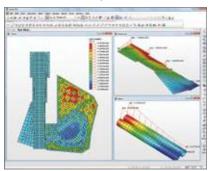


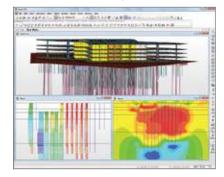
Why GTS NX


New subway complex, United States ▼

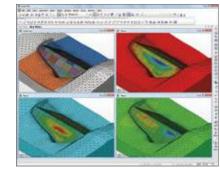
Odeon Tower, Monaco ▼

Sichuan Subway Station, China ▼

Unique Powerful Solver **Pre & Post Processors** Upgrade Technical Competitiveness Intuitive Company **Benefits** Optimize work Increase **Fast User-friendly** Productivity Analysis and O efficiency Interface Result


Fully optimized for 64-bit Platform

GTS NX is a next generation geotechnical analysis software that features the newest development in cutting-edge computer graphics and analysis technology. GTS NX fully supports the latest 64-bit OS Graphic user interface. The intuitive interface will enable new users to easily integrate the software in their work process. The fast analysis speed, outstanding graphics, and output capabilities will provide users with a new and advanced level of geotechnical design.


Shaft construction on the existing tunnel, United Kingdom ▼

Dubai Tower, Qatar ▼

Buhang Dam, Korea ▼



Analysis Method

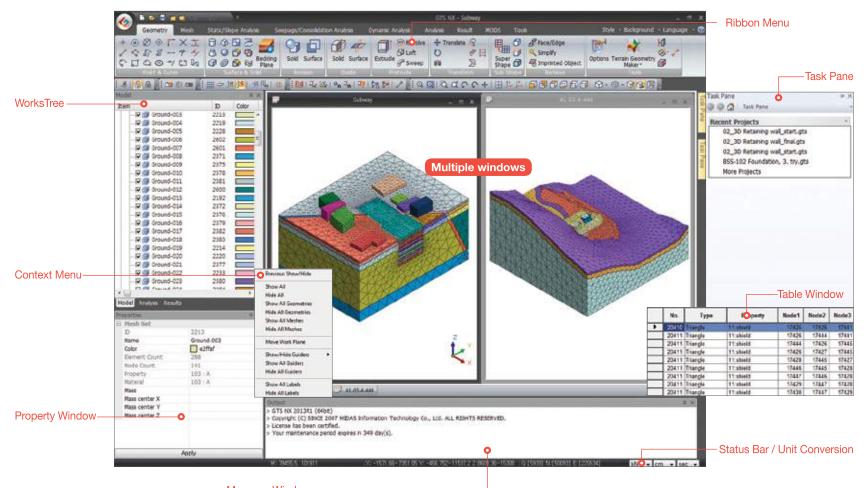
Geotechnical Analysis "New Experience"

GTS NX can simulate in-situ conditions by considering material nonlinearity as well as initial ground stresses. GTS NX supports all analysis types including static, dynamic, seepage, stress-seepage coupled, consolidation, construction stage and slope stability analysis.

In dynamic analysis, nonlinear time history analysis considering water level and self weight is supported. Any ground behavior that is related to ground water flow (seepage / stress / consolidation) can be simulated through fully coupled stress-seepage analysis. Through the fully integrated FE Solver, GTS NX provides highly reliable results for complex geotechnical analysis and design.

Framework

User-friendly Interface


GTS NX provides a user-friendly GUI (graphic user interface) through the use of a state-of-the-art graphics engine

1. Multi - Windows

Multi-Window GUI enables you to develop multiple model files simultaneously. You can view and modify the same model while the analysis is being run. Multiple analysis result items can be also viewed and compared simultaneously.

2. Ribbon menu for convenient tool organization

The menu has been designed to accommodate the modeling workflow. Similar functions and commands are intuitively grouped together for easier recognition. Command description, tips and diagrams explicitly guide you through the work process in the corresponding input windows.

CAD based modeling

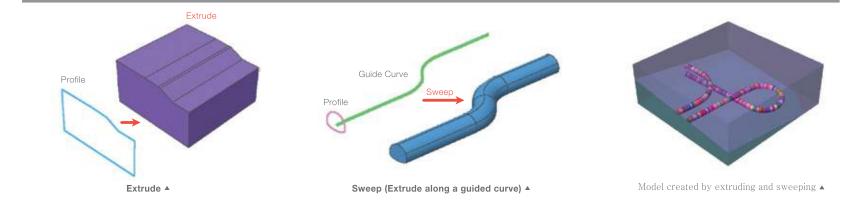
Trim / Divide ▲

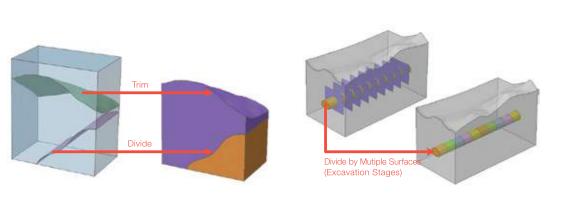
Users can quickly become proficient with modeling in GTS NX – a tribute to CAD based 2D and 3D modeling commands.

Point, Line

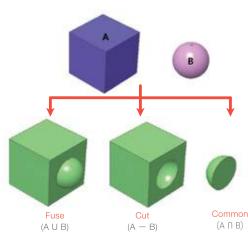
Line, arc, circle (oval), polyline, rectangle, extend curve, trim curve

Face, Solid


Cylinder, cone, box, wedge, sphere, torus, plate, chamfer, offset


Boolean Operation


Fuse, cut, common

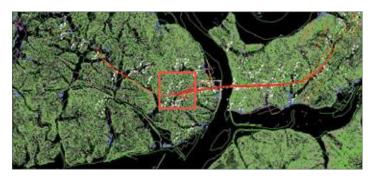

Divide, Protrude, Transform

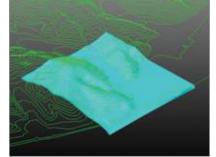
Divide by surface, extrude, revolve, loft, sweep, mirror, scale, project

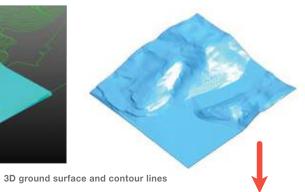
Boolean Operation ▲

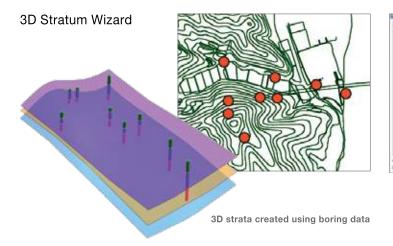
Terrain Geometry Auto-Generation

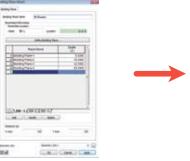
Use digital maps and boring data to generate 3D models that more closely resemble in-situ conditions and will consequently yield more realistic results. Modeling 3D surface contours and soil strata can be either cumbersome or impractical in other software, but GTS NX only takes a few steps.


TGM


Complex 3D ground surfaces can be created by selecting the target range in a digital topographic map.


Bedding Plane Wizard


By inputting boring data on the plane surface, 3D strata can be automatically generated for the ground model.


TGM (Terrain Geometry Maker)



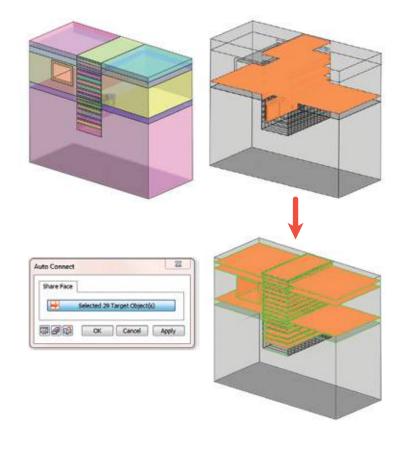
TGM and strata creation

Geometry Modeling Automation

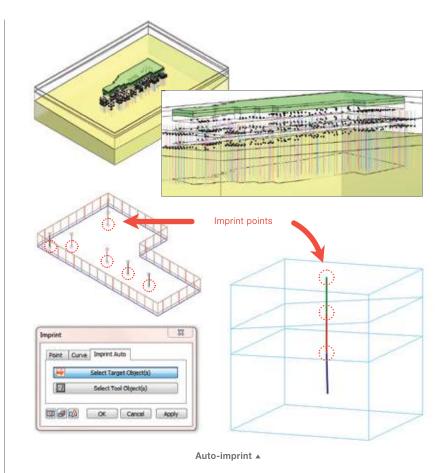
GTS NX automatically generates geometries such as shared faces and imprints. These functions ensure nodal connectivity between all adjacent mesh sets, thus ensuring reliable analysis of soil-structure and soil-soil interaction.

Modeling mistakes can also be automatically detected and corrected to prevent analysis from executing with failure warnings.

Shared face auto-generation


Shared faces between adjacent solids can be generated automatically. This makes it easier to ensure nodal connectivity of adjacent mesh sets.

Imprint auto-generation


The auto-imprint function allows lines and nodes to penetrate through 3D geometry [Solid].

Modeling error detection and correction

Irregular faces, lines that may cause analysis errors can be automatically detected and deleted. Erroneously overlapped geometries such as small faces and edges will also be detected and deleted.

Shared face auto-generation A

CAD Compatibility / Interface with other MIDAS Software

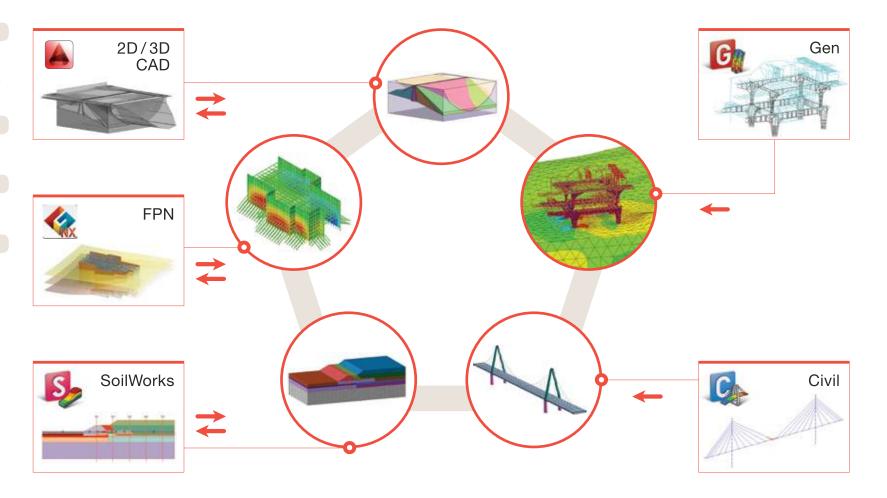
GTS NX imports model information from other MIDAS software (Gen, Civil & SoilWorks). The CAD interface transfers project data for expanded analysis requiring soil-structure interaction and detailed 3D investigation such as bridge pier and tall building foundations.

2D ground structure models can be also transferred to GTS NX for 3D analysis of ground engineering problems such as tunnel systems with connecting galleries.

2D / 3D CAD compatibility

*.dwg, *.dxf, parasoild CAD Interface option (CATIA V4, 5, Pro/E, Solidworks, STEP, IGES, ACIS, Invertor, Unigraphics)

SoilWorks Interface


Any cross section

Neutral Format File

*.FPN

Gen, Civil Interface

Geometry and element information Structure cross section Frame → solid conversion

Mesh Generation

Optimized mesh generation of various element types

User friendly modeling functions generate complex geometries and mesh sets of various types with ease. Such capabilities enable engineers to quickly generate high quality mesh even with limited or no experience in finite element modeling.

Surface Auto-Mesher

Loop, Grid, Delaunay (triangle, quadrangle)

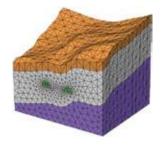
Solid Auto-Mesher

Tetrahedral, Hexahedral, Hybrid (hexahedral centered)

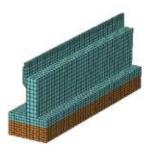
2D → **3D** Element Auto-Generation

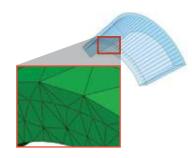
Protrude Mesh (2D → 3D)

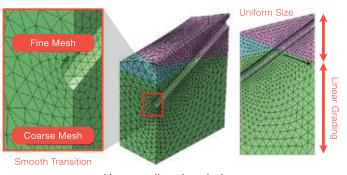
Extrude, Revolve, Sweep, Project, Offset, Fill

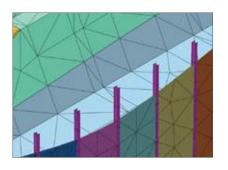

Extract Mesh (3D → 2D)

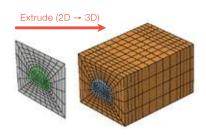
Interface, pile, and structural element generation


Element generation considers interior edges and points


2D Auto Mesh A


3D Auto Mesh A


3D Map Mesh A


Mesh considering interior edges and points ▲

Linear grading of mesh size Size control optimizes mesh in the areas of high strain and displacement by assigning fine mesh elements. A

Combination of 1D, 2D and 3D elements (Solid, shell and frame elements) A

Extrude 2D mesh into 3D A

Mesh Generation

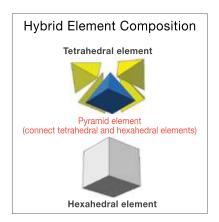
Quality Assurance & Checking Controls

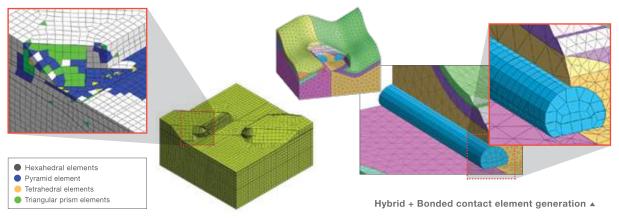
Mesh quality can be automatically checked and managed. This allows the generation of high quality mesh with minimum effort even for complex ground structural models resulting in optimal analysis time and producing reliable and comprehensive results.

Hybrid Mesher

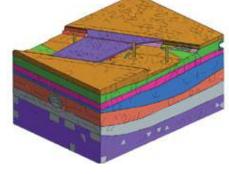
To provide more reliable analysis results, GTS NX can automatically generate hexahedral centered hybrid mesh. Hexahedral elements are the most stable for stress and displacement results.

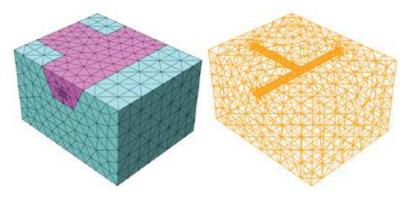
Bonded Contacts Auto-generation


Adjacent elements without shared nodes can be detected and contacts can be applied automatically


Mesh Check

Non-manifold edge Free face Clamped element Overlapped element


Mesh Quality Check


Aspect ratio, skew angle, twist angle, taper, Jacobian ratio, element length (Maximum, Minimum), poor mesh sets definition

Mesh quality check ▲

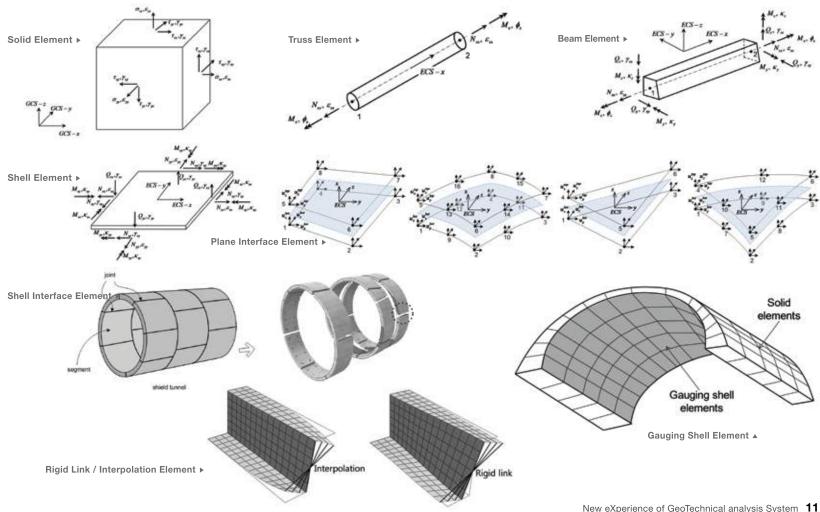
Mesh check (Free Face) ▲

Element Library

Element library

The GTS NX element library includes various elements for structural and ground modeling. These elements are conveniently classified based on application purposes. Ground, structures, various links, springs and interfaces can be selected and modeled from the extensive element library.

Continuum Elements for ground


Solid Element Plane Strain Element Axisymmetric Element

Structural Elements

Truss Element/ Embedded Truss Beam Element/ Embedded Beam 2D Orthotropic/ Axisymmetric Plane Stress Element Shell Element

Applicable Elements

Interface Element Shell Interface Element Pile / Pile Tip Bearing Element Geo-grid Element (1D / 2D) Gauging Shell Element Point Spring / Face Spring Element Matrix Spring Element Elastic Link Element Rigid Link Element Interpolation Element Contact Element (General/ Welded) Free Field

Material Models & Structural **Properties**

Comprehensive database of material models to simulate the behavior of various ground types

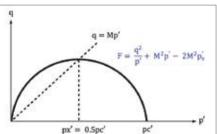
GTS NX provides various linear / nonlinear material models to simulate ground behavior under different loading and water level conditions.

Material models are generally classified into elastic, plastic, drained, undrained, and seepage categories. Material / equivalent linearity and nonlinearity of elements can be simulated through internal functions.

Elatic Materials

Plastic Materials


Undrained Materials


Functions

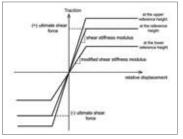
Elastic Materials

- · Linear Elastic Isotropic
- · Linear Elastic
- · Transversely Isotropic
- · Interface Elastic
- · Nonlinear Elastic (1D)
- · Jardine
- · D-Min
- · Hyperbolic (Duncan-Chang)

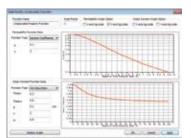
$F = \tau - (c + \sigma_0 tan \phi)$

- · Generalised Hoek Brown
- · Hysterisis Models
- · User Defined

Undrained Materials


- · Effective Stiffness / Effective Strength
- · Effective Stiffness / Undrained Strength
- · Undrained Stiffness / Undrained Strength

Functions


- · General non-spatial functions (pile / pile tip bearing nonlinear function)
- · Nonlinear elastic functions (truss / point spring / elastic link) Unsaturated property functions (Gardner, Frontal, Van Genuchten)
- · Strain compatibility functions (2D equivalent linear)
- · Concrete Creep and Shrinkage functions automatically as per global codes

Strain compatibility A

Pile bearing A

Unsaturated property (Individual)

Unsaturated property (Relation)

Plastic Materials

- · von Mises (Nonlinear)
- · Tresca
- · Mohr-Coulomb
- · Drucker-Prager
- · Strain-Softening
- · Modified Cam Clay
- · Jointed Rock
- · Modified Mohr Coulomb
- · Hoek Brown
- · Inverse Rankine
- · Coulomb Friction (Interface)
- · Janssen
- · Soft Soil / Soft Soil Creep
- · Sekiguchi-Ohta (Viscid/Inviscid)
- · Hardening Soil (small strain stiffness)
- · Modified UBCSAND (Liquefaction)
- · S Clay 1 Model

Load conditions Generation and **Application**

Load assignment reflecting field conditions

GTS NX can simulate various in-situ loading conditions. The dynamic function database includes a variety of code-based response spectra and time history functions. Customized functions for vibration, blast and seismic loading can be also generated.

Structural Loads

Force (concentrated load / pressure) Gravity Prescribed displacement Temperature load

Static / Dynamic Loads

Loads in Construction Stages

Load distribution factor

Nonlinearity of Load

In geometric nonlinear analysis, the direction of loads can change with the deformation of the structure. (Follower Load)

Loads from Results

Nodal forces, moments, translational/rotational displacements can be created to loads for another analysis case

Static Loads

- · Self weight
- · Concentrated load
- · Moment load
- · Prescribed displacement
- · Pressure load
- · Water pressure (auto-consideration option)
- · Beam linear load
- · Beam element load
- · Temperature load
- · Prestress load
- · Initial equilibrium load
- · Combined load

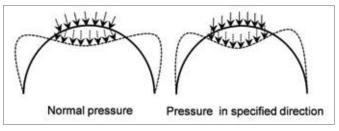
Dynamic Loads

· Response spectrum

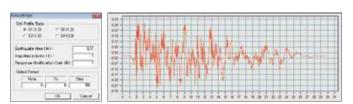
· Ground acceleration

· Dynamic nodal load

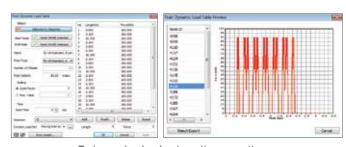
· Dynamic surface load


· Load - mass conversion · Railway dynamic load table

· Time history static load


Water pressure automatic application during underwater excavation A

Batter Load Boustien Tiese Blefting Versieby's Biptonia benetica) Borehole Diameter(ID) Keen by som Max. Charge Ameunt (11) F Yank bosok Ered Retter(B) W. Stade: Trans. Bastria Land Rock Danstoff


Dynamic blast load automatic generation A

Follower Load- nonlinear load A

Seismic data automatic generation A

Train moving load automatic generation A

Boundary Conditions

Different boundary conditions can be generated to simulate in-situ conditions

GTS NX provides various boundary conditions for all analysis types. Essential boundary conditions for analysis can be defined automatically. By defining the water level surface, the pore water pressure can be considered in stress analysis. Time dependent water levels can be defined to simulate rapid draw down as well as a gradual rise in water level due to rainfall.

The Change Property function can simulate a change in material properties over time. This function is useful for simulating the hardening of concrete as well as excavation projects in which soil layers are replaced by structural elements. Boundary conditions for 2D equivalent linear analysis and linear / nonlinear dynamic analysis can be generated automatically as well.

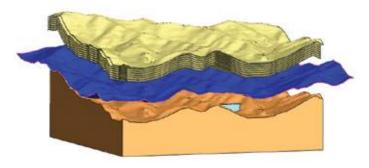
Constraint

Automatic definition of constraint for ground Fixed / pinned / rotation

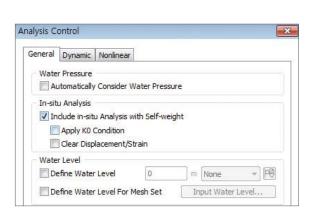
Slope Stability Analysis

Slip circular surface Slip polygonal surface

Seepage / Consolidation Analysis

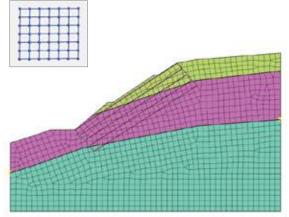

Nodal head / Nodal flux / Surface flux / Review / Drained condition / Non-consolidation

Dynamic Analysis


Elastic boundary / Viscous boundary Damper consideration in free ground / Transmitting Boundary

Boundary Conditions from Results

Import seepage boundary conditions for further analysis


3D water level generation A

In-situ analysis with Self weight considering k0 A

Dynamic analysis (soil structure interaction) boundary generation A

Slip circular surface boundary for stress analysis (SAM) A

Results Output and report

Excellent result displays supported by a new and powerful graphics engine

Through its advanced graphic processing engine, GTS NX provides a variety of output methods for users to visualize and extract their analysis results. The extensive output options present results in an elegant and comprehensible form.

Contour - Continuous / Fringe

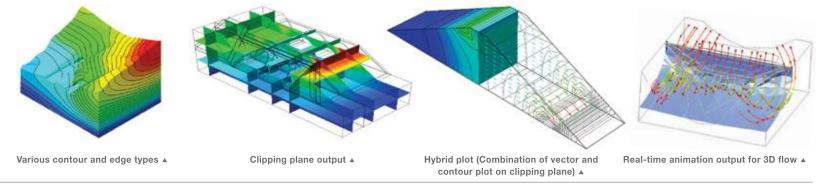
Vector, Diagram

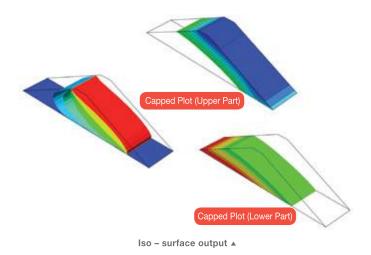
Deformed / Undeformed

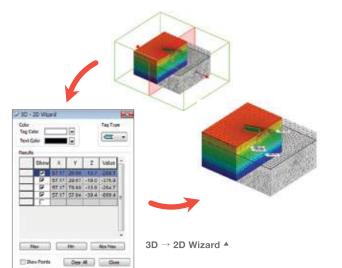
Multi-Step Iso Surface

Iso Value Surface

Flow Net


Failure Surface of Slope


Time History Graph


Real-Time Animation

3D → 2D Result Wizard

Extract results on any 2D cross section from 3D results without extra calculation

Results output and Report

Results output and report for practical design

The results output functions allow users to combine different results and selectively extract only the pertinent results. The 3D PDF report generator exports 3D model and analysis results directly into a PDF file.

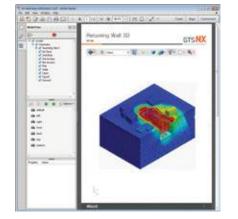
The report generation creates aesthetic and comprehensive reports in a fraction of the time that it would take through manually copying and pasting spreadsheets and images.

Cutting Diagram on any line and plane

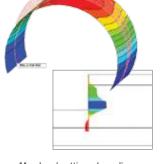
Extract Result / Probe Result

3D PDF Output

3D model / analysis results can be checked and operated in a PDF file

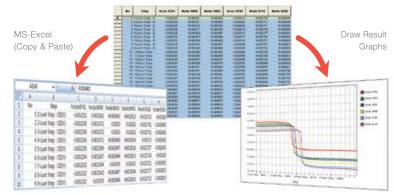

Graph / Table / Result Image Automatic save

Text File Results Output



Result distribution / change diagram on any line A

3D PDF Report ▲


Result image automatic save A

Displacement / Velocity / acceleration - decibel conversion Decibel Reference Levels (ISO R 1683)

Quantity		Definition	Ref. level
Amplitude Ratio	Vibratory Acc. Level	La = 20 log10 (a/a ₀) dB	$a_0 = 10^{-6} \text{ m/s}^2$
	Vibratory Vel. Level	$L_a = 20 \log 10 \text{ (a/a_0) dB}$ $L_v = 20 \log 10 \text{ (v/v_0) dB}$	$v_0 = 10^{-9} \text{ m/s}$
		$L_{d}=20\;log10\;(d/d_{0})\;dB$	

Convert to Decibel

Result value table (copy and paste to MS-EXCEL) and graph A

| Tunnel |

Total Solutions for Geotechnical Analysis

GTS NX is proven numerical modeling software used by many international geotechnical firms. Selected practical applications of the software are shown below.

The Tunnel Wizard can model tunnels having standard pattern and define excavation methods such as full face cut, bench cut and direction (one, both). For each case, load relaxation can be considered by applying load distribution factor (LDF). Modelling shrinkage or simulate a volume loss around a lining of TBM tunnel through Contraction function. Subsequently, Tunnel Lining Design can be executed accurately and efficiently.

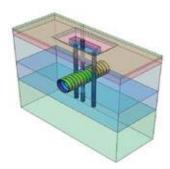
Road Tunnel

Portal, Cross passage, Refuge area (Emergency zones), Ventilation shaft, Electrical room, Fault fractured zone, Adjacent structures

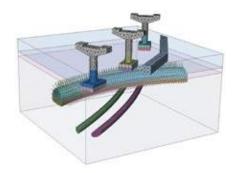
Railway / Subway Tunnel

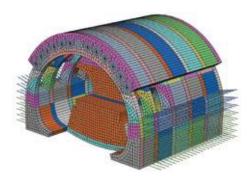
Fitting (T, Y-type), Shield TBM, Machine Room, TRcM / CAM, Station

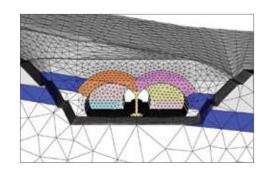
Steel Pipe Roof


Steel Strut, Full face / Bench cut, Ring cut, CD cut, Open cut, 2 Arch, 3 Arch

Portal With Fault factured zone


Ventilation shaft (Vertical / Horizontal) ▲


Shield TBM A


Steel pipe reinforced grouting (Pipe Roof)

Adjacent structures A

TRcM / CAM (Subway tunnel) A

2-Arch Tunnel (NATM Method) A

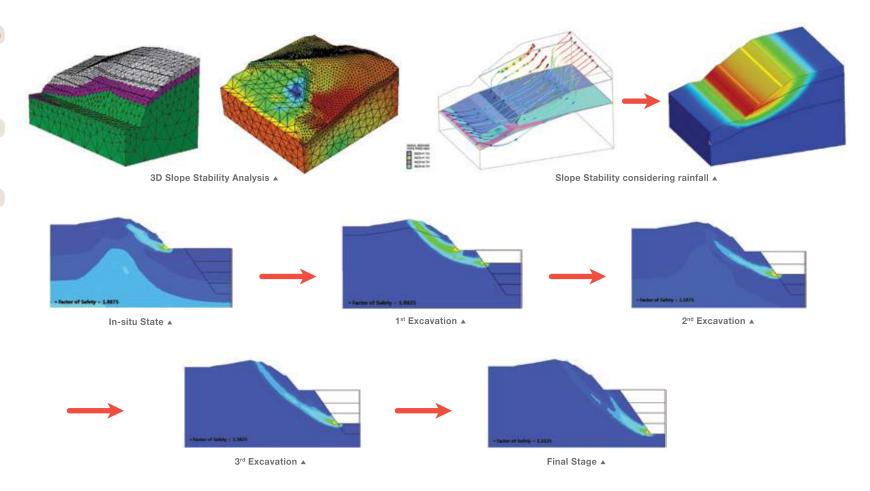
Slope Stability

Total Solutions for Geotechnical Analysis

GTS NX not only analyzes 2D / 3D slope stability according to Strength Reduction Method (SRM) but also calculates the slope safety factor according to Limit Equilibrium Method using potential sliding surfaces. Analysis result in each calculation step can be obtained, so the progressive failure behavior of the slope can be analyzed.

Stress analysis and seepage analysis considering cutting stages can be coupled to investigate slope stability in short / long term. Especially by coupling with nonlinear time history analysis results, earthquake resistance of a slope can be assessed.

Strength Reduction Method Analysis (SRM)


2D / 3D SRM Analysis SRM Analysis by construction stages SRM considering rainfall Nonlinear Dynamic Analysis + SRM Analysis

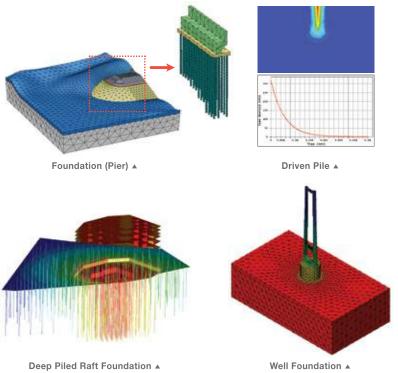
Stress Analysis Method (SAM)

Potential Sliding surface + SRM Analysis Consideration of rainfall / staged analysis

Evaluation of slope reinforcement

Nail, Rock bolt, stabilizing piles, retaining wall Evaluation of reinforcement stability in slopes reinforced by structural members

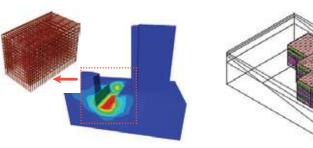
Foundations


Excavation / Retaining wall

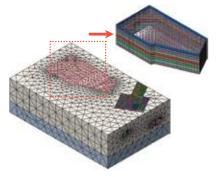
Total Solutions for Geotechnical Analysis

Foundations

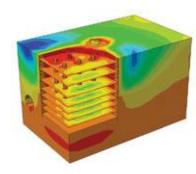
GTS NX analyzes abutment stability subjected to lateral pressure and differential settlements. Bearing capacities of piles can be parametrically verified for different materials and construction methods.


Shallow foundation: Direct foundation, Mechanic (Vibration) foundation Deep foundation (Pier / Abutment): Pile (Steel Pipe, PHC, Drilled Shaft (RCD), Driven Pile), Well foundation, Caisson, Raft foundation

Excavation and Temporary Structures


GTS NX simulates installation of retention walls for excavation of ground structures such as subway stations, tall building foundations. Temporary structures can be incorporated in excavation stages, which include piles, walers, struts, anchors and tie-backs. Changes in earth pressure and ground water level and complex strata can be also accommodated in conjunction with existing adjacent ground structures such as tunnels, subways, foundations and utility chambers.

Retaining wall: H-Pile + slurry wall, Sheet Pile, CIP, SCW, D-Wall Strut: Steel Strut, Earth Anchor, Rock Bolt, Soil Nail, Tie Rod, Raker Stability analysis for adjacent structures



Subway station (H-Pile+slurry wall) A

Diaphragm Wall A

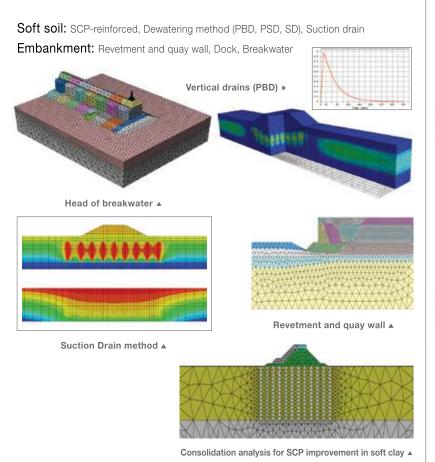
Ground shoring for excavation for a tall building foundation A

Stress distribution of subway line and ventilation shaft by staged excavation A

Soft Soil / Embankment

Hydraulic / **Underground Structure**

Total Solutions for Geotechnical Analysis


Soft Soil / Embankment

GTS NX calculates dissipation of excessive pore water pressure and consolidation settlement through staged consolidation analysis. Fully coupled seepage analysis reflects changes in excessive pore water pressure and water level in real time.

Hydraulic / Underground Structures

Steady state and transient seepage analysis for dams, embankments, tunnels, etc. can be performed. Seepage in an unsaturated area can be also analyzed by applying Darcy's Law. GTS NX inherently handles ground - structure interaction with water and ground water related problems.

Hydraulic structures: Earth Dam, CFRD, Levee, Water way tunnel (pipe & culvert)

Underground Structures: Box, Underground driveway CFRD stability analysis A Seepage analysis for embankment A

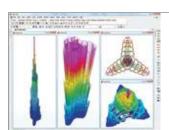
Underground driveway (Front Jacking) ▲

Fitting of water way tunnel A

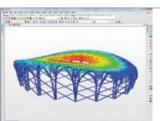
About MIDAS IT

"MIDAS IT is taking flight with endless passion and devotion to provide technological solutions worldwide"

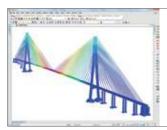
MIDAS Information Technology Co., Ltd. develops and supplies mechanical / civil / structural / geotechnical engineering software and provides professional engineering consulting and e-Biz total solutions. The company began its operation since 1989, and currently employs 530 developers and engineers with extensive experience. MIDAS IT also has corporate offices in US, UK, China, Japan, India and Russia. There are also global network partners in over 30 countries supplying our engineering technology. MIDAS IT has grown into a world class company.



Introduction to MIDAS Family **Programs**


"MIDAS Family Programs are advanced CAE (Computer Aided Engineering) solutions that have been and are being developed using the latest technology"

MIDAS Program Applications


Burj Khalifa (UAE)

- · World's tallest building to date
- · Height: 840 m. 168 floors

Beijing Olympic Main Stadium (China)

- · Area: 78,000 sq. m.
- · Allowed Seating Capacity: 91,000 people

Russky Island Bridge (Russia)

- · World's longest cable stayed bridge
- · Main span: 1,104m

GTS NX

GeoTechnical analysis System

SoilWorks

Geotechnical Solutions for practical Design

midas Civil

Integrated Solution System for Bridge and Civil Structures

midas **FEA**

Advanced Nonlinear and Detailed Analysis System

midas Gen

Integrated System for building and General Structures

midas **DShop**

Auto-Drawing Module to generate Structural drawings and Bill of Materials

midas Design+

Structural engineer's tools

mechanics and CFD

midas FX+

midas NFX

Total Solutions for Mechanical

Engineering in structural

General Pre & Post Processor for Finite Element Analysis

Integrated Solver Optimized for the next generation 64 - bit platform Finite Element Solutions for Geotechnical Engineering

