
 

  

 2017 by Statgraphics Technologies, Inc.  Multivariate Normality Test - 1 

 

 

 

 

       Multivariate Normality Test 

 

 

 

 
     Revised: 10/11/2017 

 

 

 

 

Summary ......................................................................................................................................... 1 
Data Input........................................................................................................................................ 3 

Analysis Summary .......................................................................................................................... 4 
Chi-Square Plot ............................................................................................................................... 5 
Analysis Options ............................................................................................................................. 7 

Save Results .................................................................................................................................... 9 
References ..................................................................................................................................... 10 

 

Summary 

 

This procedure tests whether a set of random variables could reasonably have come from a 

multivariate normal distribution. It includes Royston’s H test and tests based on a chi-square plot 

of the squared distances of each observation from the sample centroid. 

 

 

Sample StatFolio: mvnormal.sgp 

 

 

Sample Data: 
 

The file lumber.sgd contains measurements of the stiffness and bending strength of n = 30 pieces 

of lumber (Johnson and Wichern, 2002). A portion of the data is shown below: 
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We wish to test the hypothesis that the samples come from a bivariate normal distribution.  
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Data Input 

 

To perform a multivariate test for normality, choose Multivariate Normality Test from the 

Multivariate Methods menu. The data input dialog box is shown below: 

 

 
 

 Data: the names of 2 or more numeric columns containing the data. 

 

 Select: subset selection. 

 

The data for each of the m variables should be placed in a separate column. Each row 

corresponds to a single multivariate observation. 
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Analysis Summary 

 

The Analysis Summary shows sample statistics for the variables and the test results: 

 

Multivariate Normality Test 
Data variables:  

     stiffness (psi) 

     bending strength (psi) 

 

 Mean Standard deviation 

stiffness 1860.5 352.214 

bending strength 8354.13 1867.17 

 

Sample Correlations 

 stiffness bending strength 

stiffness 1.0 0.549872 

bending strength 0.549872 1.0 

 

Number of observations = 30 

 

Goodness-of-Fit Test 

Test Statistic P-Value 

Shapiro-Wilk W - stiffness 0.975 0.6798 

Shapiro-Wilk W - bending strength 0.976 0.6980 

Royston's H 0.325 0.8545 
 

 

The first table shows the vector of sample means 𝑿̅ and the vector of sample standard deviations 

s. The second table shows the m by m sample correlation matrix R. The element in the j
th

 row 

and k
th

 column of the correlation matrix is calculated from 
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The lower section of the output shows the results of testing the data for normality. First, a 

Shapiro-Wilk W test is applied to each variable separately. P-values are calculated using the 

algorithm of Royston (1995). P-values below  indicate rejection of the hypothesis that a 

particular variable follows a normal distribution at significance level . Royston’s H test is then 

applied to the m variables simultaneously to test the hypotheses: 

 

 H0: the variables come from a multivariate normal distribution. 

 

 HA: the variables do not come from a multivariate normal distribution. 

 

Royston’s test combines the Shapiro-Wilk statistics for the separate variables and compares the 

result to a chi-square distribution (Royston, 1983). A small P-value for Royston’s H  leads to 
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rejection of the hypothesis of multivariate normality. For the sample data, P = 0.8545 which is 

well above = 0.05, so the assumption of multivariate normality is not rejected.  

 

Chi-Square Plot 

 

The procedure also creates a chi-square plot based on the generalized distances from the 

observations to the sample mean vector. The squared generalized distance for observation i is 

defined by  

   

𝑑𝑖
2 =  (𝑋𝑖 − 𝑋̅)𝑇𝑺−1(𝑿𝑖 − 𝑋̅), 𝑖 = 1,2, … , 𝑛                                                                (7.2)     

 

where S is the sample covariance matrix. If the data follow a multivariate normal distribution, 

then Johnson and Wichern (2002) suggest comparing the distances to a chi-square distribution 

with m degrees of freedom. Departures from that chi-square distribution would indicate that the 

data do not come from a multivariate normal distribution. 

 

If you select Chi-Square Plot from the list of available graphs, the following plot will be 

displayed: 

 

 
 

The default format plots the cumulative distribution function for the chi-square distribution with 

m degrees of freedom as a solid line and the empirical CDF of the squared distances as point 

symbols. If the hypothesis of multivariate normality is correct, the points should lie close to the 

solid line. Kolmogorov-Smirnov limits are also plotted on either side of the solid line, using a 

selected probability level such as 95%. They provide simultaneous limits for departure of the 

Chi-Square Plot
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empirical CDF from the hypothesized CDF. 95% of all samples taken from the hypothesized chi-

square distribution should fall entirely within the bands. 

 

A goodness-of-fit test is also performed comparing the squared distances to the chi-square 

distribution. For example, the plot above tests the goodness-of-fit using an Anderson-Darling 

test. Small P-values (below 0.05) would indicate that the hypothesis that the squared distances 

come from the hypothesized chi-square distribution could be rejected at the 5% significance 

level. 

 

In the plot above, the points remain entirely within the limits and the P-value is well above 0.05. 

This confirms the conclusion that the data may well have come from a multivariate normal 

distribution. 

 

 

Pane Options 

 

  
 

 Plot – controls the format of the plot. CDFs plots the cumulative distribution function of both 

the data and the hypothesized chi-square distribution. CDF versus CDF plots the empirical 

CDF on the vertical axis and the hypothesized CDF on the horizontal axis. Quantile versus 

quantile creates a Q-Q plot using the empirical and theoretical quantiles. 

 

 Probability bands – sets the probability level for the Kolmogorov-Smirnov limits. 

 

 Goodness-of-fit test – selects the test used to compare the squared distances to the chi-

square distribution. 
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Analysis Options 

 

If the original data do not follow a multivariate normal distribution, transformed values of the 

variables might. The Analysis Options dialog box allows the user to transform the variable using 

either a univariate or multivariate Box-Cox transformation: 

 

 
 

 

Box-Cox for each variable separately 

 

If this option is selected, the program will find the best power transformation for each of the 

variables separately. The procedure automatically determines the best transformation by finding 

the values of  and  that minimize the standard deviation of the observations when transformed 

according to the Box-Cox transformation: 
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 )ln(1  XgY   if  = 0                        (3) 

 

where g is the geometric mean of the observations after adding : 
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If “Optimize addend as well as power” is not checked, the addend  is set equal to 0. 

 

 

Multivariate power transformation 

 

If this option is selected, the program find the best vector of powers = {1, 2, …, m} and 

vector of addends = {1, 2, …, m} by minimizing the profile likelihood function defined by 

 

 −
n log|Σ̂(𝜆)|

2
+  ∑ {(𝜆𝑗 − 1) ∑ 𝑙𝑜𝑔(𝑥𝑖,𝑗 + ∆𝑗)𝑛

𝑖=1 }𝑚
𝑗=1                                     (5) 
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where Σ̂() is the estimated covariance matrix of the transformed variables defined by 

 

 𝑥𝑖,𝑗
∗ =  {

(𝑥𝑖,𝑗
𝜆𝑗  − 1 )

𝜆𝑗
   𝑖𝑓   𝜆𝑗 ≠ 0 

log 𝑥𝑖,𝑗      𝑖𝑓   𝜆𝑗 = 0
                                                                                        (6)  

 

For more information on this transformation, see Andrews, Gnanadesikan and Warner (1971). 

 

For example, the table below shows the results of applying the multivariate one-parameter power 

transformation to the sample data: 

 

Multivariate Normality Test 
Data variables:  

     stiffness (psi) 

     bending strength (psi) 

 

Power transformations: estimated simultaneously 

Variable Power 

stiffness 0.680894 

bending strength 1.18917 

 

 Mean Standard deviation 

stiffness 167.727 21.8233 

bending strength 46366.1 12212.6 

 

Sample Correlations 

 stiffness bending strength 

stiffness 1.0 0.556579 

bending strength 0.556579 1.0 

 

Number of observations = 30 

 

Normality Tests 

Test Statistic P-Value 

Shapiro-Wilk W - stiffness 0.975 0.6959 

Shapiro-Wilk W - bending strength 0.975 0.6706 

Royston's H 0.338 0.8491 
 

 

The optimal vector of powers was determined to be 𝜆̂ = (0.680894,1.18917). The transformation 

has little effect on the shape of the distribution since the powers are both fairly close to 1.0. This 

is not unexpected since the original data showed no signs of nonnormality. 
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Save Results 

 

The squared distances may be saved to a datasheet by pressing the Save Results button on the 

analysis toolbar. This displays the following dialog box: 

 

 
 

Check the box for Squared distances and press OK. 
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