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Logistic Regression 
 
Summary 
The Logistic Regression procedure is designed to fit a regression model in which the dependent 
variable Y characterizes an event with only two possible outcomes. Two types of data may be 
modeled: 
 

1. Data in which Y consists of a set of 0’s and 1’s, where 1 represents the occurrence of 
one of the 2 outcomes. 

2. Data in which Y represents the proportion of time that one of the 2 outcomes 
occurred. 

 
The fitted regression model relates Y to one or more predictor variables X, which may be either 
quantitative or categorical. In this procedure, it is assumed that the probability of an event is 
related to the predictors through a logistic function. The Probit Analysis procedure can be used to 
fit the same type of data but uses a different functional form. 
 
The procedure fits a model using either maximum likelihood or weighted least squares. Stepwise 
selection of variables is an option. Likelihood ratio tests are performed to test the significance of 
the model coefficients. The fitted model may be plotted and predictions generated from it. 
Unusual residuals are identified and plotted.  
 
Sample StatFolio: logistic.sgp 
 
Sample Data: 
Two examples will be considered. The first example, from Myers (1990), is contained in the file 
fabric.sgd. It describes the failure of specimens of a fabric subjected to different loads.  
 

Load Specimens Failures 
5 600 13 
35 500 95 
70 600 189 
80 300 95 
90 300 130 

 
For this data, the dependent variable Y is the proportion of specimens at a given load that failed, 
calculated by Y = failures / specimens. There is a single predictor variable X = Load. There are a 
total of n = 2,300 specimens. 
 
The second data file, collisions.sgd, is from Härdle and Stoker (1989).  It describes n = 58 side 
impact collisions of automobiles.  The response variable Y is binary, quantifying whether or not 
the collision resulted in a fatality. A portion of the file is shown below: 
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Age Acceleration Velocity Fatality 
22 50 98 0 
21 49 160 0 
40 50 134 1 
43 50 142 1 
23 51 118 0 
58 51 143 1 
29 51 77 0 
29 51 184 0 
47 51 100 1 
… … … … 

 
The dependent variable Y = Fatality equals 1 if a fatality occurred and 0 otherwise. The predictor 
variables are the Age of the person involved and the Acceleration and Velocity of the object that 
hit that person’s automobile. 
 
Data Input 
The data input dialog box requests information about the input variables: 
 

 
 
 Dependent Variable: a numeric variable containing the dependent variable Y.  Y may consist 

of either a set of s proportions, each between 0 and 1, or a set of n binary 0’s and 1’s 
representing the occurrence or non-occurrence of an outcome. 

 



STATGRAPHICS – Rev. 7/6/2009 

 2009 by StatPoint Technologies, Inc.   Logistic Regression - 3 

 (Sample Sizes): If Y contains a set of proportions, enter a column with the sample sizes 
corresponding to each proportion. If Y contains a set of 0’s and 1’s, leave this field blank. 

 
 Quantitative Factors: numeric columns containing the values of any quantitative factors to 

be included in the model. 
 
 Categorical Factors: numeric or non-numeric columns containing the levels of any 

categorical factors to be included in the model. 
 
 Select: subset selection. 
 
 
For the collisions.sgd file, where the data is binary, the data input dialog box is shown below: 
 

 

 

Statistical Model 
The logistic model relates the probability of occurrence P of the outcome counted by Y to the 
predictor variables X. The model takes the form 
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Alternatively, the model can be written in the form 
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where the left hand side of the above equation is referred to as the logit transformation. 
 

Analysis Summary 
The Analysis Summary displays a table showing the estimated model and test of significance for 
the model coefficients. The output depends on the method used to estimate the model. 
 
Maximum Likelihood Estimation 
Maximum likelihood estimation may be used whether Y is binary or contains proportions. 
Typical output when maximum likelihood is used is shown below: 
 
Logistic Regression - Failures/Specimens 
Dependent variable: Failures/Specimens 
Sample sizes: Specimens 
Factors: 
   Load 
 
Estimated Regression Model (Maximum Likelihood) 
  Standard Estimated 
Parameter Estimate Error Odds Ratio 
CONSTANT -2.9949 0.145939  
Load 0.0307699 0.00209432 1.03125 

 
Analysis of Deviance 
Source Deviance Df P-Value 
Model 283.056 1 0.0000 
Residual 36.2181 3 0.0000 
Total (corr.) 319.274 4  

 
Percentage of deviance explained by model = 88.6561 
Adjusted percentage = 87.4033 
 
Likelihood Ratio Tests 
Factor Chi-Squared Df P-Value 
Load 283.056 1 0.0000 

 
Residual Analysis 
 Estimation Validation 
n 5  
MSE 0.159284  
MAE 0.0299959  
MAPE 23.9252  
ME -0.000979783  
MPE -10.6729   

 
The output includes: 
 
 Data Summary: a summary of the input data. 
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 Estimated Regression Model: estimates of the coefficients in the regression model, with 
standard errors and estimated odds ratios. The odds ratios are calculated from the model 

coefficients j̂  by 

 

odds ratio =  j̂exp         (3) 

 
The odds ratio represents the percentage increase in the odds of an outcome for each unit 
increase in X. 

 
 Analysis of Deviance: decomposition of the deviance of the data into an explained (Model) 

component and an unexplained (Residual) component. Deviance compares the likelihood 
function for a model to the largest value that the likelihood function could achieve, in a 
manner such that a perfect model would have a deviance equal to 0. There are 3 lines in the 
table: 

 
1. Total (corr.) – the deviance of a model containing only a constant term, (0). 

 
2. Residual – the deviance remaining after the model has been fit.  

 
3. Model – the reduction in the deviance due to the predictor variables, 

(1,2,…,k|0), equal to the difference between the other two components.  
 

The P-Value for the Model tests whether the addition of the predictor variables significantly 
reduces the deviance compared to a model containing only a constant term. A small P-Value 
(less than 0.05 if operating at the 5% significance level) indicates that the model has 
significantly reduced the deviance and is thus useful for predicting the probability of the 
studied outcome. The P-Value for the Residual term tests whether there is significant lack-of-
fit, i.e., whether a better model may be possible. A small P-value indicates that significant 
deviance remains in the residuals, so that a better model might be possible. 

 
 Percentage of Deviance – the percentage of deviance explained by the model, calculated by  
 

 
 0
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
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It is similar to an R-squared statistic in multiple regression, in that it can range from 0% to 
100%. An adjusted deviance is also computed from 
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where p equals the number of coefficients in the fitted model, including the constant term. It 
is similar to the adjusted R-squared statistic in that it compensates for the number of 
variables in the model. 
 

 Likelihood Ratio Tests – a test of significance for each effect in the fitted model. These tests 
compare the likelihood function of the full model to that of the model in which only the 
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

indicated effect has been dropped. Small P-values indicate that the model has been improved 
significantly by the corresponding effect. 
 

 Residual Analysis – if a subset of the rows in the datasheet have been excluded from the 
analysis using the Select field on the data input dialog box, the fitted model is used to make 
predictions of the Y values for those rows. This table shows statistics on the prediction errors, 
defined by 
 

)(ˆ
iii XPye          (6) 

 
Included are the mean squared error (MSE), the mean absolute error (MAE), the mean 
absolute percentage error (MAPE), the mean error (ME), and the mean percentage error 
(MPE). These validation statistics can be compared to the statistics for the fitted model to 
determine how well that model predicts observations outside of the data used to fit it. 

 
The fitted model for the sample data is 
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The regression explains about 88.7% of the deviance of a model without Load. The P-value for 
Load is very small, indicating that it is a statistically significant predictor for the proportion of 
Failures. The odds ratio is approximately 1.03, indicating a 3% increase in the odds of a failure 
for each unit increase in Load. 
 
Note that the P-value for the Residuals is also significant, indicating that significant lack-of-fit 
remains unexplained. This can be rectified by returning to the data input dialog box and entering 
LOG(Load) as the predictor variable rather than Load. The result is a loglogistic model, as 
shown below: 
 
Logistic Regression - Failures/Specimens 
Dependent variable: Failures/Specimens 
Sample sizes: Specimens 
Factors: 
   LOG(Load) 
 
Estimated Regression Model (Maximum Likelihood) 
  Standard Estimated 
Parameter Estimate Error Odds Ratio 
CONSTANT -5.5784 0.368202  
LOG(Load) 1.13997 0.0892554 3.12667 

 
Analysis of Deviance 
Source Deviance Df P-Value 
Model 313.886 1 0.0000 
Residual 5.38828 3 0.1455 
Total (corr.) 319.274 4  

 
Percentage of deviance explained by model = 98.3123 
Adjusted percentage = 97.0595 
 
Likelihood Ratio Tests 
Factor Chi-Squared Df P-Value 
LOG(Load) 313.886 1 0.0000  
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Notice the increase in the percentage of deviance explained to over 98%. In addition, the P-
Value for the Residuals no longer shows significant lack of fit. 
 
Weighted Least Squares Regression 
When the input data Y consists of a set of proportions, the model may be estimated using 
weighted least squares rather than maximum likelihood. The output then takes the following 
form: 
 
Logistic Regression - Failures/Specimens 
Dependent variable: Failures/Specimens 
Sample sizes: Specimens 
Factors: 
   Load 
 
Estimated Regression Model (Weighted Least Squares) 
  Standard T  Estimated 
Parameter Estimate Error Statistic P-Value Odds Ratio 
CONSTANT -2.72665 0.525557 -5.18811 0.0139  
Load 0.0272839 0.00753311 3.62186 0.0362 1.02766 

 
Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 132.876 1 132.876 13.12 0.0362 
Residual 30.3881 3 10.1294   
Total (Corr.) 163.264 4    

 
R-Squared = 81.3871 percent 
R-Squared (adjusted for d.f.) = 75.1828 percent 
Standard Error of Est. = 3.18267 
Mean absolute error = 0.168476 
Durbin-Watson statistic = 2.15796 
Lag 1 residual autocorrelation = -0.390383 
 
Type III Sums of Squares 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Load 132.876 1 132.876 13.12 0.0362 
Residual 30.3881 3 10.1294   

 
Residual Analysis 
 Estimation Validation 
n 5  
MSE 10.1294  
MAE 0.168476  
MAPE 254.223  
ME 3.19675E-17  
MPE -171.933   

 
The table differs from the output of the MLE option in several ways: 
 

1. Each coefficient is shown together with a t-statistic and associated P-value, which tests 
whether a specified coefficient may be equal to 0. 

2. The analysis of deviance is replaced by a standard analysis of variance. The F-Ratio tests 
the statistical significance of the model as a whole. 

3. The percentage of deviance is replaced by a standard R-Squared statistic. 
4. The likelihood ratio tests of the effects are replaced by F tests based on Type III sums of 

squares. The same interpretation of the P-values applies, however, with small P-values 
corresponding to significant effects. 

 
For more explanation of the regression statistics, see the General Linear Models documentation. 
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Analysis Options 
 

 
 
 Method: method used to estimate the model coefficients. For binary Y, Maximum Likelihood 

is the only choice. 
 
 Smallest Proportion: For data Y consisting of proportions, the smallest allowable proportion 

Pmin. All observations less than Pmin are set equal to Pmin, while all observations greater than 
1- Pmin are set equal to 1- Pmin. 

 
 Model: order of the model to be fit. First order models include only main effects. Second 

order models include quadratic effects for quantitative factors and two-factor interactions 
amongst all variables. 

 
 Include Constant:  If this option is not checked, the constant term 0 will be omitted from 

the model.   
 
 Fit: specifies whether all independent variables specified on the data input dialog box should 

be included in the final model, or whether a stepwise selection of variables should be applied.  
Stepwise selection attempts to find a parsimonious model that contains only statistically 
significant variables.  A Forward Stepwise fit begins with no variables in the model. A 
Backward Stepwise fit begins with all variables in the model. 

 
 P-to-Enter - In a stepwise fit, variables will be entered into the model at a given step if their 

P-values are less than or equal to the P-to-Enter value specified.  
 
 P-to-remove - In a stepwise fit, variables will be removed from the model at a given step if 

their P-values are greater than the P-to-Remove value specified. 
 
 Max Steps: maximum number of steps permitted when doing a stepwise fit. 
 
 Display: whether to display the results at each step when doing a stepwise fit. 
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 Exclude: Press this button to exclude effects from the model. A dialog box will be displayed: 
 

 
 
Double click on an effect to move it from the Include field to the Exclude field or back 
again. 

 
 
Example: Stepwise Fit Using Binary Data 
The data on automobile collisions contains 3 possible predictor variables: Age, Velocity, and 
Acceleration. To select a model containing only significant predictors, a stepwise fit could be 
used. Two algorithms are available: 
 

 Forward selection – Begins with a model involving only a constant term and enters 
one variable at a time based on its statistical significance if added to the current 
model.  At each step, the algorithm brings into the model the variable that will be the 
most statistically significant if entered. As long as the most significant variable has a 
P-value less than or equal to that specified on the Analysis Summary dialog box, it 
will be brought into the model.  When no variable has a small enough -value, variable 
selection stops.  In addition, variables brought into the model early in the procedure 
may be removed later if their P-value falls below the P-to-remove criterion. 

 
 Backward selection – Begins with a model involving all the variables specified on 

the data input dialog box and removes one variable at a time based on its statistical 
significance in the current model.  At each step, the algorithm removes from the 
model the variable that is the least statistically significant. If the least significant 
variable has a P-value greater than that specified on the Analysis Summary dialog 
box, it will be removed from the model.  When all remaining variables have small P-
values, the procedure stops.  In addition, variables removed from the model early in 
the procedure may be re-entered later if their P-values reach the P-to-enter criterion. 

 
The following output shows the result of a backwards stepwise fit: 
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Logistic Regression - Fatality 
Dependent variable: Fatality 
Factors: 
   Age 
   Velocity 
   Acceleration 
 
Estimated Regression Model (Maximum Likelihood) 
  Standard Estimated 
Parameter Estimate Error Odds Ratio 
CONSTANT -16.9845 5.14861  
Age 0.162501 0.041448 1.17645 
Velocity 0.233906 0.0862681 1.26353 

 
Analysis of Deviance 
Source Deviance Df P-Value 
Model 33.3408 2 0.0000 
Residual 45.3315 55 0.8206 
Total (corr.) 78.6723 57  

 
Percentage of deviance explained by model = 42.3793 
Adjusted percentage = 34.7527 
 
Likelihood Ratio Tests 
Factor Chi-Squared Df P-Value 
Age 29.9333 1 0.0000 
Velocity 10.0497 1 0.0015 

 
Residual Analysis 
 Estimation Validation 
n 58  
MSE 0.0221508  
MAE 0.340955  
MAPE   
ME 0.00127246  
MPE   

 
Stepwise factor selection 
Method: backward selection 
P-to-enter: 0.05 
P-to-remove: 0.05 
 
Step 0: 
     3 factors in the model.  54 d.f. for error. 
     Percentage of deviance explained =  44.10%     Adjusted percentage =  33.93% 
 
Step 1: 
     Removing factor Acceleration with P-to-remove = 0.244299 
     2 factors in the model.  55 d.f. for error. 
     Percentage of deviance explained =  42.38%     Adjusted percentage =  34.75% 
 
Final model selected. 

 
The algorithm begins with a model containing all three predictors. It then removes Acceleration, 
since its P-value is large. The final model involves only Age and Velocity, each of which has a P-
value at or below 0.05. 
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Plot of Fitted Model 

The Plot of Fitted Model displays the estimated probability of an outcome versus any 
single predictor variable, with the other variables held constant. 

)(ˆ XP
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Confidence limits for P(X) are included on the plot. 
 
 
Pane Options 
 

 
 
 Factor: select the factor to plot on the horizontal axis. 
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 Low and High: specify the range of values for the selected factor. 
 
 Hold: select values to hold the unselected factors at. 
 
 Confidence Level: percentage used for the confidence limits. Set to 0 to suppress the limits. 
 
 Next and Back: used to display other factors when more than 16 are present. 
 
The estimated probability of a failure increases from approximately 5% at low loads to nearly 
50% when Load = 100. 
 

Logit Plot 
The Logit Plot is similar to the Plot of Fitted Model, except that the vertical axis is scaled so that 
the fitted model will be a straight line. 
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Pane Options 
The options are the same as those for the Plot of the Fitted Model. 
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Observed Versus Predicted 
The Observed versus Predicted plot shows the observed values of Y on the vertical axis and the 

predicted values on the horizontal axis. )(ˆ XP
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If the model fits well, the points should be randomly scattered around the diagonal line.   
 

Observed versus Log Odds 
The Observed versus Log Odds pane plots the observed values of Y versus the predicted log 

odds, given by 



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The log odds equals the logistic transformation, which is an exponential function of the predictor 
variables. 
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Inverse Predictions 
The Inverse Predictions table displays estimated values of a selected variable X at which the 

probability  equals set percentages. All other variables in the model are fixed at user-
specified values. 

)(ˆ XP

 
Table of Inverse Predictions for Load 
  Lower 95.0% Upper 95.0% 
Percent Load Conf. Limit Conf. Limit 
0.1 -127.132 -156.921 -104.304 
0.5 -74.6964 -96.4948 -57.9582 
1.0 -52.0059 -70.3688 -37.8809 
2.0 -29.1492 -44.0783 -17.6297 
3.0 -15.6385 -28.5593 -5.6379 
4.0 -5.95227 -17.4486 2.97493 
5.0 1.64004 -8.75274 9.73882 
6.0 7.90927 -1.58389 15.3356 
7.0 13.2666 4.53136 20.1292 
8.0 17.9577 9.87545 24.3372 
9.0 22.1407 14.6304 28.0999 
10.0 25.924 18.9204 31.5135 
15.0 40.9589 35.8156 45.2329 
20.0 52.2786 48.2389 55.8593 
25.0 61.6281 58.1385 64.9974 
30.0 69.7956 66.4205 73.3465 
35.0 77.2138 73.6499 81.2223 
40.0 84.1548 80.2174 88.7884 
45.0 90.8105 86.3904 96.1679 
50.0 97.3322 92.3594 103.479 
55.0 103.854 98.275 110.843 
60.0 110.509 104.274 118.396 
65.0 117.45 110.502 126.302 
70.0 124.869 117.134 134.775 
75.0 133.036 124.417 144.123 
80.0 142.386 132.735 154.843 
85.0 153.705 142.788 167.839 
90.0 168.74 156.119 185.123 
91.0 172.524 159.471 189.474 
92.0 176.707 163.176 194.287 
93.0 181.398 167.33 199.686 
94.0 186.755 172.072 205.852 
95.0 193.024 177.62 213.07 
96.0 200.617 184.337 221.813 
97.0 210.303 192.903 232.97 
98.0 223.813 204.848 248.536 
99.0 246.67 225.048 274.878 
99.5 269.361 245.093 301.036 
99.9 321.797 291.4 361.501  

 
Fiducial confidence levels for the values of X are also included. 
 
For example, the probability of failure for the fabric example is estimated to reach p = 50% at 
Load = 97.33. The 95% confidence limits range from 92.36 to 103.48. 
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Pane Options 
 

 
 
 Factor: select the factor for which to calculate the inverse predictions. 
 
 Low and High: ignored. 
 
 Hold: select values to hold the unselected factors at. 
 
 Confidence Level: percentage used for the confidence limits. 
 
 Next and Back: used to display other factors when more than 16 are present. 
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Goodness-of-Fit  
The Goodness-of-Fit pane performs a chi-squared test to determine whether the fitted model 
adequately describes the observed data. It does so by dividing the fitted logit values into classes 
(groups) and performing a chi-squared test to compare the observed versus fitted values in each 
interval. 
 

Chi-Squared Goodness of Fit Test 
 Logit  TRUE TRUE FALSE FALSE 
Class Interval n Observed Expected Observed Expected 
1 less than -2.84105 600 13.0 33.0874 587.0 566.913 
2 -2.84105 to -1.91796 500 95.0 64.0449 405.0 435.955 
3 -1.91796 to -0.841008 600 189.0 180.793 411.0 419.207 
4 -0.841008 or greater 600 225.0 244.074 375.0 355.926 
Total  2300 522.0  1778.0  

Chi-squared = 33.1125 with 2 d.f.  P-value = 6.45217E-8 
In creating the classes, the program attempts to create groups of approximately equal size.  
 
The table shows the following information for each class: 
 

1. Logit interval - the range of logit values 








 )(ˆ1

)(ˆ
log

XP

XP
corresponding to that class. 

 
2. n - the total number of samples with fitted values within that class. 

 
3. TRUE Observed – of the number of samples in that interval, how many were observed to 

be TRUE (1).  
 

4. TRUE Predicted – of the number of samples in that interval, how many were predicted by 
the fitted model to be TRUE. 

 
5. FALSE Observed – of the number of samples in that interval, how many were observed to 

be FALSE (0).  
 

6. FALSE Predicted – of the number of samples in that interval, how many were predicted 
by the fitted model to be FALSE. 

 
For example, a total of 600 samples of fabric have predicted logit values less than –2.84105 
(corresponding to row #1 of the data file). 13 failures were observed, as observed to a predicted 
value of approximately 33. 
 
To compared the observed counts to the expected counts, a chi-squared goodness-of-fit test is 
performed. A small P-Value (less than 0.05 if operating at the 5% significance level) leads to the 
conclusion that the fitted model does not adequately match the data. In the example, the P-Value 
is very small, indicating a poor fit of the logistic model. 
 
For comparison purposes, note the test for the loglogistic model with X = LOG(Load): 
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Chi-Squared Goodness of Fit Test 
 Logit  TRUE TRUE FALSE FALSE 
Class Interval n Observed Expected Observed Expected 
1 less than -3.74369 600 13.0 13.8717 587.0 586.128 
2 -3.74369 to -1.52541 500 95.0 89.333 405.0 410.667 
3 -1.52541 to -0.735245 600 189.0 194.427 411.0 405.573 
4 -0.735245 or greater 600 225.0 224.368 375.0 375.632 
Total  2300 522.0  1778.0  

Chi-squared = 0.720702 with 2 d.f.  P-value = 0.697432 
 
In that case, the P-Value does not show significant lack-of-fit. 
 
Pane Options 
 

 
 
Number of Classes: maximum number of classes into which to group the data. 
 

Predictions 
The fitted logistic model may be used to predict the outcome of new samples whose predictor 
variables are given. For example, suppose a new sample is collected at a Load equal to 50. If one 
wanted to predict whether or not the item would fail, the fitted model could be evaluated for the 
new sample and a failure predicted if 
 

 > c )(ˆ
newXP

 
for some cutoff value c. The value of c would affect the probability of obtaining a false positive 
or false negative result. 
 
The top section of the Predictions table shows the percentage of items correctly classified as a 
function of c. 
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Prediction Performance - Percent Correct 
Cutoff TRUE FALSE Total 
0.0 100.00 0.00 22.70 
0.05 100.00 0.00 22.70 
0.1 97.51 33.01 47.65 
0.15 79.31 55.79 61.13 
0.2 79.31 55.79 61.13 
0.25 79.31 55.79 61.13 
0.3 79.31 55.79 61.13 
0.35 43.10 78.91 70.78 
0.4 24.90 90.44 75.57 
0.45 0.00 100.00 77.30 
0.5 0.00 100.00 77.30 
0.55 0.00 100.00 77.30 
0.6 0.00 100.00 77.30 
0.65 0.00 100.00 77.30 
0.7 0.00 100.00 77.30 
0.75 0.00 100.00 77.30 
0.8 0.00 100.00 77.30 
0.85 0.00 100.00 77.30 
0.9 0.00 100.00 77.30 
0.95 0.00 100.00 77.30 
1.0 0.00 100.00 77.30  

. 
Included in the table are: 
 
 Cutoff – the value of c. 
 TRUE - using the indicated value of c, the percent of observed failures that would have been 

correctly predicted. 
 
 FALSE - using the indicated value of c, the percent of observed non-failures that would have 

been correctly predicted. 
 
 Total - using the indicated value of c, the percent of all samples that would have been 

correctly predicted. 
 
For example, using a cutoff of c = 0.45 would have predicted correctly the largest percentage of 
total samples (77.3%). Unfortunately, it would have predicted FALSE for all samples (meaning a 
non-failure), which classifies all non-failures correctly but misses all failures! In order to predict 
the failures with a high probability would require a value of c = 0.1, which also results in 
misclassifying 33% of the non-failures. If the model is to be used to screen samples, the best 
value of c would depend on the relative cost of missed failures versus the cost of misclassified 
non-failures. 
 
The second table in the output pane evaluates the fitted model for selected rows in the datasheet. 
Predictions can be made for all rows that have complete information on the X variables or only 
those rows that have missing values for Y. The latter option is useful for making predictions at 
values of X not used to fit the model. 
 
For example, a sixth row could be added to the datasheet with Load = 50, leaving the Failures 
column blank. 
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Predictions for Failures/Specimens 
 Observed Fitted Lower 95.0% Upper 95.0% 
Row Value Value Conf. Limit Conf. Limit 
6  0.189018 0.171239 0.208178  

 
The table predicts a mean failure rate of approximately 18.9% at that load, with a 95% 
confidence interval for the mean rate ranging between 17.1% and 20.8%.  
 
Pane Options 
 

 
 
 Cutoff:  the range of values and increment for c in the table of prediction percentages. 
 
 Display: whether to display predictions for All Values (rows) in the datasheet or Forecasts 

Only (rows with a missing value for Y). 
 
 Confidence Level: percentage of confidence for the confidence limits. 
 
 

Prediction Capability 
The Prediction Capability plot displays the same information as in the Predictions table. 

Prediction Capability Plot for Failures/Specimens
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It plots the correct prediction percentages as a function of the cutoff value c. 
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Prediction Histogram 
The Prediction Histogram illustrates the predicted number of total samples that will fail (TRUE) 

and not fail (FALSE), versus the predicted probability . )(ˆ XP
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Pane Options 
 

 
 
 Number of Classes: the total number of classes into which the horizontal axis will be 

divided. 
 
 Lower and Upper Limit: the limits of the horizontal axis. 
 
 Hold: check to prevent the histogram scaling from changing if the data changes. 
 
 Counts: Select Relative to plot proportions on the vertical axis rather than counts. Select 

Cumulative to plot cumulative counts from left to right. 
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Confidence Intervals 
The Confidence Intervals pane shows the potential estimation error associated with each 
coefficient in the model, as well as for the odds ratios. 
 

95.0% confidence intervals for coefficient estimates 
  Standard   
Parameter Estimate Error Lower Limit Upper Limit 
CONSTANT -2.9949 0.145939 -3.45934 -2.53046 
Load 0.0307699 0.00209432 0.0241049 0.037435 

 
95.0% confidence intervals for odds ratios 
Parameter Estimate Lower Limit Upper Limit 
Load 1.03125 1.0244 1.03814  

 
Pane Options 
 

 
 
 Confidence Level: percentage level for the confidence intervals. 
 

Correlation Matrix 
The Correlation Matrix displays estimates of the correlation between the estimated coefficients.  
 

Correlation matrix for coefficient estimates 
 CONSTANT Load 
CONSTANT 1.0000 -0.9320 
Load -0.9320 1.0000  

 
This table can be helpful in determining how well the effects of different independent variables 
have been separated from each other. 
 

Unusual Residuals 
Once the model has been fit, it is useful to study the residuals to determine whether any outliers 
exist that should be removed from the data. The Unusual Residuals pane lists all observations 
that have unusually large residuals 
 

Unusual Residuals for Failures/Specimens 
  Predicted  Pearson Deviance 
Row Y Y Residual Residual Residual 
1 0.0216667 0.0551456 -0.033479 -3.59 -4.07 
2 0.19 0.12809 0.0619103 4.14 3.91  

 
The table displays: 
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 Row – the row number in the datasheet. 
 
 Y – the observed value of Y. 
 

 Predicted Y – the fitted value )(ˆ XP . 
 
 Residual – the difference between the observed and predicted values defined by 
 

)(ˆ XPYei           (8) 

 
 Pearson Residual – a standardized residual in which each residual is divided by an 

estimate of its standard error: 
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 Deviance Residual – a residual that measures each observation’s contribution to the 

residual deviance: 
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The sum of squared deviance residuals equals the deviance on the Residuals line of the 
analysis of deviance table. 

 
The table includes all rows for which the absolute value of the Pearson residual is greater than 
2.0. The current example shows 2 very large residuals. 
 

Residual Plots 
As with all statistical models, it is good practice to examine the residuals. The Logistic 
Regression procedure various type of residual plots, depending on Pane Options. 
 
Scatterplot versus Predicted Value 
This plot is helpful in visualizing whether the variability of he residuals is constant or depends on 
the predicted value. 
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predicted Failures/Specimens
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Normal Probability Plot 
This plot can be used to determine whether or not the deviations around the line follow a normal 
distribution. 
 

Pearson residual

Normal Probability Plot for Failures/Specimens
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If the deviations follow a normal distribution, they should fall approximately along a straight 
line. 
 
 
Residual Autocorrelations 
This plot calculates the autocorrelation between residuals as a function of the number of rows 
between them in the datasheet. 
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lag

Residual Autocorrelations for Failures/Specimens
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It is only relevant if the data have been collected sequentially. Any bars extending beyond the 
probability limits would indicate significant dependence between residuals separated by the 
indicated “lag”. 
 
Pane Options 
 

 
 
 Plot: the type of residuals to plot: 
 

1. Residuals – the observed values minus the fitted values. 
2. Studentized residuals – the residuals divided by their estimated standard errors. 
3. Deviance Residuals – residuals scaled so that their sum of squares equals the residual 

deviance. 
 

 Type: the type of plot to be created. A Scatterplot is used to test for curvature. A Normal 
Probability Plot is used to determine whether the model residuals come from a normal 
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distribution. An Autocorrelation Function is used to test for dependence between consecutive 
residuals. 

 
 Plot Versus: for a Scatterplot, the quantity to plot on the horizontal axis. 
 
 Number of Lags: for an Autocorrelation Function, the maximum number of lags. For small 

data sets, the number of lags plotted may be less than this value. 
 
 Confidence Level: for an Autocorrelation Function, the level used to create the probability 

limits. 
 
 

Save Results 
The following results may be saved to the datasheet: 
 

1. Predicted Values – the fitted values )(ˆ
iXP corresponding to each row of the datasheet. 

2. Lower Limits – the lower confidence limits for )(ˆ
iXP . 

3. Upper Limits – the upper confidence limits for )(ˆ
iXP . 

4. Residuals – the ordinary residuals. 
5. Pearson Residuals – the standardized Pearson residuals. 
6. Deviance Residuals – the deviance residuals. 
7. Leverages – if the model was fit using weighted least squares, the leverages for each row. 
8. Percentages – the percentages at which inverse predictions were made. 
9. Inverse Predictions – the inverse predictions. 
10. Lower Fiducial Limits – the lower confidence limits for the inverse predictions. 
11. Upper Fiducial Limits - the upper confidence limits for the inverse predictions. 
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Calculations 
 
Likelihood Function 
 

For Y consisting of proportions:  where ri=nipi  (11)      
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For binary Y: 
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Weights for Weighted Least Squares 
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Deviance 
 

For Y consisting of proportions:    
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For binary Y:    
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