Analysis of Variance Using Statgraphics Centurion

Dr. Neil W. Polhemus Copyright 2011 by StatPoint Technologies, Inc.

Analysis of Variance

Analysis of variance (ANOVA) models partition the variability of a response variable into components attributable to one or more explanatory factors.

Factors may be:

- Categorical or quantitative
- Crossed or nested
- Fixed or random
- Fully or partially randomized

Procedures

STATGRAPHICS has procedures for:

- Oneway ANOVA single categorical factor.
- Multifactor ANOVA multiple crossed categorical factors.
- Variance Components Analysis multiple nested categorical factors.
- General Linear Models any combination of factors.

Example #1 – Oneway ANOVA

- Data: 1/10-th systematic sample of companies in the Fortune 500 list for 1986 (Source: DASL – Data and Story Library)
- Response: Y = profit per employee
- Factor: X = sector of economy

Data file: profits.sgd

profits.s	gd								8
	Company	Assets	Sales	Market Value	Profits	Cash Flow	Employees	Sector	
		millions	millions	millions	millions	millions	thousands		
1	Air Products	2687	1870	1890	145.7	352.2	18.2	Other	
2	Allied Signal	13271	9115	8190	-279.0	83.0	143.8	Other	
3	American Electr	13621	4848	4572	485.0	898.9	23.4	Energy	
4	American Saving	3614	367	90	14.1	24.6	1.1	Finance	
5	AMR	6425	6131	2448	345.8	682.5	49.5	Transportation	
6	Apple Computer	1022	1754	1370	72.0	119.5	4.8	HiTech	
7	Armstrong World	1093	1679	1070	100.9	164.5	20.8	Manufacturing	
8	Bally Manufactu	1529	1295	444	25.6	137.0	19.4	Other	
9	Bank South	2788	271	304	23.5	28.9	2.1	Finance	
10	Bell Atlantic	19788	9084	10636	1092.9	2576.8	79.4	Communication	
11	H&R Block	327	542	959	54.1	72.5	2.8	Finance	
12	Brooklyn Union	1117	1038	478	59.7	91.7	3.8	Energy	
13	California Firs	5401	550	376	25.6	37.5	4.1	Finance	
14	CBI Industries	1128	1516	430	-47.0	26.7	13.2	Manufacturing	
15	Central Illinoi	1633	701	679	74.3	135.9	2.8	Energy	
16	Cigna	44736	16197	4653	-732.5	-651.9	48.5	Finance	
17	Cleveland Elect	5651	1254	2002	310.7	407.9	6.2	Energy	
18	Columbia Gas Sy	5835	4053	1601	-93.8	173.8	10.8	Energy	
19	Community Psyc)	278	205	853	44.8	50.5	3.8	Medical	
20	Continental Tel	5074	2557	1892	239.9	578.3	21.9	Communication	
21	Crown Cork & Se	866	1487	944	71.7	115.4	12.6	Other	-
$ \bullet \bullet \rightarrow \bullet$	profits B C				•				

Data Input

One-Way ANOVA	
Company Assets Sales Market Value Profits Cash Flow Employees Sector	Dependent Variable: Profits / Employees Factor: Sector (Select:)
🔲 Sort column names	
OK Cancel	Delete Transform Help

ANOVA Table

ANOVA Table for Profits / Employees by Sector

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Between groups	17755.7	8	2219.46	2.21	0.0368
Within groups	70331.4	70	1004.73		
Total (Corr.)	88087.1	78			

Means Plot

Means and 95.0 Percent Tukey HSD Intervals

Multiple Range Tests

Multiple Range Tests for Profits / Employees by Sector

Method: 95.0 percent Tukey HSD

Sector	Count	Mean	Homogeneous Groups
Transportation	6	0.429218	XX
Manufacturing	10	1.47137	X
Retail	10	1.87889	X
HiTech	8	8.68061	XX
Medical	4	9.7668	XX
Other	7	10.4461	XX
Communication	2	12.3594	XX
Finance	17	12.8905	XX
Energy	15	43.6653	Х

Contrast	Sig.	Difference	+/- Limits
Communication - Energy		-31.3059	76.3733
Communication - Finance		-0.531067	75.8429
Communication - HiTech		3.6788	80.208
Communication - Manufacturing		10.888	78.5875
Communication - Medical		2.59261	87.8635
Communication - Other		1.91329	81.3458
Communication - Retail		10.4805	78.5875
Communication - Transportation		11.9302	82.8385
Energy - Finance		30.7748	35.9404
Energy - HiTech		34.9847	44.4172
Energy - Manufacturing	*	42.1939	41.4192
Energy - Medical		33.8985	57.0925
Energy - Other		33.2192	46.4402
Energy - Retail	*	41.7864	41.4192
Energy - Transportation		43.2361	49.0079

Analysis of Means (ANOM)

Residual Plot

Residual Plot for Profits / Employees

Excluding Row #49

One-Way ANOVA	
Company Assets Sales Market Value Profits Cash Flow Employees Sector	Dependent Variable: Profits / Employees Factor: Sector (Select:) EXCLUDE(49)
🔲 Sort column names	
OK Cancel	Delete Transform Help

ANOVA Table for Profits / Employees by Sector

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Between groups	6034.98	8	754.372	4.77	0.0001
Within groups	10909.0	69	158.101		
Total (Corr.)	16944.0	77			

Example #2 – Multifactor ANOVA

- Data: Exercise tolerance in a stress test (<u>Applied Linear</u> <u>Statistical Models</u> by Neter et al.)
- Response: Y = minutes until fatigue occurs on a stationary bicycle
- Factors: X1 = gender, X2 = percent body fat, X3 = smoking history
- Experimental design: 2 by 2 by 3 factorial design with 3 subjects at each of the 12 combinations of the factors

Data file: stresstest.sgd

C:\Webinar\stresstest.sgd							
	body fat	gender	smoking	minutes C			
1	low	male	none	34			
2	low	male	none	32			
3	low	male	none	31			
4	low	male	light	27			
5	low	male	light	24			
6	low	male	light	23			
7	low	male	heavy	20			
8	low	male	heavy	21			
9	low	male	heavy	24			
10	low	female	none	25			
11	low	female	none	35			
12	low	female	none	26			
13	low	female	light	22			
14	low	female	light	22			
15	low	female	light	20			
16	low	female	heavy	15			
17	low	female	heavy	10			
18	low	female	heavy	13			
	stresstest B C			▶ •			

Data Input

Multifactor ANOVA	
body fat gender smoking minutes	Dependent Variable:
	Factors: body fat gender smoking
	Covariates:
	(Select:)
🔲 Sort column names	
OK Cancel	Delete Transform Help

. 15

Analysis of Variance Table

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:body fat	702.25	1	702.25	79.10	0.0000
B:gender	210.25	1	210.25	23.68	0.0000
C:smoking	343.056	2	171.528	19.32	0.0000
INTERACTIONS					
AB	2.25	1	2.25	0.25	0.6189
AC	204.167	2	102.083	11.50	0.0003
BC	21.5	2	10.75	1.21	0.3142
RESIDUAL	230.833	26	8.87821		
TOTAL (CORRECTED)	1714.31	35			

Analysis of Variance for minutes - Type III Sums of Squares

All F-ratios are based on the residual mean square error.

Graphical ANOVA

Graphical ANOVA for minutes

Interaction Plot

Example #3: Analysis of Covariance

- Tests whether certain factors have an effect on the response after removing the effect of one or more quantitative factors.
- Response: Y = profit per employee
- Factor: X = sector of economy
- Covariate: LOG(sales)

X-Y Plot

Plot of Profits / Employees vs LOG(Sales)

Data Input

Multifactor ANOVA	
Company Assets Sales Market Value Profits Cash Flow	Dependent Variable: Profits / Employees Factors:
Sector	Sector
	Covariates:
	LOG(Sales)
	(Select:)
Sort column names	EXCLUDE(49)
OK Cancel	Delete Transform Help

Means Plot

Means and 95.0 Percent Tukey HSD Intervals

Example #4 – Variance Components Study

- Data: Pigment paste example (<u>Statistics for Experimenters</u> by Box, Hunter and Hunter)
- Response: Y = moisture contents
- Factors: X1 = batch, X2 = sample within batch, X3 = test within sample
- Experimental design: 15 by 2 by 2 hierarchical design

Data file: pigment.sgd

C:\DocD	🛄 C:\DocData16\pigment.sgd							
	batch	sample	test	moisture 🔺				
1	1	1	1	40				
2	1	1	2	39				
3	1	2	1	30				
4	1	2	2	30				
5	2	3	1	26				
6	2	3	2	28				
7	2	4	1	25				
8	2	4	2	26				
9	3	5	1	29				
10	3	5	2	28				
11	3	6	1	14				
12	3	6	2	15				
13	4	7	1	30				
14	4	7	2	31				
15	4	8	1	24				
16	4	8	2	24				
17	5	9	1	19				
18	5 pigment P C	9	2	20				
	pigment B L							

Data Input

Variable Components Analysis		×
batch sample test moisture	Dependent Variable:	
	Factors in Order of Nesting: batch sample test	*
	(Select:)	~
🔲 Sort column names		
OK Cancel	Delete Transform Help	

Variance Components Plot

Analysis of Variance

Analysis of Variance for moisture

Source	Sum of Squares	Df	Mean Square	Var. Comp.	Percent
TOTAL (CORRECTED)	2108.18	59			
batch	1210.93	14	86.4952	7.12798	19.49
sample	869.75	15	57.9833	28.5333	78.01
test	27.5	30	0.916667	0.916667	2.51

Example #5 – Split-Plot Design

- Data: Corrosion resistance example (<u>Statistics for</u> <u>Experimenters</u> by Box, Hunter and Hunter)
- Response: Y = corrosion resistance of steel bars
- Factors: X1 = furnace temperature, X2 = coating
- Experimental design: Since furnace temperature is hard to change, it will be randomized over a larger experimental unit than coating.

Experimental Design

Run of	Temperature	Position 1	Position 2	Position 3	Position 4
furnace	setting °C				
1	360	C2	C3	C1	C4
2	370	C1	C3	C4	C2
3	380	C3	C1	C2	C4
4	380	C4	C3	C2	C1
5	370	C4	C1	C3	C2
6	360	C1	C4	C2	C3

Each of the 6 runs of the furnace is a "whole plot". Temperature is a "whole plot factor" and is randomized across the runs.

Each position in the furnace is a "subplot".

Coating is a subplot factor that is randomized across the positions.

Data file: steelbars.sgd

steelbar	👖 steelbars.sgd 📃 🖂 🔲 🔀					
	Run of furnace	Heat	Position in furnace	Coating	Corrosion 🔺 resistance	
	whole plot		subplot			
1	1	360	1	2	73	
2	1	360	2	3	83	
3	1	360	3	1	67	
4	1	360	4	4	89	
5	2	370	1	1	65	
6	2	370	2	3	87	
7	2	370	3	4	86	
8	2	370	4	2	91	
9	3	380	1	3	147	
10	3	380	2	1	155	
11	3	380	3	2	127	
12	3	380	4	4	212	
13	4	380	1	4	153	
14	4	380	2	3	90	
15	4	380	3	2	100	
16	4	380	4	1	108	
17	5	370	1	4	150	
18	5	370	2	1	140	
19	5	370	3	3	121	
20	5	370	4	2	142	
21	6	360	1	1	33	
22	6	360	2	4	54	
23	6	360	3	2	8	
24	6	360	4	3	46	
$ \mathbf{A} + \mathbf{b} $	steelbars B C					

Data Input - GLM

General Linear Models		×
Run of furnace Heat	Dependent Variables:	
Position in furnace Coating Corrosion resistance	Corrosion resistance	*
	Categorical Factors:	
	Heat Run of furnace Coating	4
		~
	Quantitative Factors:	
		*
	(Weights:)	
		_
🔲 Sort column names		
OK Cancel	Delete Transform Help	

Model Specification

GLM Model Specification		×
Factors: A:Heat B:Run of furnace C:Coating	Effects: Cross: Nest: C	Random factors: A N B 0 C P D Q E R F S G T H U J W K Y L Y M Z
OK Cancel	Enter Delete	Help

Analysis of Variance

Analysis of Variance for Corrosion resistance

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Model	48517.8	14	3465.55	27.83	0.0000
Residual	1120.88	9	124.542		
Total (Corr.)	49638.6	23			

Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Heat	26519.3	2	13259.6	2.75	0.2093
Run of furnace(Heat)	14439.6	3	4813.21	38.65	0.0000
Coating	4289.13	3	1429.71	11.48	0.0020
Heat*Coating	3269.75	б	544.958	4.38	0.0241
Residual	1120.88	9	124.542		
Total (corrected)	49638.6	23			

F-tests and Error Components

F-Test Denominators

Source	Df	Mean Square	Denominator
Heat	3.00	4813.21	(2)
Run of furnace(Heat)	9.00	124.542	()
Coating	9.00	124.542	()
Heat*Coating	9.00	124.542	()

Variance Components

Source	Estimate
Run of furnace(Heat)	1172.17
Residual	124.542

Interaction Plot

Example #6 – Repeated Measures Design

Subject	Drug	T1	T2	Т3	T4
1	AX23	72	86	81	77
2	AX23	78	83	88	81
9	BWW9	85	86	80	84
10	BWW9	82	86	80	84
17	CONTROL	69	73	72	74
18	CONTROL	66	62	67	73

Each of 3 drugs was given to 8 different patients. Their heart rate was measured at 4 distinct times.

There are 2 experimental units: "subject" to which a particular drug is assigned, and "time period" in which measurements are taken.

Source: <u>Analysis of Messy Data</u> by Milliken and Johnson.

Data file: heartrate.sgd

🗰 heartrate.sgd 📃 🗉 🕱					
	Subject	Drug	Time	Heart Rate 🔺	
1	1	AX23	T1	72	
2	1	AX23	T2	86	
3	1	AX23	ТЗ	81	
4	1	AX23	T4	77	
5	2	BWW9	T1	85	
6	2	BWW9	T2	86	
7	2	BWW9	ТЗ	83	
8	2	BWW9	T4	80	
9	3	CONTROL	T1	69	
10	3	CONTROL	T2	73	
11	3	CONTROL	ТЗ	72	
12	3	CONTROL	T4	74	
13	4	AX23	T1	78	
14	4	AX23	T2	83	
15	4	AX23	ТЗ	88	
16	4	AX23	T4	81	
17	5	BWW9	T1	82	
18	5	BWW9	T2	86 🔽	
	heartrate B C				

Data input

General Linear Models	
Subject	Dependent Variables:
Time Heart Rate	Heart Rate
	Colonation Frankrus
	Lategorical Factors:
	Drug Subject Time
	Quantitative Factors:
	T
	(Weights:)
Sort column names	
OK Cancel	Delete Transform Help

Model Specification

GLM Model Specification		×
Factors: A:Drug B:Subject C:Time	Effects: Cross: Nest: C	Random factors: A N Image: B 0 Image: C P Image: D Q Image: D Q Image: D Q Image: D Q Image: D Image: Q Image: D </td
OK Cancel	Enter Delete	Help

Analysis of Variance

Analysis of Variance for Heart Rate

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Model	4487.94	32	140.248	18.83	0.0000
Residual	469.219	63	7.44792		
Total (Corr.)	4957.16	95			

Туре Ш Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Drug	1333.0	2	666.5	5.99	0.0088
Subject(Drug)	2337.91	21	111.329	14.95	0.0000
Time	289.615	3	96.5382	12.96	0.0000
Drug*Time	527.417	6	87.9028	11.80	0.0000
Residual	469.219	63	7.44792		
Total (corrected)	4957.16	95			

Comparison to Control

Multiple Comparisons Option	ns	X
Type C All Pairwise Means Versus Control User-Specified Factor: Drug Time	Method C LSD C Tukey HSD C Scheffe C Bonferroni C Multivariate t C Student-Newman-Keuls C Duncan C Duncan	OK Cancel Help
	Control Level: Confid 3 95.0	dence Level:

Multiple Comparisons for Heart Rate by Drug

Method: 95.0 percent Dunnett

Contrast	Sig.	Difference	+/- Limits
AX23 - CONTROL		4.375	6.34025
BWW9 - CONTROL	*	9.125	6.34025

* denotes a statistically significant difference.

User-Defined Contrast

$L = 0.5^* \mu_{AX23} + 0.5^* \mu_{BWW9} - \mu_{CONTROL}$

Multiple Comparisons Option	ns	— ×
Type O All Pairwise Means O Versus Control O User-Specified Factor: Drug Time	Method C LSD C Tukey HSD C Scheffe C Bonferroni C Multivariate t C Student-Newman-Keuls C Duncan C Dunnett	OK Cancel Help
	Control Level: Confid 3 95.0	lence Level: %

poth	nesis Matrix			
4	1	2	3	▲
1	0.5	0.5	-1.0	
2	0.0	0.0	0.0	
3	0.0	0.0	0.0	
4	0.0	0.0	0.0	
5	0.0	0.0	0.0	
6	0.0	0.0	0.0	
7	0.0	0.0	0.0	
8	0.0	0.0	0.0	
9	0.0	0.0	0.0	
10	0.0	0.0	0.0	
11	0.0	0.0	0.0	
12	0.0	0.0	0.0	
13	0.0	0.0	0.0	
14	0.0	0.0	0.0	
15	0.0	0.0	0.0	

Interaction Plot

Interactions and 95.0 Percent Tukey HSD Intervals

References

- Box, G. E. P., Hunter, W. G. and Hunter, J. S. (2005). <u>Statistics</u> for Experimenters: An Introduction to Design, Data Analysis, and Model Building, 2nd edition. New York: John Wiley and Sons.
- DASL Data and Story Library. (lib.stat.cmu.edu/DASL)
- Milliken, G. A. and Johnson, D. E. (1992). <u>Analysis of Messy</u> <u>Data - Volume 1: Designed Experiments</u>, reprint edition. New York: Van Nostrand Reinhold.
- Neter, J., Kutner, M.H., Wasserman, W., and Nachtscheim, C.J. (1996). <u>Applied Linear Statistical Models, 4th edition</u>. *Homewood, Illinois: Irwin.*