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Multiple Regression 
 
Summary 
The Multiple Regression procedure is designed to construct a statistical model describing the 
impact of a two or more quantitative factors X on a dependent variable Y. The procedure 
includes an option to perform a stepwise regression, in which a subset of the X variables is 
selected. The fitted model may be used to make predictions, including confidence limits and/or 
prediction limits. Residuals may also be plotted and influential observations identified. 
 
The procedure contains additional options for transforming the data using either a Box-Cox or 
Cochrane-Orcutt transformation. The first option is useful for stabilizing the variability of the 
data, while the second is useful for handling time series data in which the residuals exhibit serial 
correlation. 
 
Sample StatFolio: multiple reg.sgp 
 
Sample Data: 
The file 93cars.sgd contains information on 26 variables for n = 93 makes and models of 
automobiles, taken from Lock (1993). The table below shows a partial list of 4 columns from 
that file: 
 
Make Model MPG 

Highway 
Weight Horsepower Wheelbase Drivetrain 

Acura         Integra         31 2705 140 102 front            
Acura Legend 25 3560 200 115 front            
Audi 90 26 3375 172 102 front            
Audi 100 26 3405 172 106 front            
BMW 535i 30 3640 208 109 rear             
Buick Century 31 2880 110 105 front            
Buick LeSabre 28 3470 170 111 front            
Buick Roadmaster 25 4105 180 116 rear             
Buick Riviera 27 3495 170 108 front            
Cadillac DeVille 25 3620 200 114 front            
Cadillac Seville 25 3935 295 111 front            
Chevrolet Cavalier 36 2490 110 101 front            

 
A model is desired that can predict MPG Highway from Weight, Horsepower, Wheelbase, and 
Drivetrain. 
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Data Input 
The data input dialog box requests the names of the columns containing the dependent variable 
Y and the independent variables X: 
 

 
 
 Y: numeric column containing the n observations for the dependent variable Y. 
 
 X: numeric columns containing the n values for the independent variables X. Either column 

names or STATGRAPHICS expressions may be entered. 
 
 Select: subset selection. 
 
 Weight: an optional numeric column containing weights to be applied to the squared 

residuals when performing a weighted least squares fit. 
 
In the example, note the use of the expression Weight^2 to add a second-order term involving the 
weight of the vehicle. This was added after examining an X-Y plot that showed significant 
curvature with respect to Weight. The categorical factor Drivetrain has also be introduced into 
the model through the Boolean expression Drivetrain=”front”, which sets up an indicator 
variable that takes the value 1 if true and 0 if false. The model to be fit thus takes the form: 
 

MPG Highway = 0 + 1Weight + 2Weight2 + 3Horsepower + 4Wheelbase  + 5X5   (1) 
 

where  
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Analysis Summary 
The Analysis Summary shows information about the fitted model. 
 
Multiple Regression - MPG Highway 
Dependent variable: MPG Highway 
 
  Standard T  
Parameter Estimate Error Statistic P-Value 
CONSTANT 49.8458 10.5262 4.73539 0.0000 
Weight -0.0273685 0.00530942 -5.1547 0.0000 
Weight^2 0.00000261405 8.383E-7 3.11827 0.0025 
Horsepower 0.0145764 0.009668 1.50769 0.1353 
Wheelbase 0.338687 0.103479 3.273 0.0015 
Drive Train="front" 0.632343 0.73879 0.855918 0.3944 

 
Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 1902.18 5 380.435 46.41 0.0000 
Residual 713.136 87 8.19696   
Total (Corr.) 2615.31 92    

 
R-squared = 72.7323 percent 
R-squared (adjusted for d.f.) = 71.1652 percent 
Standard Error of Est. = 2.86303 
Mean absolute error = 2.13575 
Durbin-Watson statistic = 1.685 (P=0.0601) 
Lag 1 residual autocorrelation = 0.156111 

 
Included in the output are: 
 
 Variables: identification of the dependent variable. The general form of the model is 
 

Y = 0 + 1X1 + 2X2 + … + kXk      (3) 
 

where k is the number of independent variables. 
 

 Coefficients: the estimated coefficients, standard errors, t-statistics, and P values. The 
estimates of the model coefficients can be used to write the fitted equation, which in the 
example is 

 
MPG Highway = 49.8458 - 0.0273685*Weight + 0.00000261405*Weight2  

+ 0.0145764*Horsepower + 0.338687*Wheelbase  
+ 0.632343*Drive Train="front"      (4) 

 
The t-statistic tests the null hypothesis that the corresponding model parameter equals 0, 
based on the Type 3 sums of squares (the extra sums of squares attributable to each variable 
if it is entered into the model last). Large P-Values (greater than or equal to 0.05 if operating 
at the 5% significance level) indicate that a term can be dropped without significantly 
degrading the model provided all of the other variables remain in the model. In the current 



STATGRAPHICS – Rev. 7/7/2009 

 2009 by StatPoint Technologies, Inc.  Multiple Regression - 4 

case, both Horsepower and Drivetrain are not significant. Thus, either variable (but not 
necessarily both) could be dropped from the model without hurting its predictive power 
significantly. 

 
 Analysis of Variance: decomposition of the variability of the dependent variable Y into a 

model sum of squares and a residual or error sum of squares. Of particular interest is the F-
test and its associated P-value, which tests the statistical significance of the fitted model. A 
small P-Value (less than 0.05 if operating at the 5% significance level) indicates that a 
significant relationship of the form specified exists between Y and the independent variables. 
In the sample data, the model is highly significant. 

 
 Statistics: summary statistics for the fitted model, including: 
 

R-squared - represents the percentage of the variability in Y which has been explained by the 
fitted regression model, ranging from 0% to 100%. For the sample data, the regression has 
accounted for about 72.7% of the variability in the miles per gallon.  The remaining 27.3% is 
attributable to deviations from the model, which may be due to other factors, to measurement 
error, or to a failure of the current model to fit the data adequately. 

 
Adjusted R-Squared – the R-squared statistic, adjusted for the number of coefficients in the 
model. This value is often used to compare models with different numbers of coefficients. 
 
Standard Error of Est. – the estimated standard deviation of the residuals (the deviations 
around the model). This value is used to create prediction limits for new observations. 
 
Mean Absolute Error – the average absolute value of the residuals. 
 
Durbin-Watson Statistic – a measure of serial correlation in the residuals. If the residuals 
vary randomly, this value should be close to 2. A small P-value indicates a non-random 
pattern in the residuals. For data recorded over time, a small P-value could indicate that some 
trend over time has not been accounted for. In the current example, the P-value is greater 
than 0.05, so there is not a significant correlation at the 5% significance level. 
 
Lag 1 Residual Autocorrelation – the estimated correlation between consecutive residuals, on 
a scale of –1 to 1. Values far from 0 indicate that significant structure remains unaccounted 
for by the model. 



STATGRAPHICS – Rev. 7/7/2009 

 2009 by StatPoint Technologies, Inc.  Multiple Regression - 5 

 

Analysis Options 

 
 
 Fitting Procedure – specifies the method used to fit the regression model. The options are: 
 

o Ordinary Least Squares – fits a model using all of the independent variables. 
 
o Forward Stepwise Selection – performs a forward stepwise regression. Beginning with 

a model that includes only a constant, the procedure brings in variables one at a time 
provided that they will be statistically significant once added. Variables may also be 
removed at later steps if they are no longer statistically significant. 

 
o Backward Stepwise Selection – performs a backward stepwise regression. Beginning 

with a model that includes all variables, the procedure removes variables one at a time 
if they are not statistically significant. Removed variables may also be added to the 
model at later steps if they become statistically significant. 

 
o Box-Cox Optimization – fits a model involving all of the independent variables. The 

dependent variable, however, is modified by raising it to a power. The method of Box 
and Cox is used to determine the optimum power. Box-Cox transformations are a way 
of dealing with situations in which the deviations from the regression model do not 
have a constant variance.   

 
o Cochrane-Orcutt Optimization – fits a model involving all of the independent 

variables. However, the least squares procedure is modified to allow for autocorrelation 
between successive residuals. The value of the lag 1 autocorrelation coefficient is 
determined using the method of Cochrane and Orcutt. The Cochrane-Orcutt 
transformation is a method for dealing with situations in which the model residuals are 
not independent.   
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 Constant in model – If this option is not checked, the constant term 0 will be omitted from 

the model.  Removing the constant term allows for regression through the origin. 
 
 Power – Specifies the power to which the dependent variable is raised. The default value of 

1.0 implies no power transformation. 
 
 Addend – Specifies an amount that is added to the dependent variable before it is raised to 

the specified power.  
 
 Autocorrelation – Specifies the lag 1 autocorrelation of the residuals. The default value of 

0.0 implies that the residuals are assumed to be independent. If the Cochrane-Orcutt 
procedure is used, this value provides the starting value for the procedure. 

 
 Selection Criterion – If performing a forward or backward stepwise regression, this 

specifies whether variable entry and removal should be based on the F-ratio or its associated 
P-value. 

= 
 F-to-Enter - In a stepwise regression, variables will be entered into the model at a given step 

if their F values are greater than or equal to the F-to-Enter value specified.  
 
 F-to-Remove - In a stepwise regression, variables will be removed from the model at a given 

step if their F values are less than the F-to-Remove value specified. 
 
 P-to-Enter - In a stepwise regression, variables will be entered into the model at a given step 

if their P values are less than or equal to the P-to-Enter value specified.  
 
 P-to-Remove - In a stepwise regression, variables will be removed from the model at a given 

step if their P values are greater than the P-to-Remove value specified. 
 
 Max Steps – maximum number of steps permitted when doing a stepwise regression. 
 
 Display – whether to display the results at each step when doing a stepwise regression. 
 
 
Example – Stepwise Regression 
The model fit to the automobile data showed 2 insignificant variables. To remove them from the 
model, Analysis Options may be used to perform either a forward stepwise selection or a 
backward stepwise selection. 
 

 Forward selection – Begins with a model involving only a constant term and enters 
one variable at a time based on its statistical significance if added to the current 
model.  At each step, the algorithm brings into the model the variable that will be the 
most statistically significant if entered.  Selection of variables is based on either an F-
to-enter test or a P-to-enter test  In the former case, as long as the most significant 
variable has an F value greater or equal to that specified on the Analysis Summary 
dialog box, it will be brought into the model.  When no variable has a large enough F 
value, variable selection stops.  In addition, variables brought into the model early in 
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the procedure may be removed later if their F value falls below the F-to-remove 
criterion. 

 Backward selection – Begins with a model involving all the variables specified on 
the data input dialog box and removes one variable at a time based on its statistical 
significance in the current model.  At each step, the algorithm removes from the 
model the variable that is the least statistically significant.  Removal of variables is 
based on either an F-to-remove test or a P-to-enter test.  In the former case, if the 
least significant variable has an F value less than that specified on the Analysis 
Summary dialog box, it will be removed from the model.  When all remaining 
variables have large F values, the procedure stops.  In addition, variables removed 
from the model early in the procedure may be re-entered later if their F values reach 
the F-to-enter criterion. 

 
In the current example, a backwards selection procedure yields the following: 
 

Stepwise regression 
Method: backward selection 
F-to-enter: 4.0 
F-to-remove: 4.0 
 
Step 0: 
5 variables in the model.  87 d.f. for error. 
R-squared = 72.73%     Adjusted R-squared =  71.17%     MSE = 8.19696 
 
Step 1: 
Removing variable Drive Train="front" with F-to-remove =0.732595 
4 variables in the model.  88 d.f. for error. 
R-squared = 72.50%     Adjusted R-squared =  71.25%     MSE = 8.17206 
 
Step 2: 
Removing variable Horsepower with F-to-remove =2.22011 
3 variables in the model.  89 d.f. for error. 
R-squared = 71.81%     Adjusted R-squared =  70.86%     MSE = 8.28409 
 
Final model selected. 

 
In the first step, Drivetrain is removed since it is the least significant. At the second step, 
Horsepower is removed. The algorithm then stops, since all remaining variables have F-to-
remove values greater than 4, and all previously removed variables have F-to-enter values less 
than 4. 
 
The reduced model is summarized below: 
 
Multiple Regression - MPG Highway 
Dependent variable: MPG Highway 
Independent variables:  
     Weight 
     Weight^2 
     Horsepower 
     Wheelbase 
     Drive Train="front" 
 
  Standard T  
Parameter Estimate Error Statistic P-Value 
CONSTANT 51.8628 10.2179 5.07569 0.0000 
Weight -0.0245435 0.00506191 -4.84867 0.0000 
Weight^2 0.00000236841 8.25606E-7 2.86869 0.0051 
Wheelbase 0.28345 0.0899993 3.14947 0.0022 
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Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 1878.03 3 626.009 75.57 0.0000 
Residual 737.284 89 8.28409   
Total (Corr.) 2615.31 92    

 
R-squared = 71.809 percent 
R-squared (adjusted for d.f.) = 70.8587 percent 
Standard Error of Est. = 2.87821 
Mean absolute error = 2.19976 
Durbin-Watson statistic = 1.67296 (P=0.0558) 
Lag 1 residual autocorrelation = 0.162386 

 
NOTE: from here forward in this document, the results will be based on the reduced model 
without Drivetrain or Wheelbase. 
 
Example – Box-Cox Transformation 
If it is suspected that the variability of Y changes as its level changes, it is useful to consider 
performing a transformation on Y. The Box-Cox transformations are of the general form 
 

 1

2
 YY           (5) 

 
in which the data is raised to a power 1 after shifting it a certain amount 2. Often, the shift 
parameter 2 is set equal to 0. This class includes square roots, logarithms, reciprocals, and other 
common transformations, depending on the power.  Examples include: 
 

Power Transformation Description 
 = 2 2YY   square 
 = 1 YY   untransformed data 
 = 0.5 YY   square root 

 = 0.333 3 YY   cube root 

 = 0 )ln(YY   logarithm 

 = -0.5 

Y
Y

1
  

inverse square root 

 = -1
Y

Y
1

  
reciprocal 

 
Using Analysis Options, you can specify the values for 1 or 2, or specify just 2 and have the 
program find an optimal value for 1 using the methods proposed by Box and Cox (1964).  
 
For the sample data, a plot of the residuals versus predicted values does show some change in 
variability as the predicted value changes: 
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Residual Plot
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The smaller cars tend to be somewhat more variable than the larger cars. Asking the program to 
optimize the Box-Cox transformation yields: 
  
Multiple Regression - MPG Highway 
Dependent variable: MPG Highway 
Independent variables:  
     Weight 
     Weight^2 
     Wheelbase 
 
Box-Cox transformation applied:  power = -0.440625 shift = 0.0 
  Standard T  
Parameter Estimate Error Statistic P-Value 
CONSTANT 230.703 9.37335 24.6126 0.0000 
Weight -0.0129299 0.00464353 -2.78451 0.0065 
Weight^2 6.18885E-7 7.57367E-7 0.817153 0.4160 
Wheelbase 0.229684 0.0825606 2.782 0.0066 

 
Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 1568.28 3 522.761 74.99 0.0000 
Residual 620.444 89 6.97128   
Total (Corr.) 2188.73 92    

 
R-squared = 71.6528 percent 
R-squared (adjusted for d.f.) = 70.6972 percent 
Standard Error of Est. = 2.64032 
Mean absolute error = 2.08197 
Durbin-Watson statistic = 1.70034 (P=0.0727) 
Lag 1 residual autocorrelation = 0.148826 

 
Apparently, an inverse square root of MPG Highway improves the properties of the residuals, as 
illustrated in the new residual plot: 
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Residual Plot
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Note: some caution is necessary here, however, since the transformation may be heavily 
influenced by one or two outliers. To simplify the discussion that follows, however, the rest of 
this document will work with the untransformed model. 
 

Component Effects Plot 
Plotting a multiple regression model is not as easy as plotting a simple regression model, since 
the space of the X variables is multi-dimensional.  One useful way to illustrate the results is 
through the Component Effects Plot, which plots of the portion of the fitted regression model 
corresponding to any single variable.   

Component+Residual Plot for MPG Highway
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The line on the plot is defined by 
 

 jjj xx ̂                            (6) 

 

where  is the estimated regression coefficient for variable j, xj represents the value of variable 

j as plotted on the horizontal axis, and 
j̂

jx  is the average value of the selected independent 

variable amongst the n observations used to fit the model.  You can judge the importance of a 
factor by noting how much the component effect changes over the range of the selected variable.  
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For example, as Wheelbase changes from 90 to 120, the component effect changes from about –4 
to +4. This implies that differences in Wheelbase account for a swing of about 8 miles per gallon.  
 
The points on the above plot represent each of the n = 93 automobiles in the dataset. The vertical 
positions are equal to the component effect plus the residual from the fitted model. This allows 
you to gage the relative importance of a factor compared to the residuals. In the above plot, some 
of the residuals are as large if not larger than the effect of Wheelbase, indicating that other 
important factors may be missing from the model. 
 
Pane Options 
 

 
 
 Plot versus: the factor used to define the component effect. 
 

Conditional Sums of Squares 
The Conditional Sums of Squares pane displays a table showing the statistical significance of 
each coefficient in the model as it added to the fit: 
 

Further ANOVA for Variables in the Order Fitted 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Weight 1718.7 1 1718.7 207.47 0.0000 
Weight^2 77.1615 1 77.1615 9.31 0.0030 
Wheelbase 82.1713 1 82.1713 9.92 0.0022 
Model 1878.03 3     

 
The table decomposes the model sum of squares SSR into contributions due to each coefficient 
by showing the increase in SSR as each term is added to the model.  These sums of squares are 
often called Type I sums of squares.  The F-Ratios compare the mean square for each term to the 
MSE of the fitted model. These sums of squares are useful when fitting polynomial models, as 
discussed in the Polynomial Regression documentation. 
 
 In the above table, all variables are statistically significant at the 1% significance level since 
their P-Values are well below 0.01. 
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Observed versus Predicted 
The Observed versus Predicted plot shows the observed values of Y on the vertical axis and the 

predicted values Ŷ on the horizontal axis. 
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If the model fits well, the points should be randomly scattered around the diagonal line.  Any 
change in variability from low values of Y to high values of Y might indicate the need to 
transform the dependent variable before fitting a model to the data.  In the above plot, the 
variability appears to increase somewhat as the predicted values get large.   
 

Residual Plots 
As with all statistical models, it is good practice to examine the residuals. In a regression, the 
residuals are defined by 
 
           (7) iii yye ˆ
 
i.e., the residuals are the differences between the observed data values and the fitted model. 
 
The Multiple Regression procedure creates 3 residual plots: 
 

1. versus X. 

2. versus predicted value Ŷ . 
3. versus row number. 
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Residuals versus X 
This plot is helpful in visualizing any missed curvature with respect to a selected variable. 

Residual Plot
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No obvious curvature is detectable.  
 
 
Residuals versus Predicted 
This plot is helpful in detecting any heteroscedasticity in the data. 

Residual Plot
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Heteroscedasticity occurs when the variability of the data changes as the mean changes, and 
might necessitate transforming the data before fitting the regression model. It is usually 
evidenced by a funnel-shaped pattern in the residual plot. In the plot above, some increased 
variability in miles per gallon can be seen at high predicted values, which corresponds to the 
smaller cars. For the smaller cars, the miles per gallon appears to vary more than for the larger 
cars. 
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Residuals versus Observation 
This plot shows the residuals versus row number in the datasheet: 

Residual Plot
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If the data are arranged in chronological order, any pattern in the data might indicate an outside 
influence. In the above plot, no obvious trend is present, although there is a standardized residual 
in excess of 3.5, indicating that it is more than 3.5 standard deviations from the fitted curve. 
 
Pane Options 
 

 
 
 Plot: The following residuals may be plotted on each residual plot: 
 

1. Residuals – the residuals from the least squares fit. 
2. Studentized residuals – the difference between the observed values yi and the predicted 

values iŷ when the model is fit using all observations except the i-th, divided by the 

estimated standard error.  These residuals are sometimes called externally deleted 
residuals, since they measure how far each value is from the fitted model when that 
model is fit using all of the data except the point being considered.  This is important, 
since a large outlier might otherwise affect the model so much that it would not appear to 
be unusually far away from the line. 

 
 Plot versus: the independent variable to plot on the horizontal axis, if relevant. 
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Unusual Residuals 
Once the model has been fit, it is useful to study the residuals to determine whether any outliers 
exist that should be removed from the data. The Unusual Residuals pane lists all observations 
that have Studentized residuals of 2.0 or greater in absolute value. 
 

Unusual Residuals 
  Predicted Studentized  
Row Y Y Residual Residual 
31 33.0 40.1526 -7.15265 -2.81 
36 20.0 26.9631 -6.96309 -2.62 
39 50.0 43.4269 6.5731 2.72 
42 46.0 36.4604 9.53958 3.66 
60 26.0 32.8753 -6.8753 -2.50 
73 41.0 35.3266 5.67338 2.04  

 
Studentized residuals greater than 3 in absolute value correspond to points more than 3 standard 
deviations from the fitted model, which is a very rare event for a normal distribution. In the 
sample data, row #42 is more 3.5 standard deviations out. Row #42 is a Honda Civic, which was 
listed in the dataset as achieving 46 miles per gallon, while the model predicts less than 37. 
 
Points can be removed from the fit while examining any of the residual plots by clicking on a 
point and then pressing the Exclude/Include button on the analysis toolbar. 
 

Influential Points 
In fitting a regression model, all observations do not have an equal influence on the parameter 
estimates in the fitted model.  Those with unusual values of the independent variables tend to 
have more influence than the others.  The Influential Points pane displays any observations that 
have high influence on the fitted model: 
 

Influential Points 
  Mahalanobis  
Row Leverage Distance DFITS 
19 0.139122 13.5555 0.18502 
28 0.246158 28.3994 0.685044 
31 0.156066 15.6544 -1.225 
36 0.0961585 8.58597 -0.849931 
39 0.250016 29.0136 1.89821 
60 0.0298891 1.78389 -0.463748 
73 0.0352144 2.29596 0.451735 
83 0.102406 9.27903 0.573505 

Average leverage of single data point = 0.0434783 
 
Points are placed on this list for one of the following reasons: 
 
 Leverage – measures how distant an observation is from the mean of all n observations in 

the space of the independent variables.  The higher the leverage, the greater the impact of the 
point on the fitted values .ŷ  Points are placed on the list if their leverage is more than 3 times 
that of an average data point. 

 
 Mahalanobis Distance – measures the distance of a point from the center of the collection of 

points in the multivariate space of the independent variables.  Since this distance is related to 
leverage, it is not used to select points for the table. 
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 DFITS – measures the difference between the predicted values iŷ  when the model is fit with 

and without the i-th data point. Points are placed on the list if the absolute value of DFITS 

exceeds np /2 , where p is the number of coefficients in the fitted model. 
 
In the sample data, rows #28 and #39 show a leverage value of nearly 6 times that of an average 
data point. Rows #31 and #39 have the largest values of DFITS. Removing high influence points 
is not recommended on a routine basis. However, it is important to be aware of their impact on 
the estimated model. 
 

Confidence Intervals 
The Confidence Intervals pane shows the potential estimation error associated with each 
coefficient in the model. 
 

95.0% confidence intervals for coefficient estimates 
  Standard   
Parameter Estimate Error Lower Limit Upper Limit 
CONSTANT 55.0336 9.61121 35.9333 74.1339 
Weight -0.023276 0.00475462 -0.0327248 -0.0138271 
Weight^2 0.00000230174 7.73643E-7 7.64284E-7 0.0000038392 
Wheelbase 0.220693 0.0860352 0.0497156 0.39167  

 
Pane Options 
 

 
 
 Confidence Level: percentage level for the confidence intervals. 
 
 

Correlation Matrix 
The Correlation Matrix displays estimates of the correlation between the estimated coefficients.  
 

Correlation matrix for coefficient estimates 
 CONSTANT Weight Weight^2 Wheelbase 
CONSTANT 1.0000 -0.6247 0.7456 -0.6847 
Weight -0.6247 1.0000 -0.9776 -0.1349 
Weight^2 0.7456 -0.9776 1.0000 -0.0508 
Wheelbase -0.6847 -0.1349 -0.0508 1.0000  

 
This table can be helpful in determining how well the effects of different independent variables 
have been separated from each other. Note the high correlation between the coefficients of 
Weight and Weight2. This is normal whenever fitting a non-centered polynomial and simply 
means that the coefficients could change dramatically if a different order polynomial was 
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selected. The fact that the correlation between the coefficients of Weight and Wheelbase is small 
is more interesting, since it implies that there is little confounding between the estimated effects 
of those variables. Confounding or intermixing of the effects of two variables is a common 
problem when attempting to interpret models estimated from data that was not collected from a 
designed experiment. 
 

Reports 
The Reports pane creates predictions using the fitted least squares model. By default, the table 
includes a line for each row in the datasheet that has complete information on the X variables 
and a missing value for the Y variable. This allows you to add rows to the bottom of the 
datasheet corresponding to levels at which you want predictions without affecting the fitted 
model. 
 
For example, suppose a prediction is desired for a car with a Weight of 3500 and a Wheelbase of 
105. In row #94 of the datasheet, these values would be added but the MPG Highway column 
would be left blank. The resulting table is shown below: 
 

Regression Results for MPG Highway 
 Fitted Stnd. Error Lower 95.0% Upper 95.0% Lower 95.0% Upper 95.0% 
Row Value CL for Forecast CL for Forecast CL for Forecast CL for Mean CL for Mean 
94 24.7357 2.91778 18.9381 30.5333 23.7842 25.6872  

 
Included in the table are: 
 

 Row - the row number in the datasheet. 
 

 Fitted Value - the predicted value of the dependent variable using the fitted model. 
 

 Standard Error for Forecast - the estimated standard error for predicting a single new 
observation. 

 
 Confidence Limits for Forecast - prediction limits for new observations at the selected 

level of confidence. 
 

 Confidence Limits for Mean - confidence limits for the mean value of Y at the selected 
level of confidence. 

 
For row #94, the predicted miles per gallon is 24.7. Models with those features can be expected 
to achieve between 18.9 and 30.5 miles per gallon in highway driving. 
 
Using Pane Options, additional information about the predicted values and residuals for the data 
used to fit the model can also be included in the table. 
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Pane Options 
 

 
 
You may include: 
 
 Observed Y – the observed values of the dependent variable. 
 Fitted Y – the predicted values from the fitted model. 
 Residuals – the ordinary residuals (observed minus predicted). 
 Studentized Residuals – the Studentized deleted residuals as described earlier. 
 Standard Errors for Forecasts – the standard errors for new observations at values of the 

independent variables corresponding to each row of the datasheet. 
 Confidence Limits for Individual Forecasts – confidence intervals for new observations. 
 Confidence Limits for Forecast Means – confidence intervals for the mean value of Y at 

values of the independent variables corresponding to each row of the datasheet. 
 
 

Interval Plots 
The Intervals Plots pane can create a number of interesting types of plots. The plot below shows 
how precisely the miles per gallon of an automobile can be predicted. 

Plot of MPG Highway with Predicted Values
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An interval is drawn on the plot for each observation in the dataset, showing the 95% prediction 
limits for a new observation at the corresponding predicted value. 
 
Pane Options 
 

 
 
 Plot Limits For: type of limits to be included. Predicted Values plots prediction limits at 

settings of the independent variables corresponding to each of the n observations used to fit 
the model. Means plots confidence limits for the mean value of Y corresponding to each of 
the n observations. Forecasts plots prediction limits for rows of the datasheet that have 
missing values for Y. Forecast Means plots confidence limits for the mean value of Y 
corresponding to each row in the datasheet with a missing value for Y. 

 
 Plot Versus: the value to plot on the horizontal axis. 
 
 Confidence Level: the confidence percentage used for the intervals. 
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Autocorrelated Data 
 
When regression models are used to fit data that is recorded over time, the deviations from the 
fitted model are often not independent.  This can lead to inefficient estimates of the underlying 
regression model coefficients and P-values that overstate the statistical significance of the fitted 
model. 
 
As an illustration, consider the following data from Neter et al. (1996), contained in the file 
company.sgd: 
 

Year and quarter Company Sales  
($ millions) 

Industry Sales 
($ millions) 

1983: Q1 20.96 127.3 
1983: Q2 21.40 130.0 
1983: Q3 21.96 132.7 
1983: Q4 21.52 129.4 
1984: Q1 22.39 135.0 
1984: Q2 22.76 137.1 
1984: Q3 23.48 141.2 
1984: Q4 23.66 142.8 
1985: Q1 24.10 145.5 
1985: Q2 24.01 145.3 
1985: Q3 24.54 148.3 
1985: Q4 24.30 146.4 
1986: Q1 25.00 150.2 
1986: Q2 25.64 153.1 
1986: Q3 26.36 157.3 
1986: Q4 26.98 160.7 
1987: Q1 27.52 164.2 
1987: Q2 27.78 165.6 
1987: Q3 28.24 168.7 
1987: Q4 28.78 171.7 

 
Regressing company sales against industry sales resulting in a very good linear fit, with a very 
high R-squared: 
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Multiple Regression - company sales 
Dependent variable: company sales 
Independent variables:  
     industry sales 
 
  Standard T  
Parameter Estimate Error Statistic P-Value 
CONSTANT -1.45475 0.214146 -6.79326 0.0000 
industry sales 0.176283 0.00144474 122.017 0.0000 

 
Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 110.257 1 110.257 14888.14 0.0000 
Residual 0.133302 18 0.00740568   
Total (Corr.) 110.39 19    

 
R-squared = 99.8792 percent 
R-squared (adjusted for d.f.) = 99.8725 percent 
Standard Error of Est. = 0.0860563 
Mean absolute error = 0.0691186 
Durbin-Watson statistic = 0.734726 (P=0.0002) 
Lag 1 residual autocorrelation = 0.626005 

 
However, the Durbin-Watson statistic is very significant, and the estimated lag 1 residual 
autocorrelation equals 0.626.  A plot of the residuals versus row number shows marked swings 
around zero: 
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Clearly, the residuals are not randomly distributed around the regression line. 
 
To account for the autocorrelations of the deviations from the regression line, a more 
complicated error structure can be assumed.  A logical extension of the random error model is to 
let the errors have a first-order autoregressive structure, in which the deviation at time t is 
dependent upon the deviation at time t-1 in the following manner: 
 

ttt xy   10             (8) 

 

ttt u 1                                     (9) 
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where || < 1 and ut are independent samples from a normal distribution with mean 0 and 
standard deviation .  In such a case, transforming both the dependent variable and independent 
variable according to 
 

1 ttt yyy                                      (10) 

 

1 ttt xxx                       (11) 

                     
leads to the model 
 

  ttt uxy  10 1          (12) 

 
which is a linear regression with random error terms. 
 
The Analysis Options dialog box allows you to fit a model of the above form using the 
Cochrane-Orcutt procedure: 
 

 
 
You may either specify the value of  in the Autocorrelation field and select Ordinary Least 
Squares, or select Cochrane-Orcutt Optimization and let the value of  will be determined 
iteratively using the specified value as a starting point. In the latter case, the following procedure 
is used: 
 

Step 1: The model is fit using transformed values of the variables based on the initial 
value of . 
 
Step 2:  The value of  is re-estimated using the values of t obtained from the fit in Step 
1.  
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Step 3:  Steps 1 and 2 are repeated between 4 and 25 times until the change in the 
derived value of  compared to the previous step is less than 0.01. 
 

The results are summarized below using the sample data: 
 
Multiple Regression - company sales 
Dependent variable: company sales 
Independent variables:  
     industry sales 
 
Cochrane-Orcutt transformation applied: autocorrelation = 0.765941 
  Standard T  
Parameter Estimate Error Statistic P-Value 
CONSTANT -0.64188 0.642688 -0.998744 0.3319 
industry sales 0.171085 0.00408958 41.8343 0.0000 

 
Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 7.7425 1 7.7425 1750.11 0.0000 
Residual 0.0752083 17 0.00442402   
Total (Corr.) 7.81771 18    

 
R-squared = 99.038 percent 
R-squared (adjusted for d.f.) = 98.9814 percent 
Standard Error of Est. = 0.0665133 
Mean absolute error = 0.0531731 
Durbin-Watson statistic = 1.7354 
Lag 1 residual autocorrelation = 0.0990169 

 
The above output shows that, at the final value of  = 0.766, the Durbin-Watson statistic and the 
lag 1 residual autocorrelation, computed using the residuals from the regression involving the 
transformed variables, are much more in line with that expected if the errors are random.  The 
model also changed somewhat. 
 

Save Results 
The following results may be saved to the datasheet: 
 

1. Predicted Values – the predicted value of Y corresponding to each of the n observations. 
2. Standard Errors of Predictions – the standard errors for the n predicted values. 
3. Lower Limits for Predictions – the lower prediction limits for each predicted value. 
4. Upper Limits for Predictions – the upper prediction limits for each predicted value. 
5. Standard Errors of Means – the standard errors for the mean value of Y at each of the n 

values of X. 
6. Lower Limits for Forecast Means – the lower confidence limits for the mean value of Y 

at each of the n values of X. 
7. Upper Limits for Forecast Means– the upper confidence limits for the mean value of Y at 

each of the n values of X. 
8. Residuals – the n residuals. 
9. Studentized Residuals – the n Studentized residuals. 
10. Leverages – the leverage values corresponding to the n values of X. 
11. DFITS Statistics – the value of the DFITS statistic corresponding to the n values of X. 
12. Mahalanobis Distances – the Mahalanobis distance corresponding to the n values of X. 
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Calculations 
 
Regression Model 
 

kk XXXY   ...22110        (13) 

 
 
Error Sum of Squares 
 

Unweighted:     (14) 
2

1
2210

ˆ...ˆˆˆ



n

i
kkii xxxySSE  





 

Weighted:     (15) 
2

1
2210

ˆ...ˆˆˆ



n

i
kkiii xxxywSSE 

 
Coefficient Estimates 
 

   WYXWXX  1̂         (16) 
 

   12 ˆ  WXXMSEs           (17) 
 

pn

SSE
MSE


           (18) 

 

where  is a column vector containing the estimated regression coefficients, X is an (n, p) 
matrix containing a 1 in the first column (if the model contains a constant term) and the settings 
of the k predictor variables in the other columns, Y is a column vector with the values of the 
dependent variable, and W is an (n, n) diagonal matrix containing the weights wi on the diagonal 
for a weighted regression or 1’s on the diagonal if weights are not specified.  A modified sweep 
algorithm is used to solve the equations after centering and rescaling of the independent 
variables. 

̂
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Analysis of Variance 
 
With constant term: 
 
Source Sum of Squares Df Mean 

Square 
F-Ratio 

 
Model 


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k k

SSR
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MSE
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F   

 
Residual 
 

 
WYXbWYYSSE   

 
n-k-1 1
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kn
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Total 
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Without constant term: 
 
Source Sum of Squares Df Mean 

Square 
F-Ratio 

 
Model 

 
WYXbSSR   

 
k k

SSR
MSR   

MSE

MSR
F   

 
Residual 
 

 
WYXbWYYSSE   

 
n-k kn
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
  

 

 
Total 
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n 

  

 
 
R-Squared 
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Adjusted R-Squared 
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Stnd.Error of Est. 
 

MSE̂           (21) 
 
 
Residuals 
 

kkoii xxye  ˆ...ˆˆ
11         (22) 

 
 
Mean Absolute Error 
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Durbin-Watson Statistic 
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If n > 500, then  
 

n

D
D

/4

2* 
                                            (25) 

 
is compared to a standard normal distribution.  For 100 < n ≤ 500, D/4 is compared to a beta 
distribution with parameters 
 

2

1


n                                            (26) 

 
For smaller sample sizes, D/4 is compared to a beta distribution with parameters which are based 
on the trace of certain matrices related to the X matrix, as described by Durbin and Watson 
(1951) in section 4 of their classic paper.   
 
Lag 1 Residual Autocorrelation 
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Leverage 
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Studentized Residuals 
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Mahalanobis Distance 
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DFITS 
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Standard Error for Forecast 
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Confidence Limit for Forecast 
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Confidence Limit for Mean 
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