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Polynomial Regression 
 
Summary 
The Polynomial Regression procedure is designed to construct a statistical model describing the 
impact of a single quantitative factor X on a dependent variable Y. A polynomial model 
involving X and powers of X is fit to the data. Tests are run to determine the proper order of the 
polynomial. The fitted model may be plotted with confidence limits and/or prediction limits. 
Residuals may also be plotted and influential observations identified. 
 
Sample StatFolio: polynomial reg.sgp 
 
Sample Data: 
The file 93cars.sgd contains information on 26 variables for n = 93 makes and models of 
automobiles, taken from Lock (1993). The table below shows a partial list of 4 columns from 
that file: 
 

Make Model MPG Highway Weight 
Acura          Integra         31 2705 
Acura Legend 25 3560 
Audi 90 26 3375 
Audi 100 26 3405 
BMW 535i 30 3640 
Buick Century 31 2880 
Buick LeSabre 28 3470 
Buick Roadmaster 25 4105 
Buick Riviera 27 3495 
Cadillac DeVille 25 3620 
Cadillac Seville 25 3935 
Chevrolet Cavalier 36 2490 

 
 A model is desired relating MPG Highway to the Weight of the vehicles. 
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Data Input 
The data input dialog box requests the names of the columns containing the dependent variable 
Y and the independent variable X: 
 

 
 
 Y: numeric column containing the n observations for the dependent variable Y. 
 
 X: numeric column containing the n values for the independent variable X. 
 
 Weight: an optional numeric column containing weights to be applied to the squared 

residuals when performing a weighted least squares fit. 
 
 Select: subset selection. 
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Analysis Summary 
The Analysis Summary shows information about the fitted model. 
 
Polynomial Regression - MPG Highway versus Weight 
Dependent variable: MPG Highway 
Independent variable: Weight 
Order of polynomial = 2 
 
  Standard T  
Parameter Estimate Error Statistic P-Value 
CONSTANT 73.8491 7.82234 9.4408 0.0000 
Weight -0.0225792 0.00526637 -4.28744 0.0000 
Weight^2 0.00000251567 8.6416E-7 2.91111 0.0045 

 
Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 1795.86 2 897.928 98.62 0.0000 
Residual 819.455 90 9.10506   
Total (Corr.) 2615.31 92    

 
R-squared = 68.667 percent 
R-squared (adjusted for d.f.) = 67.9707 percent 
Standard Error of Est. = 3.01746 
Mean absolute error = 2.28849 
Durbin-Watson statistic = 1.71378 (P=0.0789) 
Lag 1 residual autocorrelation = 0.142564 

 
Included in the output are: 
 
 Variables and model: identification of the input variables and the model that was fit. By 

default, a quadratic model of the form 
 

Y = 0 + 1X + 2X
2        (1) 

 
is fit, although a different order polynomial may be selected using Analysis Options. 
 

 Coefficients: the estimated coefficients, standard errors, t-statistics, and P values. The 
estimates of the model coefficients can be used to write the fitted equation, which in the 
example is 

 
MPG Highway  = 73.8491 - 0.0225792*Weight + 0.00000251567*Weight2  (2) 

 
The t-statistic tests the null hypothesis that the corresponding model parameter equals 0, 
versus the alternative hypothesis that it does not equal 0. Small P-Values (less than 0.05 if 
operating at the 5% significance level) indicate that a model coefficient is significantly 
different from 0. Of particular interest when fitting a polynomial is the P-value for the 
highest order term. If this term is not significant, then the model might reasonably be 
simplified by lowering the order of the polynomial. In the sample data, the P-value for 
Weight2 is small, so that a model of at least order 2 is needed to adequately describe the 
relationship between Y and X. 

 
 Analysis of Variance: decomposition of the variability of the dependent variable Y into a 

model sum of squares and a residual or error sum of squares. Of particular interest is the F-
test and its associated P-value, which tests the statistical significance of the fitted model. A 
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small P-Value (less than 0.05 if operating at the 5% significance level) indicates that a 
significant relationship of the form specified exists between Y and X. In the sample data, the 
model is highly significant. 

 
 Statistics: summary statistics for the fitted model, including: 
 

R-squared - represents the percentage of the variability in Y which has been explained by the 
fitted regression model, ranging from 0% to 100%. For the sample data, the regression has 
accounted for about 68.5% of the variability in the miles per gallon.  The remaining 31.5% is 
attributable to deviations around the line, which may be due to other factors, to measurement 
error, or to a failure of the current polynomial model to fit the data adequately. 

 
Adjusted R-Squared – the R-squared statistic, adjusted for the number of coefficients in the 
model. This value is often used to compare models with different numbers of coefficients. 
 
Standard Error of Est. – the estimated standard deviation of the residuals (the deviations 
around the model). This value is used to create prediction limits for new observations. 
 
Mean Absolute Error – the average absolute value of the residuals. 
 
Durbin-Watson Statistic – a measure of serial correlation in the residuals. If the residuals 
vary randomly, this value should be close to 2. A small P-value indicates a non-random 
pattern in the residuals. For data recorded over time, a small P-value could indicate that some 
trend over time has not been accounted for. In the current example, the P-value is greater 
than 0.05, so there is not a significant correlation at the 5% significance level. 
 
Lag 1 Residual Autocorrelation – the estimated correlation between consecutive residuals, on 
a scale of –1 to 1. Values far from 0 indicate that significant structure remains unaccounted 
for by the model. 

 

Plot of Fitted Model 
This pane shows the fitted model, together with confidence limits and prediction limits if desired. 

Plot of Fitted Model
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The plot includes: 
 

 The line of best fit or prediction equation. This is the equation that would be used to 
predict values of the dependent variable Y given values of the independent variable X.  
Note that it does a relatively good job of picking up much of the relationship between 
MPG Highway and weight. 
 

 Confidence intervals for the mean response at X. These are the inner bounds in the 
above plot and describe how well the location of the line has been estimated given the 
available data sample.  As the size of the sample n increases, these bounds will become 
tighter.  You should also note that the width of the bounds varies as a function of X, with  
the line estimated most precisely near the average value x . 

 
 Prediction limits for new observations. These are the outer bounds in the above plot and 

describe how precisely one could predict where a single new observation would lie.  
Regardless of the size of the sample, new observations will vary around the true line with 
a standard deviation equal to . 

 
The inclusion of confidence limits and prediction limits and their default confidence level is 
determined by settings on the ANOVA/Regression tab of the Preferences dialog box, accessible 
from the Edit menu. 
 
Pane Options 
 

 
 
 Include: the limits to include on the plot. 
 
 Confidence Level: the confidence percentage for the limits. 
 
 X-Axis Resolution: the number of values of X at which the line is determined when plotting. 

Higher resolutions result in smoother plots.  
 
 Type of Limits: whether to plot two-sided confidence intervals or one-sided confidence 

bounds. 
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Analysis Options 

 
 
 Order: the order of the polynomial to be fit to the data.  
 
 Shift: value to be subtracted from X before estimating the coefficients. When fitting high 

order polynomials, it may be necessary to specify an offset near the middle of the observed X 
data values to avoid numerical problems when fitting the model. 

 
 
Example – Fitting a Third Order Polynomial 
If a third order polynomial is fit to the data, the results are shown below: 
 
Polynomial Regression - MPG Highway versus Weight 
Dependent variable: MPG Highway 
Independent variable: Weight 
Order of polynomial = 3 
 
  Standard T  
Parameter Estimate Error Statistic P-Value 
CONSTANT 114.476 31.385 3.64748 0.0004 
Weight -0.0660918 0.0329821 -2.00387 0.0481 
Weight^2 0.0000175809 0.0000113068 1.55489 0.1235 
Weight^3 -1.69022E-9 1.26487E-9 -1.33628 0.1849 

 
Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 1811.97 3 603.991 66.91 0.0000 
Residual 803.337 89 9.02626   
Total (Corr.) 2615.31 92    

 
R-squared = 69.2833 percent 
R-squared (adjusted for d.f.) = 68.2479 percent 
Standard Error of Est. = 3.00437 
Mean absolute error = 2.25416 
Durbin-Watson statistic = 1.68521 (P=0.0615) 
Lag 1 residual autocorrelation = 0.157148 

 
The fitted model now includes X, X2, and X3. Note that the P-Value for Weight3 is well above 
0.05, indicating that the third-order term is not statistically significant. This indicates that the 
second-order model was probably adequate for this data. Note: although the P-value for the 
second order term is not significant, it should not be assumed that a second-order model is 
unnecessary, since the P-value for Weight2 will change if Weight3 is removed from the model. To 
select a reasonable order for the polynomial, see the Conditional Sums of Squares pane described 
below. 
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Conditional Sums of Squares 
The Conditional Sums of Squares pane displays a table showing the statistical significance of 
each coefficient in the model as it added to the fit: 
 

Further ANOVA for Variables in the Order Fitted 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Weight 1718.7 1 1718.7 188.22 0.0000 
Weight^2 77.1615 1 77.1615 8.45 0.0046 
Weight^3 16.1176 1 16.1176 1.77 0.1875 
Weight^4 7.94288 1 7.94288 0.87 0.3536 
Weight^5 0.969712 1 0.969712 0.11 0.7453 
Model 1820.89 5     

 
The table decomposes the model sum of squares SSR into contributions due to each coefficient 
by showing the increase in SSR as each term is added to the model.  These sums of squares are 
often called Type I sums of squares.  The F-Ratios compare the mean square for each term to the 
MSE of the highest order model, in this case a fifth order polynomial.  In the above table, all 
terms beyond the second have P-values well in excess of 0.05, suggesting that a second-order 
model is sufficient for this data. 
 

Lack-of-Fit Test 
When more than one observation has been recorded at the same value of X, a lack-of-fit test can 
be performed to determine whether the selected model adequately describes the relationship 
between Y and X. The Lack-of-Fit pane displays the following table: 
 

Analysis of Variance with Lack-of-Fit 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 1795.86 2 897.928 98.62 0.0000 
Residual 819.455 90 9.10506   
   Lack-of-Fit 739.455 78 9.48019 1.42 0.2563 
   Pure Error 80.0 12 6.66667   
Total (Corr.) 2615.31 92     

 
The lack-of-fit test decomposes the residual sum of squares into 2 components: 
 

1. Pure error: variability of the Y values at the same value of X. 
2. Lack-of-fit: variability of the average Y values around the fitted model. 

 
Of primary interest is the P-Value for lack-of-fit. A small P-value (below 0.05 if operating at the 
5% significance level) indicates that the selected model does not adequately describe the 
observed relationship. 
 
For the example data, the lack-of-fit P-value is well above 0.05, indicates that the second-order 
polynomial adequately explains the relationship between MPG Highway and weight. 
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Observed versus Predicted 
The Observed versus Predicted plot shows the observed values of Y on the vertical axis and the 

predicted values Ŷ on the horizontal axis. 

Plot of MPG Highway
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If the model fits well, the points should be randomly scattered around the diagonal line.  It is 
sometimes possible to see curvature in this plot, which would indicate the need for a higher order 
polynomial.  Any change in variability from low values of X to high values of X might also 
indicate the need to transform the dependent variable before fitting a model to the data.  In the 
above plot, the variability appears to increase somewhat as the predicted values get large.   
 

Residual Plots 
As with all statistical models, it is good practice to examine the residuals. In a regression, the 
residuals are defined by 
 
           (3) iii yye ˆ
 
i.e., the residuals are the differences between the observed data values and the fitted model. 
 
The Polynomial Regression procedure creates 3 residual plots: 
 

1. versus X. 

2. versus predicted value Ŷ . 
3. versus row number. 
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Residuals versus X 
This plot is helpful in visualizing any need for a higher order polynomial. 

Residual Plot
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No obvious curvature is detectable.  
 
Residuals versus Predicted 
This plot is helpful in detecting any heteroscedasticity in the data. 

Residual Plot
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Heteroscedasticity occurs when the variability of the data changes as the mean changes, and 
might necessitate transforming the data before fitting the regression model. It is usually 
evidenced by a funnel-shaped pattern in the residual plot. In the plot above, some increased 
variability in miles per gallon can be seen at high predicted values, which corresponds to the 
smaller cars. For the smaller cars, the miles per gallon appears to vary more than for the larger 
cars. 
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Residuals versus Observation 
This plot shows the residuals versus row number in the datasheet: 

Residual Plot
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If the data are arranged in chronological order, any pattern in the data might indicate an outside 
influence. In the above plot, no obvious trend is present, although there is a standardized residual 
in excess of 4, indicating that it is more than 4 standard deviations from the fitted curve! 
 
Pane Options 
 

 
 
The following residuals may be plotted on each residual plot: 
 

1. Residuals – the residuals from the least squares fit. 
2. Studentized residuals – the difference between the observed values yi and the predicted 

values iŷ when the model is fit using all observations except the i-th, divided by the 

estimated standard error.  These residuals are sometimes called externally deleted 
residuals, since they measure how far each value is from the fitted model when that 
model is fit using all of the data except the point being considered.  This is important, 
since a large outlier might otherwise affect the model so much that it would not appear to 
be unusually far away from the line. 
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Unusual Residuals 
Once the model has been fit, it is useful to study the residuals to determine whether any outliers 
exist that should be removed from the data. The Unusual Residuals pane lists all observations 
that have Studentized residuals of 2.0 or greater in absolute value. 
 

Unusual Residuals 
  Predicted  Studentized 
Row Y Y Residual Residual 
31 33.0 40.7538 -7.75378 -2.90 
39 50.0 42.8049 7.19515 2.84 
42 46.0 34.6806 11.3194 4.13 
60 26.0 33.6302 -7.63024 -2.64 
73 41.0 34.6806 6.31936 2.17  

 
Studentized residuals greater than 3 in absolute value correspond to points more than 3 standard 
deviations from the fitted model, which is an extremely rare event for a normal distribution. In 
the sample data, row #42 is more 4 standard deviations out. Row #42 is a Honda Civic, which 
was listed in the dataset as achieving 46 miles per gallon, while the model predicted less than 35. 
 
Points can be removed from the fit while examining the Plot of the Fitted Model by clicking on a 
point and then pressing the Exclude/Include button on the analysis toolbar: 

Plot of Fitted Model
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Excluded points are marked with an X. For the sample data, removing row #42 has little effect 
on the fitted model. 
 

Influential Points 
In fitting a regression model, all observations do not have an equal influence on the parameter 
estimates in the fitted model.  In a simple regression, points located at very low or very high 
values of X have greater influence than those located nearer to the mean of X.  The Influential 
Points pane displays any observations that have high influence on the fitted model: 
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Influential Points 
  Mahalanobis  
Row Leverage Distance DFITS 
8 0.0973841 8.82895 0.165119 
17 0.0727892 6.15468 -0.360313 
31 0.150297 15.1071 -1.21973 
39 0.240157 27.7725 1.59715 
42 0.0282263 1.65407 0.704059 
60 0.0228778 1.14149 -0.404223 
73 0.0282263 1.65407 0.369436 
83 0.100454 9.17305 0.446294 

Average leverage of single data point = 0.0322581 
 
Points are placed on this list for one of the following reasons: 
 
 Leverage – measures how distant an observation is from the mean of all n observations in 

the space of the independent variables.  The higher the leverage, the greater the impact of the 
point on the fitted values .ŷ  Points are placed on the list if their leverage is more than 3 times 
that of an average data point. 

 
 Mahalanobis Distance – measures the distance of a point from the center of the collection of 

points in the multivariate space of the independent variables.  Since this distance is related to 
leverage, it is not used to select points for the table. 

 
 DFITS – measures the difference between the predicted values iŷ  when the model is fit with 

and without the i-th data point. Points are placed on the list if the absolute value of DFITS 

exceeds np /2 , where p is the number of coefficients in the fitted model. 
 
In the sample data, row #39 shows a leverage value of nearly 8 times that of an average data 
point. Row #39 is a Geo Metro, the lightest car in the dataset.  
 
 

Confidence Intervals 
The Confidence Intervals pane shows the potential estimation error associated with each 
coefficient in the model. 
 

95.0% confidence intervals for coefficient estimates 
  Standard   
Parameter Estimate Error Lower Limit Upper Limit 
CONSTANT 73.8491 7.82234 58.3086 89.3896 
Weight -0.0225792 0.00526637 -0.0330418 -0.0121167 
Weight^2 0.00000251567 8.6416E-7 7.98859E-7 0.00000423248  
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Pane Options 
 

 
 
 Confidence Level: percentage level for the confidence intervals. 
 
 

Forecasts 
The Forecasts pane creates predictions using the fitted least squares model. 
 

Predicted Values 
  95.00%  95.00%  
 Predicted Prediction Limits Confidence Limits 
X Y Lower Upper Lower Upper 
1500.0 45.6405 38.5073 52.7737 41.7745 49.5064 
2000.0 38.7533 32.4975 45.009 36.9651 40.5415 
2500.0 33.1239 27.0656 39.1822 32.2483 33.9995 
3000.0 28.7524 22.696 34.8088 27.8903 29.6144 
3500.0 25.6387 19.5909 31.6864 24.8397 26.4376 
4000.0 23.7828 17.5924 29.9732 22.2385 25.3271  

 
Included in the table are: 
 

 X - the value of the independent variable at which the prediction is to be made. 
 

 Predicted Y - the predicted value of the dependent variable using the fitted model. 
 

 Prediction limits - prediction limits for new observations at the selected level of 
confidence (corresponds to the outer bounds on the plot of the fitted model). 

 
 Confidence limits - confidence limits for the mean value of Y at the selected level of 

confidence (corresponds to the inner bounds on the plot of the fitted model). 
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Pane Options 
 

 
 
 Confidence Level: confidence percentage for the intervals. 
 
 Type of Limits: whether to display two-sided limits or one-sided bounds. 
 
 Forecast at X: up to 10 values of X at which to make predictions. 
 

Save Results 
The following results may be saved to the datasheet: 
 

1. Predicted Values – the predicted value of Y corresponding to each of the n observations. 
2. Standard Errors of Predictions – the standard errors for the n predicted values. 
3. Lower Limits for Predictions – the lower prediction limits for each predicted value. 
4. Upper Limits for Predictions – the upper prediction limits for each predicted value. 
5. Standard Errors of Means – the standard errors for the mean value of Y at each of the n 

values of X. 
6. Lower Limits for Forecast Means – the lower confidence limits for the mean value of Y 

at each of the n values of X. 
7. Upper Limits for Forecast Means– the upper confidence limits for the mean value of Y at 

each of the n values of X. 
8. Residuals – the n residuals. 
9. Studentized Residuals – the n Studentized residuals. 
10. Leverages – the leverage values corresponding to the n values of X. 
11. DFITS Statistics – the value of the DFITS statistic corresponding to the n values of X. 
12. Mahalanobis Distances – the Mahalanobis distance corresponding to the n values of X. 

 
Note: If limits are saved, they will correspond to the settings on the Forecasts pane. If two-sided 
limits are displayed in the Forecasts table, then the saved limits will also be two-sided. If one-
sided bounds are displayed in the table, then the saved limits will also be one-sided. 
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Calculations 
 
The polynomial regression model is a special case of a multiple variable linear regression model. 
See the Multiple Regression documentation for details regarding the calculations. 


	Polynomial Regression
	Make
	Model
	MPG Highway
	Weight
	Analysis Summary
	Plot of Fitted Model
	Pane Options

	Analysis Options
	Example – Fitting a Third Order Polynomial

	Conditional Sums of Squares
	Lack-of-Fit Test
	Observed versus Predicted
	Residual Plots
	Residuals versus X
	Residuals versus Predicted
	Residuals versus Observation
	Pane Options

	Unusual Residuals
	Influential Points
	Confidence Intervals
	Pane Options

	Forecasts
	Pane Options

	Save Results
	Calculations



