234 - 322 - 3322 - 6660 - 531 - - 056 - - - 056 - - 290	ksi due to imum te decl ion in ftf_lim kips/in/ 64.93i 64.93i 64.93i 64.93i 64.93i 64.93i 65.23i 65.23i 65.23i	the yield k posi	≤ Service d streng tive flex 97.245 22.879 58	0. = II gth f _c ') ·	95 R oads of a e utili = ((a F _y cal flar ized 24. 7.	# =	ed v (si) (00))	64.938 vithout d cons ksi I Stiffe	ksi consi tructic -0.31	dera	ation ksi	of fla			OK
Elem 77 77 88 88 88 99 99 100 100 100 100 100 111 111 111	7 I(2 7 J(2 7 J(2 8 I(2 9 I(2 9 J(2 1 I(2 1 J(1 1 J(1	part [24] [259] [25] [26]	Positive/ Negative Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos	Lcom scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 -	Type MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - - - - - - - - - - - - -	CHK - OK - OK - OK - OK - OK - OK - OK -	fc (kips/in*2) - - - - - - - - - - - - - - - - - - -	fcrw (kips/in^2) - - - - - - - - - - - - - - - - - - -	-1.909 -3.413	+ f ₁ n w 1 heck Com 2) (33 - 22) (33 - 23 - 23 - 23 - 23 - 23 - 23 - 23	$\begin{array}{l} (F_{1}) = \\ (F_{1}) = \\ F_{2}f = \\ F_{2}f = \\ F_{2}f = \\ F_{3}f = \\ F_{3}f = \\ F_{4}f = \\ F_$	2(C 2(C 2(C 2(C) 2(Kips/) 2(Kips/) 2)(Kips/) 2)(Kips/) 0 9.2 - 0 5.7.7 - 0 5.7.7 - 0 5.7.7 - 5 0.2.5 - - 5 5 4.0.0 -).290 tress of d mini oncrei e secti f (n^2) (078 - 234 - 234 - 158 - - 158 - - - 056 - - - 056 - - - 056 - - - - - - - - - - - - - - - - - - -	ksi due to imum te decl ion in ftf_lim ftf_lim ft4.93i 64.93i 64.93i 64.93i 64.93i 65.23; 65.23; 65.23;	the yield k posi	≤ Service Service 0.6 f 97.245 22.879 58 0.6 f 97.245 22.879 58	0. = II gth f _c ') · · ·	95 R oads of a e utili = ((An Fy cal flar izec 24. 7.	# =	ed v (si) (oo))	64.938 vithout d cons ksi - =	ksi consi tructic -0.31 ners	dera	ation ksi	of fla			OK
Elen 77 77 88 88 88 99 99 99 99 99 99 100 100 100 100 101 111 11	m (1) 7 (1) 7 J(7 J(8 (1) 8 (1) 8 J(9 J(9 J(9 J(9 J(0 J(0 J(0 J(0 J(0 J(0 J(0 J(0	part [24] [259] [25] [26] [26] [26] [26] [26] [26] [27] [27] [27] [27] [27] [27] [28]	Positive/ Negative Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg	Lcom scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 - scLCB5 -	Type MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - MZ-MAX - FZ-MAX - FZ-MAX - FZ-MAX - MY-MIN - MY-MIN	CHK - OK - OK - OK - OK - OK - OK - OK -	fc (kips/in^2) - - - - - - - - - - - - - - - - - - -	fcrw (kips/in*2) - - - - - - - - - - - - - - - - - - -	-1.909 -7.150	+ f ₁ n w 1 heck Com 2) (33 - - - - - - - - - - - - - - - - - -	$\begin{array}{l} (4) - (4) \\ (7) - (4) \\ (7) - (4) \\ (7) - (7) \\$	2(C 2(C 2(C 2) 2(T) 2(T) 2(T) 2(T) 2(T) 2(T) 2(T) 2	0.290 tress of d mini oncrei e secti f in^2) (0078 - 234 - 234 - 234 - 322 - 322 - 660 - 6531 - - 660 - 660 - 675 - - - 3026 - - - - - - - - - - - - - - - - - - -	ksi due to imum ftf_li	the yield k posi - L - L - L - L - L - L - L - L - L - L	≤ Service d streng 0.6 f 97.245 22.879 58	0. a II gth xure f _e ') ·	95 R oads of a e utili =	h F _y cal flar izec 24. 7.	a = lculatinge (k	ed v (si) (oo))	64.938 vithout d cons ksi I Stiffe	ksi consi tructic -0.31	dera	ation ksi	of fla			OK

Image 3-27. Service Limit State Results Table

H. View Design Results

7 Fatigue Limit State...

This table shows the Check results for Fatigue Limit State as per Article 6.10.5.1 and 6.10.5.3.

The Check Results Table for Fatigue Limit State, is as shown in image 3-29.

The design report for Fatigue Limit State is as shown in image 3-30.

Elem

part

OK

ок ОК

ОК

OK

ОК

OK

OK OK

ок

13 J[265]

14 J[266]

15 [[31]

15 J[267]

16 [[32] 16 J[268]

17 [33]

17 J[269]

18 [34]

18 .1[270]

19 J[271]

20 [36]

20 J[272]

21 [37]

21 J[273]

22 [38]

22 J[274]

23 [39]

23 J[275] 24 1401 Fatique Limit State

19 [[35]

14 [5]

Where,

Lcom: Load combinations used in the calculation

 $\mathbf{v}(\Delta f)$: Range of Fatigue Limit State

(Δf)n : Nominal Fatigue Resistance

Vu : maximum shear elasticity stress

on web plate

Vcr : shear resistance value

		Imaa	~ 2 20 VI	II. Fa	tigue Lin	nit State															
		linay Fatim			Fatigue	moment															
		Fatigl		1)) Design F	orces and S	tresses														
		State	Design		Loadcor	nbination N	ame : so	LCB8													
		Re	eport											М.,	(kips-i	in) / f	(ks	i)			
					- C	omponent		L	СВ		ç	lool	1	na-t	term	Sh	ort-t	erm		Sum	
						Ton/To	PC)				101	50.402	1	106	1 540		2211	170	22	11.17	70
					_	Top(Te	115.)		-		191	00.495	L	1190	1.549		5211		-52	11.1/	•
				_	Force	Top(Co	mp.)		-			0.000			0.000		0	.000	0	.000	
						Bot(Te	ns.)		-			0.000			0.000		0	0.000	0	.000	
2						Bot(Cor	mp.)		-		191	50.493	1	196	1.549	-	3211	178	-32	11.17	8
,						Top(Te	ns.)		-			-6.931		-	1.686		0	.162	0	.162	
						Top(Co	mp.)		-			0.000		(0.000		0	.000	0	.000	
					Stresse	Bot(Te	ns.)		-			0.000			0.000	-	0	.000	0	.000	
				-	-	Bot(Cor	mn)		-			6 3 9 5			3 4 5 6		-0	868	-(1 868	
						001(00)	np./					0.555	-		0.450						_
				-	1	al-ta att - 11															
				_	Loadcor	nbination N	ame : so	LCB8													
					Con	ponent	V,													_	
					0011	ponent	(kip	s)													
					She	ar Force	-69.6	26													
				2	l oad-Ind	luced Fatiqu	e (AASE		D Bride	ne 20	12 66	12)									t
				-	The stre	se from unfo	actored I				9.9	51 kei	1	Con	onrocc	ion)		_		_	+
					The stre	ss from the	ictoreu i			-	0.0	60 lui	(Con	ipiess	ionij					+
				_	The stre	ss from laug	ессв			-	-0.0	oo ksi					_			_	-
					Charles	and to do an	I Fatian				6	al DL 3			: La			_			+
				_	Спеск L	oad-Induced	a Fatigu	e. [The s	tress tr	om u	factor	ed DL I	s the	tens	lie stre	ess.j	_	_		_	-
					No	Catagor		(ADT		dum	bor of	troce (r						_			+
					110	Categor	У	1000 (/SL	vurri	1.00	suess (i								_	+
				_	1	L.		1000.0	00		1.000	,									-
				_	(4.0.770.0	100	0.00				- 124 1 -	E altimus	71		de fra		1.0		74	E 00	
				_	(ADTI)S	L(100	0.00)	> 0	onstan	it-Am	plitude	Fatigue	einre	esnoi	as tro	mia	DIE 6.	0.1.2.	/4	10.00)
	1	Gamma(df)	(df)n			Vu	, ,	/cr	ī —												
нк	Lcom	(kips/in^2)	(kips/in^2)		com	(kips/in^2)	(kip	s/in^2)													
	scLCB8	2.0800	12.0000	scL(CB8	234.5721		540.7591	L.2.5-	3 Cor	stant-	Amplitu	ide Fa	atigu	e Thre	shold	s				
	scLCB8	0.0067	12.0000	scL(CB8	-146.5665		540.7591													
	scLCB8	0.4805	12.0000	SCL(CB8	-134.3773		540.7591													T
	SCLCB8	0.9018	12.0000	SCL(088	-113.6819		540.7591	1					-			-				+
	SCLUBO SCLUBS	1.2049	12.0000	scl	B8	-101.4926		540.7591	(ΔF)- =	12.0	00 ksi									ж
	scLCB8	1.6953	12.0000	scL(CB8	-71.3199		540.7591									-				-
	scLCB8	1.8952	12.0000	scL(CB8	-56.8262		540.7591	ecto	rs	Long	jitudina	al Stif	ffene	rs		(+)				
	scLCB8	2.0860	12.0000	scL(CB8	-44.6366		540.7591													
	scLCB8	2.9536	12.0000	scL(CB8	-34.0574		379.7924	_												
	scLCB8	3.1488	12.0000	SCL(CB8	-22.3559		379.7924	-												
	SCLUB8	3.2597	12.0000	SCL	288 288	35.4403		379.7924	-												
	SULUDO	3 4549	12.0000	SCL	CB8	62 7343		379 7924													
	sci CB8					02.1040		379 7924													
	scLCB8 scLCB8	3.4877	12.0000	scL(CB8	74.4363		010.102.													
	scLCB8 scLCB8 scLCB8	3.4877 3.4368	12.0000	scL(CB8	74.4363 90.2373		379.7924													
	scLCB8 scLCB8 scLCB8 scLCB8	3.4877 3.4368 3.4418	12.0000 12.0000 12.0000	scL(scL(CB8 CB8 CB8	74.4363 90.2373 101.9395		379.7924 379.7924													
	scLCB8 scLCB8 scLCB8 scLCB8 scLCB8	3.4877 3.4368 3.4418 3.3679	12.0000 12.0000 12.0000 12.0000	scL(scL(scL(scL(088 088 088 088	74.4363 90.2373 101.9395 120.9755		379.7924 379.7924 379.7924 379.7924													
	scLCB8 scLCB8 scLCB8 scLCB8 scLCB8 scLCB8	3.4877 3.4368 3.4418 3.3679 3.2798	12.0000 12.0000 12.0000 12.0000 12.0000	scL(scL) scL(scL)	088 088 088 088 088 088	74.4363 90.2373 101.9395 120.9755 132.6780		379.7924 379.7924 379.7924 379.7924 379.7924													
	scLCB8 scLCB8 scLCB8 scLCB8 scLCB8 scLCB8 scLCB8	3.4877 3.4368 3.4418 3.3679 3.2798 2.3430	12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000	scL0 scL0 scL0 scL0 scL0	CB8 CB8 CB8 CB8 CB8 CB8 CB8 CB8	74.4363 90.2373 101.9395 120.9755 132.6780 149.8292		379.7924 379.7924 379.7924 379.7924 379.7924 540.7591	-												
	scLCB8 scLCB8 scLCB8 scLCB8 scLCB8 scLCB8 scLCB8 scLCB8 scLCB8 scLCB8	3.4877 3.4368 3.4418 3.3679 3.2798 2.3430 2.3155 2.9700	12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000	scL(scL) scL(scL) scL(scL)	CB8 CB8 CB8 CB8 CB8 CB8 CB8 CB8 CB8 CB8	74.4363 90.2373 101.9395 120.9755 132.6780 149.8292 162.0203		379.7924 379.7924 379.7924 379.7924 379.7924 540.7591 540.7591	-												

Image 3-29. Fatigue Limit State Results Table

H. View Design Results

7 Constructibility(Flexure)...

This table shows the Constructibility Check results for flexure as per Article 6.10.3.2.

The Constructibility Check Results Table for flexure, is as shown in image 3-31.

The design report for Constructibility(Flexure) is as shown in image 3-32.

Where.

fbuw : bending stress on web plate phiFcrw : bending stress limit on web plate fbuc : compression-flange flexural stress phifc : limitation of compression-flange flexural stress fbut : tension-flange flexural stress phift : limitation of tension -flange flexural stress fdeck : concrete deck flexure elasticity phifr : concrete deck flexure elasticity limit state

H. View Design Results

7 Constructibility(Shear)...

This table shows the Constructibility Check results for shear as per Article 6.10.3.3.

The Constructibility Check Results Table for shear, is as shown in image 3-33.

The design report for Constructibility(Shear) is as shown in image 3-34.

Where.

CS: most critical construction stage for shear before composite action Step : step in the most critical Construction stage Vu : shear due to the factored load phiVcr : shear-buckling resistance multiplied by phi

		Elem	part	Positive/Ne gative	Lcom	CS	Step	СНК	fbuw (kips/in^2)	phiFcrw (kips/in^2)	fbuc (kips/in^2)	phiFc (kips/in^2)	fbut (kips/in^2)	phift (kips/in^2)	fdeck (kips/in^2)	phifr (kips/in^2)
		12	[29]	Neg	scLCB3	CS2	1	ОК	5.7992	67.5756	10.3286	68.6658	11.8255	68.6658	0.2827	0.4582
		12	J[264]	-	-	-	-	-	-	-	-	-	-	-	-	-
		12	J[264]	Neg	scLCB3	CS2	1	OK	7.9048	67.5756	14.8221	68.6658	17.0368	68.6658	0.3853	0.4582
		13	[30]	-	-	-	-	-	-	-	-	-	-	-	-	-
		13	[30]	Neg	scLCB3	CS2	1	OK	10.2147	67.5756	20.1595	68.6658	23.2574	68.6658	0.4979	0.4582
		13	J[265]	-	-	-	-	-	-	-	-	-	-	-	-	-
		13	J[265]	Neg	scLCB3	CS2	1	OK	12.7711	67.5756	19.9160	68.6658	22.5486	68.6658	0.6226	0.4582
		14	[5]	-	-	-	-	-	-	-	-	-	-	-	-	-
		14	[5]	Pos	scLCB3	CS2	1	OK	0.0473	57.8753	1.0006	68.6658	0.8162	68.6658	-0.0021	0.4582
1		14	J[266]	-	-	-	-	-	-	-	-	-	-	-	-	-
Image 3-31.		14	J[266]	Pos	scLCB3	CS2	1	OK	1.5137	57.8753	1.5730	68.6658	1.4562	68.6658	-0.0686	0.4582
onstructibility (Flexure)		15	[31]	-	-	-	-	-	-	-	-	-	-	-	-	-
Desute Table		15	[31]	Pos	scLCB3	CS2	1	OK	2.8098	57.8753	4.8705	68.6658	4.2832	68.6658	-0.1274	0.4582
Results l'adle	4 1	1 Cone	tructibility	(Elovuro) /												

С

H. View Design Results

Image 3-32. Constructibility-Flexure Design Report

Image 3-34. Constructibility-Shear Design Report

H. View Design Results

牙 Shear Connector...

This table shows the Shear Connector Check results for Fatigue Limit State and Strength Limit State as per Article 6.10.10.2 and 6.10.10.4 respectively.

The Check Results Table for Shear Connector, is as shown in image 3-35.

The design report for Shear Connector is as shown in image 3-36.

Where,

H/D : Height to Diameter Ratio (> 4.0)

(H/D)lim : Height to Diameter Ratio Limit Value(=4.0) p : Pitch

p lim1 : Pitch Limit Value ->nZI/(Vsr)

p lim2 : Pitch Limit Value -> 4*d

s : shear connector spacing(Transverse Cross Section)

edge : distance of the top compression flange edge_lim (=1.0 in)

Cover : Value of Cover (> 2.0 in)

Penetration : The depth of penetration of the shear connector(>2.0in)

n : number of shear connectors in each row transversely

n_Req : Total number of shear connectors required

X.	Shear	r Conner	tors							Ima	ae 3-1	30										
	I	Element			75					Fati	aue Li	mit										
		Position			J					Stat	yue Li	ian										
	There	is no Sh	ear Conn	ector Inf	formatic	on. Skip this ch	neck.			Siai F	e Des Renort	ign										
		Element			368					'	lopon											
		Position			1																	
	Loado	ombinat	ion Name		scl CB8																	
	Loude																					
	1. Тур	pes (ASH	ITO LRFD	Bridge	e Desigi	n Specificatio	ns, 2012, 6.10	.10.1.1)														
	ł	H		8.000	_ ≥	4.000																
	(in	a which :																				
		H	-	7.0	00 in	(height of stur	d)															
		d	-	0.8	75 in	(diameter of s	tud)															
		-	_																			
	2. Pit	ch (AASI	ITO LRFE) Bridge	e, 2012,	6.10.10.1.2)																
	1) Sł	near Fatig	jue Resist	ance (A	ASHTO	LRFD Bridge, 2	2012, 6.10.10.2	2)	In	nag	e 3-36	5. Shea	r Co	nne	ctor L	Desig	n Re	port				
	((ADTT) _{SL}	≥	960					5. Stren	ath L	imit Stat	e										
	2	Z _r =	5.5 ·d²		=	4.211 kips			1) Facto	ored S	hear Resi	stance of a	single	e shear	connec	tor (AA	SHTO L	RFD B	ridge, :	2012, 6.	10.10.4.1)
	in	which :				(D) (Qncal	=	0.5A _{sc} ·√	(f _c ' E _c)		=	38.502	kips						
		d	=	1000.0	/5 in	(Diameter of s	stud)		Q _{nlim}	=	$A_{sc} \cdot F_u$			=	36.079	kips						
	(ADTI) _{SL}	=	1000.00	00	(Article 3.6.1.4	4.2)		$\therefore \ Q_n$	=	min(Q _{nc}	_{al} , Qn _{lim})		=	36.079	kips						
	•	75	J 368	I S	hear C	onnectors	Longitudina	al Stiffener	Q,	=	$\Phi_{\mathbf{s}\mathbf{s}}\cdot Q_n$			=	30.667	kips						
									in w	hich :												
										f _c '	=	4.500	ksi									
									_	E,	=	3644.147	ksi									
									_	Asc	=	0.601	in*									
										F.,	=	60.000	KSI									
										Ψ	=	0.650						_				
									2) Nom	inal S	bear Ford	e (Positive	Flexur			RED Brid	iae 201	2 6 1	0104	2)		
									- Nom	ninal S	Shear For	ce		, AA.			/gc, 201	2, 0.1	0.10.4	-/		
									P10	=	0.85f,'	b, ∙t,			= 3	3924.45	0 kips					
									P ₂₀	=	F·D·t.	+ Fve bette	+ Fvert	b _{fe} ·t _{fe}	= 8	3590.62	5 kips					
									∴ P _p	=	min(P1	, P ₂₀)	T T		= 3	8924.45	0 kips					
									Pin	=	F _{yw} ·D·t _w	+ Fyt-bft-tft	+ Fyert	b _{fe} ·t _{fe}	= 8	3590.62	5 kips					
									P _{2n}	=	0.45f _c ' ·	b₅ · t₅			= 2	2077.65	0 kips					
									$\mathbb{R} = P_n$	=	min(P ₁	, P _{2n})			= 2	2077.65	0 kips					
									PT	=	$P_p + P_n$	= 39	24.45	i0 +	2077.6	550 =	600	2.100	kips			
									FT	=	6	56.112 kip	s									
									.: P	=	√ [(I	$(P_T)^2 + (F_T)^2$			= 6	5037.85	5 kips					
									∣in wi	75	J 36	8 I She	ar Co	nnect	ors	Longi	itudinal	Stiffe	ners	(÷)	
											-					9					0	
_													_					_				_
	Elem	part	Lcom	Туре	СНК	H/D	(H/D)lim	p	p_lin	n1	S	p_lim2	•	edge	edge	lim	Cover	Pene	etration	n	n req	.
_	11	11291	nol CP9		OK	(III)	(III) 4.0000	(III) 5.0000	(IN)	102	(III)	(III) 2 500		(11)	(in	,	(III)		(11)	2 000	107.00	
-	11	1[20] .[[263]	SCLUB8	-	-	8.0000	4.0000	5.0000	40.1	102	4.0000	3.500	- 4	.3025	1.0		4.5000	4	.5000	3.000	197.00	-
	12	[29]	scLCB8	-	ОК	8.0000	4.0000	5.0000	32.7	521	4.0000	3.500	0 4	.5625	1.0	0000	4.5000	4	1.5000	3.000	197.00	0
	12	J[264]	-	-	-	-	-	-		-	-		-	-		-	-		-	-		-
1	13	[30]	scLCB8	-	ОК	8.0000	4.0000	5.0000	24.3	975	4.0000	3.500	0 4	.5625	1.0	0000	4.5000	4	.5000	3.000	197.00	0

Image 3-35. Shear Connector Results Table

♦ ► Shear Connector

H. View Design Results

Longitudinal Stiffener...

This table shows the Check results for Longitudinal Stiffener as per Article 6.10.11.3.

In this tutorial, longitudinal stiffener is not entered. Once the user enters the longitudinal stiffener in Section Properties dialog box, The design report for Longitudinal Stiffener is as shown in image 3-38.

Where,

bl : Projected width
bl_lim : Limit of projected width
l : Moment of inertia of cross-section
l_lim : Limit of moment of inertia of cross-section
r : Turning Radius
r_lim : Limit of turning radius
fs : Horizontal stiffeners flexure elasticity
phiRhFys : Horizontal stiffeners flexure elasticity

	Lon	gitu	ıdin	al St	iffener	S													
E	Eler	nent	t		1	75													
I	os	ition	1			J													
1)	Lon	gitu	dina	al Sti	feners	(AA)	SHTO LI	RFD B	ridge	, 20	12,	6.10	0.11	.3)					
1	Pro	ject	ing	Widt	h (AAS	SHTC) LRFD I	Bridge	, 201	12, 6	5.10	.11.3	3.2)						
	bı	=		5.0	000	≤	0.4	8 t, √	E F _{vs}	=		23.1	120	in					 OK
	in v	vhic	h :						-										
		t,	=		2.000	in	(thickn	ess of	f long	jitud	dina	l stif	fene	er)					
		Fys	=		50.000	ksi													
G) M	ome	ent o	of Ine	ertia an	d Rad	dius of (Syratio	on (A	ASH	ITO	LRF	DB	ridge	e, 2012	, 6.1	0.11	3)	
	I	=	1	.67.7	92	≥	D	·t _w ³·	(2.4	· · (d ₀ D) ² -	0.1	3)β	76.9	67	in ⁴		ОК
								0.	16 d.		Fys								
	r	=		3.4	402	≥		0	10 00	F	E		=		1.599	in			ок
							N N	(1.	- 0.6	Rh	- F.,)							
	in v	vhic	h:			-													
		I	:	Mor	nent of	iner	tia of a	lonait	udina	al w	eb s	tiffe	ner	(in ⁴)					
		r	:	Radi	us of q	vrati	on of a	longit	udina	al w	eb s	tiffe	ner	(in)					
		do	=		90.000	in	(transv	erse s	tiffen	er s	pac	iniq)							
		t,	=		0.500	in	(thickn	ess of	f web)									
		β	=	Z/6	+ 1 =		2.257												
		z	=	min-	0.95 c R·t,	10 ²	- , 10.0] =		7.	544								
		R	=	2	040.000	in	(Girder	radiu	s)										
2)	Flex	ural	stre	ess in	the lor	ngitu	dianl sti	ffener	rs (AA	٩SH	то) Br	idge,	2012,	6.1	0.11.	3.1)	
	f,	=		7.7	75	≤	Φ	$r \cdot R_h$	- F _{ys}	=		48.8	26	ksi					OK
	in v	vhic	h :																
		Φ _f	=		1.000														
										_									

Image 3-38. Long. Stiffener Design Report

Cross Frame Design

Steel plate girder bridges make use of traditional cross-frame diaphragms to stabilize the compression flange of girders. These braces are required during construction, especially during deck placement, to prevent lateral torsional buckling of bridge girders. Girder buckling capacity is a function of cross-frame diaphragm spacing as well as strength and stiffness.

Bracings may be temporary or permanent. Most of them are required during wet concrete construction condition. Once the concrete has hardened, the bracing is redundant. Also leaving the bracing in place means that they will take up loads and thus have to be designed.

Midas Civil provides Steel design as per AASHTO-LRFD 2012(US). This feature can be used to design the steel bracings.

Design Steps:

- A. Generate Load Combinations
- B. Input Design Information
- C. View Design Results

Note: Cross Frame Design is included in this tutorial only for completeness of Steel Composite I girder bridge design using midas Civil. The input design parameters and the design results for Cross Frame Design are not discussed in this tutorial. For any explanation you can refer to our online help manual or previous tutorials on steel design.

A. Generate Load Combinations

In this tutorial we will Auto Generate Load Combinations for Steel Design as per AASHTO LRFD 2012.

Go to Results > It Load Combinations
Click Steel Design
Click <u>Auto Generation</u>
Automatic Generation of Load Combinations > Design Code > AASHTO-LRFD 12 Automatic Generation of Load Combinations > Manipulations of CS Load Cases > Select
Click You can view the Auto generated load combinations as in image 4-2.

23 Load Combinations General Steel Design Concrete Design SRC Design Composite Steel Girder Design Load Combination List -Load Cases and Factors No Name Active Туре Description . LoadCase Factor . MVL(MV) 1 sLCB1 Stren Strength-I:1.75M[1]+1.25(cD)+1.25(Add 1.7500 2 sLCB2 Stren Strength-II:1.35M[1]+1.25(cD)+1.25 Dead Load 1.2500 Add 3 sLCB3 Stren Strength-IV:1.50(cD)+1.50(cEL1)+1 DC2(CS) 1.2500 Add 4 sLCB4 Servi Add Service-I:1.00M[1]+1.00(cD)+1.00(c DW(CS) 1.5000 Service-II:1.30M[1]+1.00(cD)+1.00(1.0000 sLCB5 Servi Add Tendon Se 6 sLCB6 Servi Add Service-III:0.80M[1]+1.00(cD)+1.00(Creep Sec 0.5000 Service-IV:1.00(cD)+1.00(cEL1)+1. sLCB7 Servi Add Shrinkage 0.5000 7 sLCB8 Servi Add Fatigue-I:1.50M[1] * sLCB9 Servi Add Fatigue-II:0.75M[1] 9

Image 4-1. Auto Generation Load Combinations Dialog Box

Image 4-2. Auto Generated Load Combinations

Click

Close

B. Input Design Information

□ Go to Design > 🖾 Steel Design > 🖾 Design Code

Steel Design Code > AASHTO-LRFD12(US) Steel Design Code > Check
✓ All Beams/Girders are Laterally Braced Click
○K

Click Update By Code

Click OK

Note: You can manually enter the strength reduction factors as well.

Go to Design > 🖾 Steel Design > 😫 Modify Steel Material

Material List > Select material ID 1 Steel Material Selection > Code > ASTM09(S) Steel Material Selection > Grade > A709-HPS70W Click Modify

```
Click Close
```

□ Go to Design > 🖾 Steel Design > 🖾 Steel Code Check

Perform Steel Code Check.

C. View Design Results

"*** End Writing Steel Code Checking Result to Table."; this message in the message window indicates the completion of Steel Code Check. After the check is complete, a new window, "AASHTO-LRFD12 Code Checking Result Dialog" pops out automatically. Refer to image 4-3.

Code Checking Result Dialog > Sorted by > Property *Note:* You can see that the check is NG (Not Good) for Angle Section L8xL8x7/8. Thus this section will be changed.

Code Checking Result Dialog > Select NG 280 4 Angle sec. L&X&X7/8 Click Change Change Steel Properties Dialog > Click Search Satisfied Section Refer to image 4-4. Select L&X&X1 OK V 1- 0.961 0.103 8.0000 8.0000 15.100 Click Change & Close
Select OK 280 4 Angle sec, L8X8X1 0.961 0.103 A709-HPS70W 70.000 Click Update Update Changed Properties Dialog > Click Select All Changed Properties
Click Analysis/design results will be deleted. Continue> Click ves Click Re-analysis Click Re-check
<i>Note:</i> All the Steel Code Check Results are OK now. Refer to image 4-5

C. View Design Results

Step

Code Checking Result Dialog > Sorted by > Member

Note: You can select any member and check the design results for it.

For example: Select

Click

Click to see the graphic report. Refer to image Graphic... 4-6.

to see the detailed report. Refer to Detail... image 4-7.

Click Summary... to see the summary of the design results for the selected members. Refer to image 4-8.

Code Checking Result Dialog > Click *Solution* to see the Steel Code Check Results table.

Code Checking Result Dialog > Click Close

сн	MEMB	SECT	SE	Section	n	Γ
ĸ	COM	SHR	L	Material	Fy	1
	117	3	-	End Diaphragm,	W16X45	Ċ.
UK -	0.249	0.205		A709-HPS70W	70.0000	
NO.	280	4	F	Angle sec, Li	8X8X1	
10	1.524	0.251	1	A709-HPS70W	70.000	
Con	nect Moc	del View		View Result	Ratio	
Con Sele	nect Moc	lel View Unselec	et All	View Result	Ratio	

	. C	Member						
orted	DY (•	Property		Change	Update	•••		
СН	MEMB	SECT	SE	Sectio	n	T		
К	COM	SHR	L	Material	Fy	٦		
014	117 3		End Diaphragm, W16X4					
UK	0.249	0.205		A709-HPS70W	70.0000	.0000		
or	280	4	F	Angle sec, L8X8X1-1/8				
UK	0.898	0.092	1	A709-HPS70W	70.000			
- Cor	nnect Moc	del View		View Result	t Ratio			
Cor Sele	nnect Moc	del View	ct All	View Resul	t Ratio	>		

Image 4-3. Steel Code Checking Result Dialog Before Section Update

Image 4-5. Steel Code Checking Result Dialog After Section Update

C. View Design Results

Image 4-8. Steel Code Check Summary Report

Pier & Pier Table Design

Traditionally, piers have been designed using conventional methods of strength of materials regardless of member dimensions. In this approach, it is assumed that longitudinal strains vary linearly over the depth of the member and the shear distribution remains uniform. Furthermore, separate designs are carried out for V_u and M_u at different locations along the member.

In midas Civil as well, all pier components, regardless of dimensions, can be designed in accordance with the conventional strength of materials assumptions described above. This approach is currently standard engineering practice. Pier table components can be designed as simple beams in midas Civil.

Design Steps:

- A. Generate Load Combinations
- B. Input Design Information
- C. View Design Results

Note: Pier & Pier Table Design is included in this tutorial only for completeness of Steel Composite I girder bridge design using midas Civil. The input design parameters and the design results for Pier & Pier Table are not discussed in this tutorial. For any explanation you can refer to our online help manual or previous tutorials on concrete design.

A. Generate Load Combinations

In this tutorial we will Auto Generate Load Combinations for Concrete Design as per AASHTO LRFD 2012.

□ Go f	co Results >	Load Combinations
Click	Concrete Design	

Click	Auto Generation

Automatic Generation of Load Combinations > Design Code > AASHTO-LRFD 12 Automatic Generation of Load Combinations > Manipulations of CS Load Cases > Select © cs only Refer to image 5-1

Click _____

You can view the Auto generated load combinations as in image 5-2. Click Close

ad (Stee Combi	el Design nation List	Concrete D	esign S	RC D	esign Composite Steel Girder Design	Load	Cases and Factors		1	
	No	Name	Active	Туре	E	Description		LoadCase	Factor		
•	1	cLCB1	Stren	Ad	Г	Strength-I:1.75M[1]+1.25(cD)+1.25(+	MVL(MV)	1.7500		
	2	cLCB2	Stren	Ad	Г	Strength-II:1.35M[1]+1.25(cD)+1.25(Dead Load	1.2500		
	3	cLCB3	Stren	Ad	Г	Strength-IV:1.50(cD)+1.50(cEL1)+1.		DC2(CS)	1.2500		
	4	cLCB4	Servi	Ad	Г	Service-I:1.00M[1]+1.00(cD)+1.00(c		DW(CS)	1.5000		
	5	cLCB5	Servi	Ad	Г	Service-II:1.30M[1]+1.00(cD)+1.00(c	*				Image
	6	cLCB6	Servi	Ad	Г	Service-III:0.80M[1]+1.00(cD)+1.00(inaye
	7	cLCB7	Servi	Ad	Г	Service-IV:1.00(cD)+1.00(cEL1)+1.0					Cono
	8	cLCB8	Servi	Ad	Г	Fatigue-I:1.50M[1]					Gener
	9	cLCB9	Servi	Ad	Г	Fatique-II:0.75M[1]					LOa

Option • Add C Re	place
Code Selection	
C Steel C Concr	ete C SRC C Steel Composite
Design Code :	AASHTO-LRFD12 💌
-Manipulation of Const	ruction Stage Load Case
C ST Only	C SONIX C ST+CS
ST : Static Load Case	CS : Construction Stage
Service Load Stage :	1 Factors
Load Modifier :	1
ELoad Factors for Pe	rmanent Loads (Yp)
oad Factor for Settlem	ent: 1
Structural Plate Box	Structures(Metal Box Culverts)
Condition for Tempera	ature
C Deformation Che	eck. 🕼 All Other Effects

Image 5-1. Auto Generation Load Combinations Dialog Box

B. Input Design Information

```
\Box Go to Design > \Box RC Design > \Box Design Code
Concrete Design Code > AASHTO-LRFD12(US)
Concrete Design Code > Check Apply Special Provisions for Seismic Design
Concrete Design Code > Select Seismic Zone 3
Click <sup>ok</sup>
Factor
Click Update By Code
Click or
Note: You can manually enter the strength reduction
factors as well.
\Box Go to Design > \Box RC Design > \Box Modify Concrete
  Material
Material List > Select material ID 2
                                           fc|fck|R
                                                 Chk Lambda
Concrete Material Selection > Code > ASTM(RC)
Concrete Material Selection > Grade > C4500
Rebar Selection > Code > ASTM(RC)
Rebar Selection > Grade of Main Rebar > 60
Rebar Selection > Grade of Sub Rebar > 50
Click Modify
```

 \Box Go to Design > \Box RC Design > \Box Limiting Maximum **Rebar Ratio** Click _____ for Design ID Name 5 P1_C Section List > Select section ID 5 Stirrup Data > Size > #10 Stirrup Data > Number > 5 Stirrup Data > Dt > 2in Stirrup Data > Db > 2in Refer to image 5-3. Click Add/Replace Cancel Click 🕑 Beam Design "*** Finished Writing RC Beam Design Result to Table."; this message in the message window indicates the completion of RC Beam (Pier Table) Design. After the design is complete, a new window, "AASHTO-LRFD12 RC-Beam Design Result

Dialog" pops out automatically. Refer to image 5-4.

C. View Design Results

Note: All the Pier Table Design Results are OK. Refer to image 5-4

RC Beam Design Result Dialog > Sorted by > Select • Member

Note: You can select any member and check the design results for it.

For example: Select 317 4.50000 5 ✓ 60.00 60.00 60.000 M ок 89.907 0.000 0.000 50.0000 OK .1 Click Graphic... to see the graphic report. Refer to image 5-5. Click to see the detailed report. Detail... Refer to image 5-6. Click Summary... to see the summary of the design results for the selected members. Refer to image 5-7.

RC Beam Design Result Dialog > Click >> to see the Pier Table Design Results table.

RC Beam Design Result Dialog > Click

Image 5-4. RC-Beam Design Result Dialog Box

C. View Design Results 1. Design Information -. c Member Number : 317 -. Cc Design Code : AASHTO-LRFD12 -. Ts -. Mr Unit System : kips. in -. Mu/Mr Material Data : fc = 4.5, fy = 60, fys = 50 ksi Beam Span : 89.9068 in Section Property : P1_C (No : 5) 2. Section Diagram END-II [MID] [END-J] NT. 8 8 -. Vu N-+--60 60 60 TOP : 11.088 In^2 TOP : 0.2703 In^2 TOP : 3.0910 In^2 BOT : 7.5596 In^2 BOT: 3.6916 In^2 BOT: 3.0126 In^2

STIRRUPS : 5.0-#10 @24

Image 5-5. Graphic RC Beam Design Report

STIRRUPS : 5.0-#10 @24*

317, SECT = *.MEMB = 5 (P1_C, SB), Span = 89.9068 *.Bc = 60.000, Hc = 60.000 *.fc = 4.50000, fy = 60.0000, fys = 50.0000 _____ POS CHK | N-Mu (LCB) ASTOP | P-Mu (LCB) ASBOT | Vu (LCB) AV Tu (LCB) St Stirrups I OK | 32951.5 (1-) 11.088 | 0.00000 (1+) 3.6916 | 639.919 (1-) 3.1750 23117.9 (1+) 16.985 5.0-#10 @24" мок | 18723.2 (1-) 6.2703 | 9101.32 (1+) 3.0126 | 631.139 (1-) 3.1750 23117.9 (1+) 13.749 5.0-#10 @24" J OK | 0.00000 (1+) 3.6916 | 22715.3 (1+) 7.5596 | 610.083 (1-) 3.1750 23117.9 (1+) 15.702 5.0-#10 @24"

Image 5-7. RC Beam Design Summary Report

STIRRUPS : 5.0-#10 @24"

Pier & Pier Table Design

B. Input Design Information

Select all the pier members.

"*** Finished Writing RC Column Design Result to Table."; this message in the message window indicates the completion of RC Column (Pier) Design. After the design is complete, a new window, "AASHTO-LRFD12 RC-Column Design Result Dialog" pops out automatically. Refer to image 5-8.

C. View Design Results

Note: All the Pier Design Results are OK. Refer to image 5-8

Graphic, Detail and Summary Report can be generated for RC column members similar to the RC beam members.

RC Column Design Result Dialog > Sorted by

> Select
Member

Note: You can select any member and check the PM Curve for it.

For example: Select335Image: P14.50000ClickDraw PM Curve...to see the PM

to see the PM Curve for member 335.

60.0000

PM Interaction Curve Dialog > Click Close RC Beam Design Result Dialog > Click Close

Steel Composite I-girder Design as per AASHTO LRFD 2012

Refer to image 5-9.