Capability Analysis Using Statgraphics Centurion

Neil W. Polhemus, CTO, StatPoint Technologies, Inc.

Copyright 2011 by StatPoint Technologies, Inc.

Web site: www.statgraphics.com

Outline

- Definition of process capability analysis
- Examples
 - 1. Capability analysis for attributes
 - 2. Estimating capability for variable data
 - 3. Capability indices
 - 4. Statistical tolerance limits
 - 5. Multivariate capability analysis
- Sample size determination

Capability Analysis

Determination based on data of a process's ability to meet established specifications.

Specifications may be stated in terms of variables (such as the tolerance on the diameter of a part) or in terms of attributes (such as the frequency of customer complaints).

Capability Measurements

The essential measure of process capability is DPM (defects per million) or DPMO (defects per million opportunities), defined as the number of times that a process does not meet the specifications out of every million possibilities.

DPM may be estimated directly or inferred from statistics such as a capability index or statistical tolerance limit.

How can we estimate capability using Statgraphics?

- Direct counting of defects
- Estimation of DPM from a fitted distribution
- Indirect inference about DPM from a capability index
- Demonstration of required capability through a statistical tolerance interval or bound

Example #1 - defects1.sgd

Inspected k=30 batches of n=500 items each. Counted number of defective items.

C:\Webi	nar\defects1.sgd		
	batch	items	defectives 🔺
1	1	500	0
2	2	500	1
3	3	500	1
4	4	500	0
5	5	500	0
6	б	500	0
7	7	500	1
8	8	500	0
9	9	500	0
10	10	500	0
11	11	500	0
12	12	500	0
13	13	500	0
	14 defects1 B C	500	

Procedure Capability Analysis – Percent Defective

Process Capability Analysis - Percer	nt Defective	X
batch items defectives	Number of Defectives: defectives	
	Sample Sizes:	
	(Target % defective:)	
	(LSL:) (Nominal:) (USL):	
	(Select:)	
🔲 Sort column names		
OK Cancel	Delete Transform Help	

Output

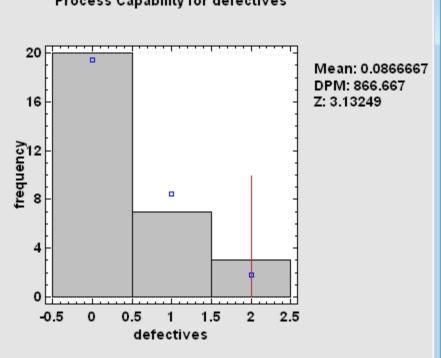
Process Capability Analysis (Percent Defective) - defectives

Process Capability Analysis (Percent Defective) - defectives

Data variable: defectives

Distribution: Binomial

number of samples = 30 average sample size = 500.0 mean percent defective = 0.0866667


	Estimate	Upper 95% Bound
Mean percent defective	0.0866667	0.13772
Defects per million	866.667	1377.2
Process Z	3.13249	2.9939
Tolerance limits (average size sample)		2

The StatAdvisor

The 30 values of defectives have an average of 0.0866667% defective items. This equconfidence bound indicates that the mean percent of defective items in the population

The process Z value converts the estimated mean percent defective to a capability ind capability of variable data. In most cases, a Z value of at least 4 is desirable.

The tolerance limits show the likely variability amongst samples in the population. In expected to have no more than 2.0 defective items.

Process Capability for defectives

Conclusions

- Best estimate for DPM = 866.7
- With 95% confidence, DPM is no greater than 1,377.2
- Tolerance limit: 95% of all batches of n=500 items will have no more than 2 defectives
- Equivalent Z = 3.13

Example #2 - resistivity.sgd

Measured resistivity of n=100 electronic components

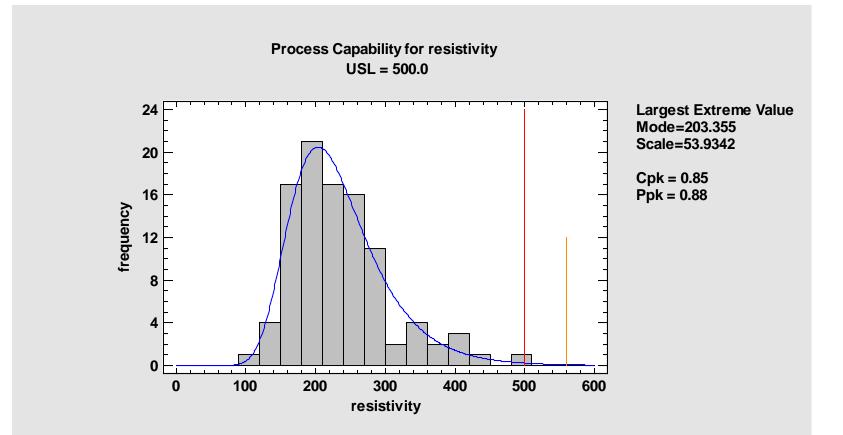
🛄 resistivit	y.sgd	
	resistivity	date 🔺
1	211.2	1/1/07
2	435.0	1/2/07
3	154.9	1/3/07
4	186.8	1/4/07
5	292.3	1/5/07
6	155.4	1/6/07
7	255.7	1/7/07
8	165.8	1/8/07
9	227.9	1/9/07
10	178.8	1/10/07
11	279.8	1/11/07
12	267.5	1/12/07
13	297.4	1/13/07
14	233.7	1/14/07
15	156.7	1/15/07
16	181.1	1/16/07 🔽
	resistivity B C	

10

Procedure Capability Analysis – Variable Data - Individuals

Process Capability Analysis (Individuals)				
resistivity date	Data: resistivity (Date/Time/Labels:)			
Sort column names				
OK Cancel	Delete Transform Help			

Selecting Proper Distribution


Tests for Normality for resistivity

Test	Statistic	P-Value
Shapiro-Wilk W	0.924904	0.00000550813

Comparison of Alternative Distributions

Distribution	Est. Parameters	Log Likelihood	KSD
Largest Extreme Value	2	-557.918	0.0422297
Lognormal	2	-558.632	0.0444956
Loglogistic	2	-559.663	0.0491967
Gamma	2	-560.767	0.0559315
Logistic	2	-566.28	0.0717518
Laplace	2	-568.183	0.0830668
Normal	2	-568.981	0.0891378
Weibull	2	-570.627	0.101169
Smallest Extreme Value	2	-593.519	0.174701
Exponential	1	-646.066	0.423526
Pareto	1	-810.833	0.585075

Capability Plot

Estimate of DPM

Transformation: none

Distribution: Largest Extreme Value sample size = 100 mode = 203.355 scale = 53.9342 (mean = 234.486) (sigma = 69.1733)

Equivalent 6.0 Sigma Limits 99.865 percentile = 559.698 median = 223.122 0.134996 percentile =101.514

	Observed		Estimated	Defects
Specifications	Beyond Spec.	Z-Score	Beyond Spec.	Per Million
USL = 500.0	1.000000%	2.65	0.407788%	4077.88
Total	1.000000%		0.407788%	4077.88

Capability Indices

$$C_{P} = \frac{USL - LSL}{6\hat{\sigma}}$$

$$C_{PK} = \min\left[\frac{\hat{\mu} - LSL}{3\hat{\sigma}}, \frac{USL - \hat{\mu}}{3\hat{\sigma}}\right]$$

$$Z = \min\left[\frac{\hat{\mu} - LSL}{\hat{\sigma}}, \frac{USL - \hat{\mu}}{\hat{\sigma}}\right]$$

15

Long-term and Short-term

Capability Indices for resistivity

Specifications

USL = 500.0

	Short-Term	Long-Term
	Capability	Performance
Sigma (after normalization)	1.03374	1.0
Zmin	2.5592	2.64556
Cpk/Ppk	0.853067	0.881852
DPM	5245.67	4077.88

Based on 6.0 sigma limits in the normalized metric. Short-term sigma estimated from average moving range.

Six Sigma Calculator

Six Sigma Indices		×
_Input		ОК
C Z-Score:	3.0	
O DPM:	10.0	Cancel
O Defects (%):	0.01	Help
O Yield (%):	99.99	
💿 Cpk:	0.83	
🔿 Sigma level:	6.0	
Sigma shift: 1.5		
Specifications		
C Two-sided		
C Lower limit only		
 Upper limit only 		

Six Sigma Calculator

Input: Cpk = 0.83 Sigma shift = 1.5

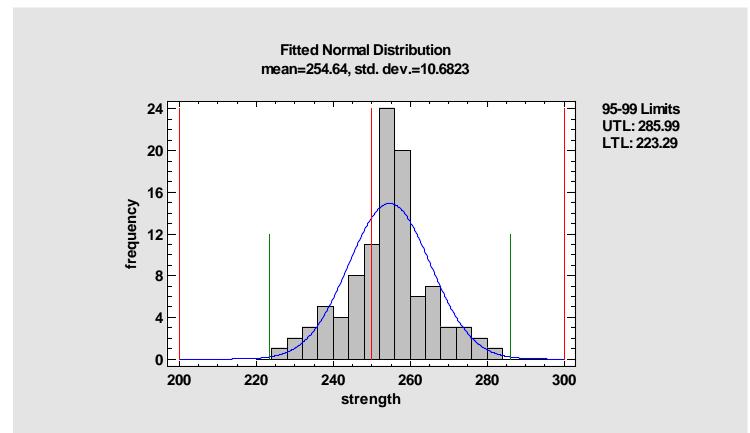
Equivalent values:

Index	Value
Z-Score	2.49
DPM	6387.15
Defects	0.638715
Yield	99.3613
Cpk	0.83
SQL	3.99

Example #3 - bottles.sgd

Measured breaking strength of n=100 glass bottles

bottles.s	bottles.sgd				
	strength	time 🔺			
4					
1	255	0:10			
2	232	0:20			
3	282	0:30			
4	260	0:40			
5	255	0:50			
6	233	1:00			
7	240	1:10			
8	255	1:20			
9	254	1:30			
10	259	1:40			
11	235	1:50			
12	262	2:00			
13	272	2:10			
14	247	2:20			
15	251	2:30			
16	245	2:40			
	bottles B C				


Statistical Tolerance Limits

Statistical Tolerance Limits		×
time	Data: strength (Date/Time/Labels:) ime [LSL:) (Nominal:) (USL): [Date:] [Date:] [Date:] [Select:] [Date:] [Date:]	
🔲 Sort column names		
OK Cancel	Delete Transform Help	

Tolerance Limit Options

Statistical Tolerance Limits Options		— ×-
 Distribution Normal C Lognormal Threshold: 0.0 	 Type of Limits Two-sided Lower limit only Upper limit only 	OK Cancel Help
 C Weibull C Normal after transformation Power: 1.0 C Nonparametric (specified confidence) Interval Depth: 1 C Nonparametric (specified proportion) 	Confidence Level: Popul 95.0 _% 99.0	lation Proportion:

Output

Conclusions

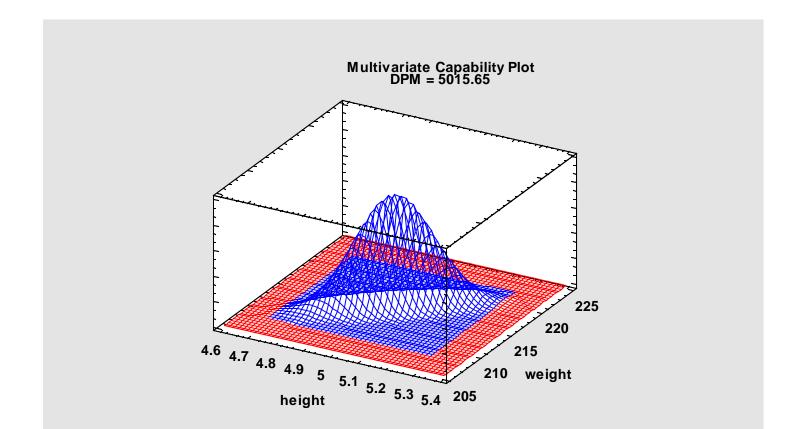
The StatAdvisor

Assuming that strength comes from a normal distribution, the tolerance limits state that we can be 95.0% confident that 99.0% of the distribution lies between 223.295 and 285.985. This interval is computed by taking the mean of the data +/-2.93431 times the standard deviation.

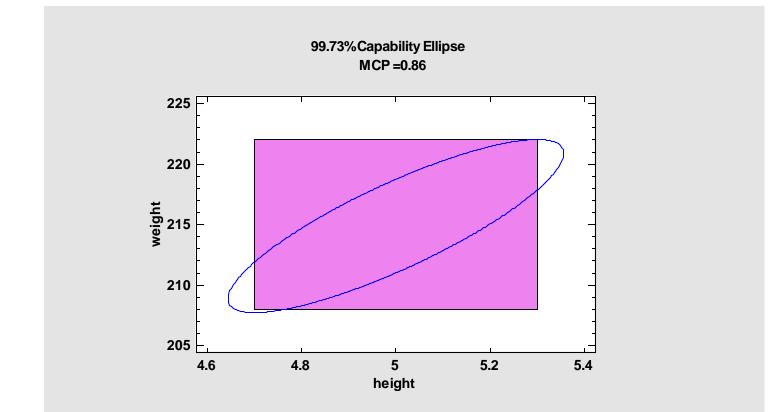
Multivariate Capability Analysis

- For multiple variables, determines the probability that ALL variables meet their established specification limits.
- Important when the variables are strongly correlated.

Example #4 - bivariate.sgd


Measurements of height and weight of n=150 items. Specs: height 5 \pm 0.3, weight 215 \pm 7

C:\Webinar\bivariate.sgd					
	height	weight	LSL	NOM	USL 🔺
1	4.99	213.94	4.7	5	5.3
2	5.02	215.30	208	215	222
3	5.08	216.03			
4	4.99	214.64			
5	4.99	215.57			
6	4.91	214.60			
7	5.08	217.43			
8	5.09	215.98			
9	5.11	216.73			
10	4.97	215.46			
11	5.01	214.21			
12	4.95	214.08			
13	5.00	212.27			
14	5.02	213.98			
14 4 4 4	bivariate B C		4		Þ


Data Input

Multivariate Capability Analysis		×
height weight LSL NOM USL	Data:	*
Sort column names	(Date/Time/Labels:) Upper Specification Limits: USL Nominal Values: NOM Lower Specification Limits: LSL (Select:) Delete Transform Help	
OK Cancel	Delete Transform Help	

Bivariate Normal Distribution

Capability Ellipse

Multivariate Capability

Multivariate Capability Analysis

Data variables:

height

weight

Number of complete cases: 150

	Sample	Sample			
Variable	Mean	Std. Dev.	LSL	Nominal	USL
height	5.0	0.105271	4.7	5.0	5.3
weight	214.883	2.11459	208.0	215.0	222.0

	Observed	Estimated	Estimated
Variable	Beyond Spec.	Beyond Spec.	DPM
height	0.0%	0.437478%	4374.78
weight	0.0%	0.0948817%	948.817
Joint	0.0%	0.501565%	5015.65

Capability Indices

Index	Estimate
MCP	0.86
MCR	116.52
DPM	5015.65
Z	2.57475
SQL	4.07475

Based on 6.0 sigma limits.

Multivariate capability indices defined to give same relationship with DPM as in univariate case.

Sample Size Determination - Counting

Suppose I wish to estimate DPM to within +/-10% with 95% confidence.

Sample-Size Determination		Sample-Size Determination Options	×
Parameter Normal Mean Normal Sigma Binomial Proportion Poisson Rate Hypothesized Mean: 0.0 Hypothesized Sigma: 1.0 Hypothesized Proportion: 0.001 Hypothesized Rate: 1.0	OK Cancel Help	Control Control Absolute Error + 0.0001 Relative Error + 10.0 % Power 95.0 % Difference to Detect: 0.0001 Sample Size 30 Alternative Hypothesis Not Equal Less Than Greater Than	OK Cancel Help Sigma To Be Estimated To Be Estimated

Sample-Size Determination

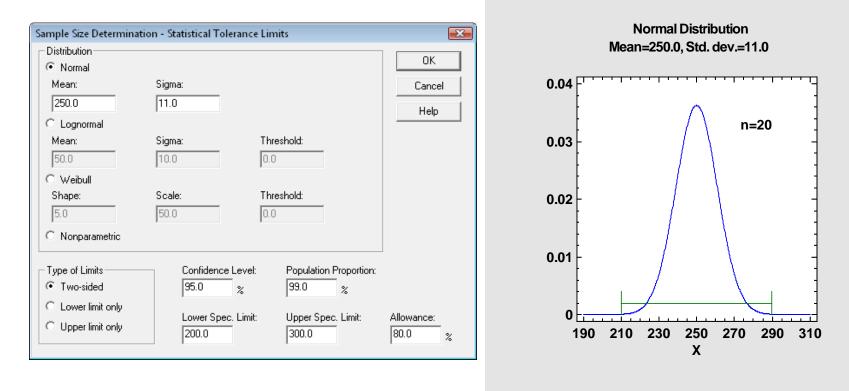
Parameter to be estimated: binomial parameter Desired tolerance: +- 10.0% when proportion = 0.001 Confidence level: 95.0%

The required sample size is n=422065 observations.

Sample Size Determination – Capability Indices

Suppose I wish to estimate Cpk to within +/-10% with 95% confidence.

Sample Size Determination (Capability Indices)			
C Cp		OK	
Cpk		Cancel	
C Cpm		Help	
Estimated index:	Mean minus target: 1.0 sigma		
Relative error:	Confidence Level:		


Sample Size Determination (Capability Indices)

Capability index: Cpk Estimate: 1.33 Relative error: 10.0% Confidence level: 95.0%

The required sample size is 154.

Sample Size Determination – Statistical Tolerance Limits

A 95-99 tolerance interval covering 80% of the distance between the spec limits requires a sample of n = 20 items in this case.

More Information

Go to <u>www.statgraphics.com</u>

Or send e-mail to info@statgraphics.com

