Robust Parameter Design Using Statgraphics Centurion

Dr. Neil W. Polhemus Copy right 2011 by StatPoint Technologies, Inc.

Robust Parameter Designs

Experimental designs containing 2 types of factors:

- *controllable factors* that the experimenter can manipulate both during the experiment and during production.
- *noise factors* that can be manipulated during the experiment but are normally uncontrollable.

Goal: To find *robust operating conditions*, i.e., levels of the controllable factors where the values of the response variables are both desirable and relatively insensitive to variation in the noise factors.

Two Approaches

- 1. Crossed arrays (Genichi Taguchi)
 - 2 designs are created, 1 for the controllable factors and 1 for the noise factors.
 - Taguchi called these designs inner and outer arrays.
 - An inner array is created for the controllable factors.
 - At each location of the inner array, the outer array is performed.
- 2. Combined arrays (Doug Montgomery's response surface method)
 - A single design is created for both the controllable and noise factors.
 - Interactions between controllable factors and noise factors reveal location of robust operating conditions.

Example #1 – Crossed Arrays

- Myers, Montgomery, and Anderson-Cook (2009) provide an example aimed at minimizing the rate of soldering defects.
- Response: Y = defects per million joints
- Controllable factors:
 - X1 = temperature
 - X2 = speed
 - X3 = flux density
 - X4 = preheat temperature
 - X5 = wave height

Noise factors:

- Z1 = variation in temperature
- Z2 = variation in conveyor speed
- Z3 = type of assembly

Step 1: Specify response

Design of Experiments Wizard - Define Responses

Design file: <untitled>

Comment: Robust parameter soldering study

Number of responses: 1

Response	Name	Units	Analyze	Goal	Target	Impact (1-5)	Sensitivity	Minimum	Maximum
1	defects	per million joints	SNR: smaller 💌	Maximize 💌	0.5	3.0	Medium 💌		
2	Var_2		Mean 💌	Maximize 💌	0.5	3.0	Medium		
3	Var_3		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌		
4	Var_4		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌		
5	Var_5		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌		
6	Var_6		Mean 💌	Maximize 💌	0.5	3.0	Medium		
7	Var_7		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌		
8	Var_8		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌		
9	Var_9		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌		
10	Var_10		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌		
11	Var_11		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌		
12	Var_12		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌		
13	Var_13		Mean 💌	Maximize 💌	0.5	3.0	Medium		
14	Var_14		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌		
15	Var_15		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌		
16	Var_16		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌		
		ж		Cancel			Help		

Step 2: Specify factors

Design of	f Experiments Wizard -	Define Factors					X
Design	file: <untitled></untitled>						
Comme	nt: Robust parameter sol	ldering study					
Number	of controllable process fa	actors: 5 📩 Numb	er of controllable mi	xture components:		Number of n	oise factors: 3
Factor	Name	Units	Туре	Role	Low	High	Levels
А	temperature	degrees F	Continuous 💌	Controllable	480	510	1,2,3,4
В	speed	ft/min	Continuous 💌	Controllable	7.2	10	1,2,3,4
С	flux density		Continuous 💌	Controllable	0.9	1.0	1,2,3,4
D	preheat temperature	degrees F	Continuous 💌	Controllable	150	200	1,2,3,4
Е	wave height	inches	Continuous 💌	Controllable	0.5	0.6	1,2,3,4
F	temperature deviation	degrees F	Continuous 💌	Noise	-5	5	1,2,3,4
G	speed deviation	ft/min	Continuous 💌	Noise	-0.2	0.2	1,2,3,4
Н	assembly type		Continuous 💌	Noise	1	2	1,2,3,4
Ι	Factor_I		Continuous 💌		-1.0	1.0	1,2,3,4
J	Factor_J		Continuous 💌		-1.0	1.0	1,2,3,4
К	Factor_K		Continuous 💌		-1.0	1.0	1,2,3,4
L	Factor_L		Continuous 💌		-1.0	1.0	1,2,3,4
М	Factor_M		Continuous 💌		-1.0	1.0	1,2,3,4
Total	for controllable mixture co	omponents: 1.0			F	actors A-M	Factors N-Z
		. ,					
	OK	Bac	*	Cancel		H	Help

. 6

Step 3: Select design

esign of Expe	riments Wizard - S	Select De	esign						X
Design file: sold	ler.sgx						- Robust P	arameter Design	_
Comment: Robu	ust parameter soldering	study					Process fa	actors:	
	Segment	Factors	Runs	Blocks	Design		C Com	bined array sed array	
Options	Controllable process	5	0	0	Press the Options but	ton.			
Options	Minture components	0	0	0					
opuons	Mixture components	U	U	U					
Options	Noise factors	3	0	0	Press the Options but	ton.			
	COMBINED	8	0	0	Samples per run: 1				
BLO	CK temperal degrees	ture • F	spe ft/m	ed vin	flux density	preheat tem degree	perature ≪F	wave height	te 🔺
•									•
	OK		Cano	el	Rerandor	mize		Help	

First select the design for the controllable factors.

Designs for Continuous or Two-Lev	el Factors 🛛 🔀
Design Class	OK
C Screening	Cancel
C Response Surface	
Multilevel Factorial	Help
 Orthogonal Array 	

0)rthogonal Arra	y Options		X
	Design			ОК
	🗢 L4 (2^3)	O L32 (2^31)	Replicate Design	Cancel
	L8 (2 ⁷)	L32 (2 ¹ x4 ⁹)	Number:	
	C L9 (3^4)	C L36 (2^11x3^12)	0	Back
	C L12(2^11)	C L36 (2^3x3^13)		Help
	C L16 (2^15)	C L50 (2^1x5^11)	🔲 Randomize	
	🔿 L16 (4^5)	C L54 (2^1x3^25)		
	C L18 (2^1x3^7)	🔿 L64 (2^63)		
	C L25 (5^6)	C L64 (4x21)		
	C L27 (3^13)	C L81 (3^40)		

Column Run	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1
2	1	1	1	2	2	2	2
3	1	2	2	1	1	2	2
4	1	2	2	2	2	1	1
5	2	1	2	1	2	1	2
6	2	1	2	2	1	2	1
7	2	2	1	1	2	2	1
8	2	2	1	2	1	1	2

Column Ass	ignments	
Factor	Column	OK
А	1	Cancel
В	2	
С	4	Back
D	5	Help
E	6	

Design of Expe	rimen	ts Wizard - S	Select D	esign						×
Designifile: C:\	DocData	a16\solder.sgx						- Robust P	arameter Design	
Comment: Rob	iust para	meter soldering	study					Process f	actors:	
,	0	-	E	D	Dia dia	Destau			nbined array	
	Segn	hent	Factors	Huns	BIOCKS	Design		• Cros	ssed array	
Options	Contr	ollable process	5	8	1	L8 (2^7)				
Options	Mixtu	ire components	0	0	0					
Options	Noise	e factors	3	0	0	Press the Options but	tton.			
,	СОМ	BINED	8	8	1	Samples per run: 1				
BLC)CK	temperat	ure	spee	d	flux density	preheat tem	perature	wave height	te 🔺
		degrees	; F	ft/mi	n		degree	sF	inches	
1 1		480.0		7.2		0.9	150.0		0.5	
2 1		480.0		7.2		1.0	200.0		0.6	
3 1		480.0		10.0		0.9	150.0		0.6	
4 1		480.0		10.0		1.0	200.0		0.5	
5 1		510.0		7.2		0.9	200.0		0.5	
6 1		510.0		7.2		1.0	150.0		0.6	
7 1		510.0		10.0		0.9	200.0		0.6	
8 1		510.0		10.0		1.0	150.0		0.5	
4										
		ок		Cance	el	Rerando	mize		Help	

Next select the design for the noise factors.

Designs for Continuous or Two-Level Fac	ctors 💌
Design Class	ОК
C Screening	Cancel
C Response Surface	
O Multilevel Factorial	Help
Orthogonal Array	

()rthogonal Arra	y Options		X
	Design • L4 (2^3) • L8 (2^7) • L9 (3^4)	C L32 (2^31) C L32 (2^1×4^9) C L36 (2^11×3^12)	Replicate Design Number: 0	OK Cancel Back
	 L12 (2¹¹) L16 (2¹⁵) L16 (4⁵) L18 (2¹x3⁷) L25 (5⁶) L27 (3¹³) 	 L36 (2³x3¹3) L50 (2¹x5¹1) L54 (2¹x3²5) L64 (2⁶3) L64 (4x21) L81 (3⁴0) 	☐ Randomize	Help

Column Run	1	2	3
1	1	1	1
2	1	2	2
3	2	1	2
4	2	2	1

olumn Ass	ignments	
Factor	Column	ОК
F	1	Cancel
H	3	Back
		Help

omme	nfile: C:\D ent: Robu) ocDat ust para	a16\solder.sgx meter soldering :	study				- Robust Process	Parameter Design factors:	
		Segn	nent	Factors	Runs	Blocks	Design	C Co	mbined array ossed array	
Opt	ions	Conti	ollable process	5	8	1	- L8 (2^7)			
Ont	ione	kalinaka	re componente	0	0	0				
opt	ions	MIXC	re components	U	U	U				
Opt	ions	Noise	e factors	3	4	1	L4 (2^3)			
		СОМ	BINED	8	32	1	Samples per run: 1			
	BLO	СК	temperat	ure	spe	ed	flux density	preheat temperature	wave height	te 4
			degrees	F	ft/r	nin		degrees F	inches	
1	1		480.0		7.2		0.9	150.0	0.5	-5.0
2	1		480.0		7.2		0.9	150.0	0.5	-5.0
3	1		480.0		7.2		0.9	150.0	0.5	5.0
4	1		480.0		7.2		0.9	150.0	0.5	5.0
5	2		480.0		7.2		1.0	200.0	0.6	-5.0
6	2		480.0		7.2		1.0	200.0	0.6	-5.(
7	2		480.0		7.2		1.0	200.0	0.6	5.0
8	2		480.0		7.2		1.0	200.0	0.6	5.0
- O	3		480.0		10.0		0.9	150.0	0.6	-5.0
9	3		480.0		10.0		0.9	150.0	0.6	-5.0
9 10	3		480.0		10.0		0.9	150.0	0.6	5.0
9 10 11			480.0		10.0		0.9	150.0	0.6	5.0
9 10 11 12	3		48010		10.0		1.0	200.0	0.5	-5.0
9 10 11 12 13	3		400.0		10.0					
9 10 11 12 13 14	3 4 4		480.0		10.0		1.0	200.0	0.5	-5.0

Step 8: Analyze data

Signal-to-Noise Ratio (Smaller the Better) - For situations in which the response is to be minimized, Taguchi proposed analyzing

$$SNR_{S} = -10\log \sum_{i=1}^{n} \left(\frac{y_{i}^{2}}{n}\right)$$

n = number of rows in outer array

$$\sum_{i=1}^{n} \left(\frac{y_i^2}{n} \right) = \overline{y}^2 + \left(1 - \frac{1}{n} \right) s^2$$

Filename: solder2.sgx

Standardized Pareto Chart for defects(SNRS)

Main Effects Plot for defects(SNRS)

Step 9: Optimize response

Step 9: Optimize the responses

Response Values at Optimum

Response	Prediction	Lower 95.0% Limit	Upper 95.0% Limit	Desirability
defects(SNRS)	-39.6893	-40.8836	-38.4951	0.984796

Factor Settings at Optimum

Factor	Setting
temperature	510.0
speed	7.2
flux density	0.9
preheat temperature	200.0
wave height	0.5

Step 9: Optimize response (Cont.)

Example #2 – Combined Array

- Myers, Montgomery, and Anderson-Cook (2009) provide an example optimizing the quality of color television images.
- Response: Y = reception quality in decibels
- Controllable factors: Noise factors:
 - X1 = filter tabs
 - X2 = sampling frequency Z

Z1 = image bits Z2 = voltage

Step 1: Specify response

Design of	Design of Experiments Wizard - Define Responses												
Design file	Design file: _ <untitled></untitled>												
Comment:	Color television signal	l study											
Number of	responses: 1	• •											
Response	Name	Units	Analyze	Goal	Target	Impact (1-5)	Sensitivity	Minimum	Maximum				
1	reception quality	decibels	Mean 💌	Maximize 💌	0.5	3.0	Medium 💌	0	40				
2	Var_2		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌						
3	Var_3		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌						
4	Var_4		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌						
5	Var_5		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌						
6	Var_6		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌						
7	Var_7		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌						
8	Var_8		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌						
9	Var_9		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌						
10	Var_10		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌						
11	Var_11		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌						
12	Var_12		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌						
13	Var_13		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌						
14	Var_14		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌						
15	Var_15		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌						
16	Var_16		Mean 💌	Maximize 💌	0.5	3.0	Medium 💌						
				1			1						
		ОК		Cancel		_	Help						

Step 2: Specify factors

Design	Design of Experiments Wizard - Define Factors										
Design	Design file: C:\DocData16\tvsignal.sgx										
Comme	Comment: Color television signal study										
Numbe	Number of controllable process factors: 2 * Number of controllable mixture components: 0 * Number of noise factors: 2 *										
Factor	Name	Units	Туре	Role	Low	High	Levels				
А	filter tabs		Continuous 💌	Controllable	5.0	21.0	1,2				
В	sampling frequency	MHz	Continuous 💌	Controllable	6.25	13.5	1,2				
С	image bits		Continuous 💌	Noise	256.0	512.0	1,2				
D	voltage	volts	Continuous 💌	Noise	100.0	200.0	1,2				
Е	Factor_E		Continuous 💌		-1.0	1.0	1,2,3,4				
F	Factor_F		Continuous 💌		-1.0	1.0	1,2,3,4				
G	Factor_G		Continuous 💌		-1.0	1.0	1,2,3,4				
Н	Factor_H		Continuous 💌		-1.0	1.0	1,2,3,4				
T	Factor_I		Continuous 💌		-1.0	1.0	1,2,3,4				
J	Factor_J		Continuous 💌		-1.0	1.0	1,2,3,4				
к	Factor_K		Continuous 💌		-1.0	1.0	1,2,3,4				
L	Factor_L		Continuous 💌		-1.0	1.0	1,2,3,4				
м	Factor_M		Continuous 💌		-1.0	1.0	1,2,3,4				
Tota	I for controllable mixture co	omponents: 100.0			F	actors A-M	Factors N-Z				
	ОК	Back	(Cancel		H	Help				

Step 3: Select design

Design of Expe	riments Wizard - S	ielect De	sign			
Design file: C:\[DocData16\tvsignal.sgx					Robust Parameter Design
Comment: Colo	r television signal study					Combined array
	Segment	Factors	Runs	Blocks	Design	Crossed array
Options	Process factors	4	0	0	Press the Options button.	
Options	Mixture components	0	0	0		
Options		0	0	0		
	COMBINED	4	0	0	Samples per run: 1	
BLO	ICK filter tab	os	sampling f	requency	image bits	voltage
4						▼
	OK		Can	cel	Rerandomize	Help

Select a single design for both the controllable and noise factors.

Designs for Continuous or Two-Level	Factors 🛛 🔀
Design Class	ОК
C Screening C Besponse Surface	Cancel
 Multilevel Factorial 	Help
Orthogonal Array	

Multilevel Factorial Design Options		X
FactorLevelsfilter tabs3sampling frequency3image bits2voltage2	Runs: 36 Error d.f.: 23 Replicate Design Number: 0 Randomize	OK Cancel Back Help

omm	file: C:\D ent: Color	ocDa televi	ta16\tvsignal.sg sion signal study	×					Robust F	'arameter Design nbined array	
		Seg	ment	Factors	Runs	Blocks	Design		C Cros	ssed array	
Opt	ions	Proc	cess factors	4	36	1	Multilevel Factorial				
				-							
Up	ions	Mixt	ure components	U	U	U					
Opt	ions			0	0	0					
		COM	IBINED	4	36	1	Samples per run: 1				
	BLO	СК	filter ta	ıbs	sampling	frequency	image bits	vol	tage		
					M	Hz		V	olts		
1	1		5.0		6.25		256.0	100.0			
2	1		13.0		6.25		256.0	100.0			
3	1		21.0		6.25		256.0	100.0			
4	1		5.0		9.875		256.0	100.0			
5	1		13.0		9.875		256.0	100.0			
6	1		21.0		9.875		256.0	100.0			
7	1		5.0		13.5		256.0	100.0			
8	1		13.0		13.5		256.0	100.0			
9	1		21.0		13.5		256.0	100.0			
10	1		5.0		6.25		512.0	100.0			
11	1		13.0		6.25		512.0	100.0			
12	1		21.0		6.25		512.0	100.0			
13	1		5.0		9.875		512.0	100.0			
10	1		13.0		9.875		512.0	100.0			
14	1		21.0		9 875		512.0	100.0			· -
14											

Step 4: Select model

The default model has two-factor interactions and quadratic effects for the 3-level factors.

DOE Wizard Model Options	;	
Process Factors Model	Mixture Components Model	ОК
C Mean	🖲 Mean	Cancel
C Linear (Main Effects)	C Linear	
© 2-Factor Interactions	C Quadratic	Help
Quadratic	C Special Cubic	
C Cubic	C Cubic	
Include: A:filter tabs B:sampling frequency C:image bits D:voltage AA AB AC AD BB BC BD CD	Exclude:	

Step 8: Analyze data

Standardized Pareto Chart for reception quality

27

Filename: tvsignal.sgx

Interaction Plot for reception quality

Reception quality is good at high sampling frequency, or at low sampling frequency and low filter tabs.

Interaction Plot for reception quality

Reception quality is less affected by changes in image bits at high sampling frequency.

Interaction Plot for reception quality

Reception quality is less affected by changes in image bits at low filter tabs.

Step 9: Optimize response

"Desirability "- on a scale of 0 to 1, how desirable are the values of the response variables at a selected combination of the controllable factors.

In this case, desirability is a combination of the mean response and the standard deviation of the response at that combination. The transmission of error formula is used to estimate the std. deviation:

$$se = \sqrt{\sum_{i=1}^{r} \left[\frac{\partial y(x,z)}{\partial z_i}\sigma_z\right]^2 + \sigma^2}$$

Analysis Options

DOE Wizard Analysis O	ptions	×
Design Region C Spherical C Cuboidal	Prediction limits: 95.0 %	OK Cancel Help
Robust Parameter Design Range of noise factors: 2.0 sigma Importance of standard d	ns eviation relative to the mean:	
Maximum for standard der 10.0 s.e.	viation in desirability function:	

Step 9: Optimize response (cont.)

Step 9: Optimize the responses

Response Values at Optimum

Response	Optimized	Prediction	Lower 95.0% Limit	Upper 95.0% Limit
reception quality	yes	35.3544	34.5018	36.207

Standard Deviation	Desirability
0.738624	0.883626

Factor Settings at Optimum

Factor	Setting
filter tabs	9.83853
sampling frequency	13.5

Transmission of error formula used to estimate the std. deviation of the response at the optimal conditions.

$$se = \sqrt{\sum_{i=1}^{r} \left[\frac{\partial y(x,z)}{\partial z_i}\sigma_z\right]^2 + \sigma^2}$$

Step 9: Optimize response (cont.)

Step 9: Optimize response (cont.)

More Information

 (1) Myers, R. H., Montgomery, D. C. and Anderson-Cook, C. M.
 (2009). <u>Response Surface Methodology: Process and Product</u> <u>Optimization Using Designed Experiments, 3rd edition</u>. New York: John Wiley and Sons.

(2) Statgraphics Centurion PDF file: Doe Wizard – Inner-Outer Arrays

(3) Statgraphics Centurion PDF file: Doe Wizard – Robust Parameter Designs

(4) www.statgraphics.com