Statgraphics Centurion Version 17 Enhancements

Version 17 of Statgraphics Centurion contains many significant enhancements to the program. These enhancements include:

- 1. 32 new statistical procedures.
- 2. Additional capabilities in 20 existing statistical procedures.
- 3. New user interface features such as a session log.

This document describes each of the enhancements.

nalysis Procedures
udit Trails and Electronic Signatures7
variate Density Statlet
ause-and-Effect Diagram11
omputer-Generated Designs
prrespondence Analysis13
osstabulation
urve-Fitting Statlet
ata Columns17
emographic Map19
emographic Map Brushing Statlet21
emographic Map Visualizer Statlet23
esign of Experiments Wizard24
eviation Dashboard Statlet
ponential Smoothing Statlet
actor Analysis
actorial Repeated Measures ANOVA
equency Histogram
Chart
raphics Options
Added text

Adding Objects	35
Axis tickmarks	
Brushing scatterplots	
Dashed and Dotted Lines	
Overriding attributes	
Recording videos	40
Text fonts	40
Zooming and panning	40
Hypothesis Tests (Describe)	41
Hypothesis Tests (Compare)	42
Item Reliability Analysis	43
Interactive Histogram Statlet	45
Kriging	46
Kriging Statlet	49
MIL-STD-105E Acceptance Sampling for Attributes	50
MIL-STD-414 Acceptance Sampling for Variables	52
MIL-STD-1916 Acceptance Sampling for Attributes	54
MIL-STD-1916 Acceptance Sampling for Variables	56
Multiple Sample Comparison	59
Multiple Variable Analysis	61
Multivariate Visualizer	63
Nonlinear Regression	69
Normal Probability Plot	70
One-Dimensional Visualizer	72
One Variable Analysis	74
Oneway ANOVA	75
Oneway Repeated Measures ANOVA	76
Open-High-Low-Close Candlestick Plot Statlet	77
P Chart	79
P' Chart	80
Power Transformations Statlet	81
Preferences	82

Principal Components Analysis	
Probabilistic Fractal	85
Process Capability Analysis Statlet	86
Process Map	87
Reliability Demonstration Test Plan	89
Sample Size Determination Statlet	90
StatFolio Alerts	92
StatFolio Passwords	94
StatLog	95
Surface-Fitting Statlet	96
T Chart	
Tabulation	
Ternary Plot	
Three-Dimensional Visualizer	
Two-Dimensional Visualizer	
U Chart	
U' Chart	
Miscellaneous	
Data	
Statgraphics Operators	
Toolbar Shortcuts	

Analysis Procedures

Significant enhancements have been made to the function of all statistical procedures. One important enhancement involves the analysis toolbar, which has been redesigned:

New buttons on the toolbar include:

Tabular options: active after a table has been maximized:

Tabular Options	×		
Maximum width of output: 7.5 inches Colored title	Row labels: Replace row numbers		
✓ StatAdvisor ✓ Add to output ✓ Highlight references	P-value alpha level:		
Image: Highlight references 5 % Significant Digits Tables Image: Significant Digits Image: Significant Digits Image: Significant Digita			
OK Cancel	Apply Help		

These options temporarily override the system-wide settings specified on the *Preferences* dialog box available under *Edit* on the main menu.

Log Save to logfile: copies all visible tables and graphs to the StatLog system logfile.

Add object: adds an additional object such a line, arrow or shape to a graph.

A	dd Object	×
Object 1: Text string Horizontal line Vertical line Line segment Rectangle Ellipse Arrow Function	X1: Y1: X2: Y2: Properties	Done Apply Help
First Previous	Next Last	Delete

Override attributes: overrides the default attributes of an object, such as the color of a single bar in a frequency histogram.

or graph.

X ticks: Horizontal
Rotate X-axis tickmarks: changes the orientation of the X-axis tickmarks.

X-axis	Y-axis	Z-axis	
ΘQ	ΘQ	ΘΘ	Rese

zoom: zooms a graph in or out along a particular axis.

Audit Trails and Electronic Signatures

Beginning with Version 16.2, Statgraphics Centurion saved as part of a StatFolio an audit trail that tracks important events in the life of a StatFolio. Version 17 adds an electronic signature to the audit trail, created from the username and computer name of the active Windows session.

11/22/2013 5:00 PM Created StatFolio (SGDev8 on SGDEV8LAPTOP) 0K 11/22/2013 5:00 PM Opened C:\DocData17\93cars.sgd in sheet A 0K 11/22/2013 5:00 PM Created analysis: Simple Regression - MPG Highway vs. Horsepower 0K	Display Audit Trail	×
Involuted analysis in the seved StatFolio as C:\Data\analysis of cardata sgp (SGDev8 on SGDEV8LAPTOP) 11/22/2013 5:01 PM Loaded StatFolio from C:\Data\analysis of cardata sgp (SGDev8 on SGDEV8LAPTOP) Modified analyses: Simple Regression - MPG Highway vs. Horsepower 11/22/2013 5:02 PM Saved StatFolio as C:\Data\analysis of cardata sgp (SGDev8 on SGDEV8LAPTOP) 11/22/2013 5:02 PM Loaded StatFolio from C:\Data\analysis of cardata sgp (SGDev8 on SGDEV8LAPTOP) 11/22/2013 5:02 PM Loaded StatFolio from C:\Data\analysis of cardata sgp (SGDev8 on SGDEV8LAPTOP) Modified analyses: none Modified analyses: none	11/22/2013 5:00 PM Opened C\\DocData17\93cars.sgd in sheet A 11/22/2013 5:00 PM Created analysis: Simple Regression - MPG Highway vs. Horsepower Modified analyses: none 11/22/2013 5:01 PM Loaded StatFolio as C:\Data\analysis of cardata.sgp (SGDev8 on SGDEV8LAPTOP) 11/22/2013 5:01 PM Loaded StatFolio from C:\Data\analysis of cardata.sgp (SGDev8 on SGDEV8LAPTOP) Modified analyses: Simple Regression - MPG Highway vs. Horsepower 11/22/2013 5:02 PM Saved StatFolio from C:\Data\analysis of cardata.sgp (SGDev8 on SGDEV8LAPTOP) 11/22/2013 5:02 PM Loaded StatFolio from C:\Data\analysis of cardata.sgp (SGDev8 on SGDEV8LAPTOP) 11/22/2013 5:02 PM Loaded StatFolio from C:\Data\analysis of cardata.sgp (SGDev8 on SGDEV8LAPTOP) 11/22/2013 5:02 PM Loaded StatFolio from C:\Data\analysis of cardata.sgp (SGDev8 on SGDEV8LAPTOP) 11/22/2013 5:02 PM Loaded StatFolio from C:\Data\analysis of cardata.sgp (SGDev8 on SGDEV8LAPTOP) Modified datasheets: none Modified analyses: none	Cancel Print Annotate

The signature is recorded each time any of the following events occurs:

- 1. A new StatFolio is created.
- 2. An existing StatFolio is loaded.
- 3. The current StatFolio is saved.

Version 17 also allows additional text to be added to the audit trail by pressing the *Annotate* button on the above window.

Bivariate Density Statlet

A new Statlet has been added to display the distribution of 2 random variables:

Biva	ariate Density Statlet
Temperature Gender Heart Rate	Sample 1: Heart Rate Sample 2: Sample 2: Select:
Sort column names	
OK Cancel	Delete Transform Help

The Statlet creates 3 types of graphs:

- 1. A bivariate frequency histogram, which displays the observed counts in a rectangular grid array.
- 2. A bivariate normal distribution with the same means, standard deviations and correlation as the data.
- 3. A nonparametric density estimate which does not assume a normal distribution.

Users may interactively change the parameters that control the graphs.

The cell definitions and frequencies for the bivariate histogram may also be saved to a datasheet in the format needed for input to the *Crosstabulation* procedure:

Save Res	ults Options	×
Save XAxis Labels XAxis Labels Counts	Target Variables XLABEL YLABEL COUNT	OK Cancel Help
		Datasheet CACN CCCP CCCP CCCQ CECR CFCS CGCT CHCU CICV CICV CICV CICV CKCX CLCY CMCZ
Autosave	Save comments	

Cause-and-Effect Diagram

New features have been added to the Cause-and-Effect Diagram to improve the display:

These features include:

- 1. Better control over the colors and fonts for the labels at each level.
- 2. Boxes around the effect and primary categories.

Cause-and-Effect Diagram Entries				
Effect: Circuit board defects	For	. 1	ОК	
Circuit board derects	FO	n l	Cancel	
Categories	Causes	Subcauses	Help	
Raw card Solder process Inspection Components Component insertion	Short circuit Shroud Moisture content			
Add Insert	Add In:	sert Add	Insert	
Edit Delete	Edit De	lete Edit	Delete	
Font	Font		Font	

Computer-Generated Designs

Computer Generated designs, which are a new type of experiment created by the DOE Wizard, are experimental designs which have optimal properties with respect to the estimation of specific statistical models. Given the definition of an experimental region, a model to be estimated, and the number of experimental runs that can be performed, the program searches for a set of runs that maximizes a selected design optimality criteria.

Computer generated designs are included as an option in the Experimental Design Wizard when constructing several types of designs, including screening designs, response surface designs, and mixture experiments. In addition to lower and upper limits for each experimental factor, constraints may be specified based on linear combinations of the factors. The optimality criteria offered include D-optimality, A-optimality, G-optimality, and I-optimality.

	Computer Generated Designs					
	BLOCK	temperature	pressure	speed	supplier	
		degrees C	bar	cpm		
1						
2						
3						
4						
5						
6						
7						-
8						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
_ Optim		Number of coefficients: 18	8 Number of base runs:	24	D-efficiency:	ОК
• D-	-efficiency	Display	Number of replicates:		G-efficiency:	Cancel
G	-efficiency	 Original units 		1-	-	Create
		_	Number of centerpoin	its: 0	A-efficiency:	
	efficiency	C Coded units	🔲 Group runs in bloc		Average prediction variance	e: Advanced
O Fe	efficiency	🔽 Randomize run order				Help

Unlike the D-optimal designs in Version 16, no set of candidate runs is required before generating the design.

Correspondence Analysis

A new field has been added to the data input dialog box which allows *Column Labels* to be input from a column of the DataBook:

Со	rrespondence Analysis ×
Subject A B C D E Y	Data Untabulated (Observations) Row variable: Column variable: Column variable: Columns: Columns: A B C D E Y
	(Row Labels:) Subject (Column Labels:)
Sort column names	(Select:)
OK Cancel	Delete Transform Help

Crosstabulation

The data input dialog box for the *Crosstabulation* procedure has been modified to allow for specification of a *Counts* column:

	Crosstabulation ×
Temperature Gender Heat Rate XLABEL YLABEL COUNT	Row Variable: Column Variable: YLABEL (Counts:) COUNT (Select:) Image: Column Colu
Sort column names	
OK Cancel	Delete Select Help

If used, the *Counts* column specifies the frequency associated with each value in the *Row Variable and Column Variable* columns. If not used, each frequency is assumed to equal 1 as in Version 16.

Curve-Fitting Statlet

This new procedure fits linear and nonlinear regression models involving a dependent variable Y and an independent variable X. The general model that is fit contains each variable raised to a power:

$$Y^{p} = a + b X^{q}$$

Using the Statlet, you may:

- (1) Visualize the effect of the powers by using the sliders on the toolbar to change them interactively.
- (2) Add a LOWESS smooth to the plot to compare it to the fitted model.
- (3) Interactively change the width of the smoothing window.
- (4) Use the optimize buttons to numerically optimize the powers.
- (5) Add one-sided or two-sided prediction and confidence limits.
- (6) Interactively investigate the effect of individual data points on the fitted model and the limits by dragging the points to new positions.

Using a vertical cursor, you can also make predictions at specific values of X:

Data Columns

Two significant enhancements have been made to the columns of the DataBook in which data are placed. The first enhancement is the addition of a new *Percentage* data type:

Mo	dify Column	×
Name:		ОК
Col_1		Cancel
Comment:		Define
		Help
_		Value Labels
Type C Numeric C Character C Integer Time (HH:MM) C Time (HH:MM:SS) Fixed Decimal: 2 Formula	 ○ Date ○ Month ○ Quarter ○ Date-Time (HH:M ○ Date-Time (HH:M ● Percentage 	-

Data in percentage columns appear with a percentage sign:

		<untitled></untitled>	•		
	Col_1	Col_2	Col_3	Col_4	Col_t
1	108				
2	208				
3	30%				
4	40%				
5	50%				
6					
7					
8					
9					
10					
	A B C D	E/F/G/H/L	JK		

Internally, they are represented by their numeric values, such as 0.1 for 10%.

The second enhancement is the ability to specify value labels to be associated with numeric columns. Value labels are character strings that will replace specific values in the column when output for that column is displayed. For example, stock analysts sometimes classify individual securities as "Strong Buy", "Buy", "Hold", "Sell", or "Strong Sell". Rather than entering those strings in a character column, it is often easier to enter numbers such as 1, 2, 3, 4 or 5 in a numeric column. By creating value labels that correspond to each of those numbers, you can have the strings appear in all output in place of the corresponding numbers.

Value labels are created by pressing the *Value Labels* button on the *Modify Column* dialog box:

Value Labels		-X -
Value:	Label:	OK
		Cancel
1 = Strong Buy 2 = Buy 3 = Hold 4 = Sell 5 = Strong Sell		Help
Add	Change Delete	

Demographic Map

The *Map by State* procedure has been renamed *Demographic Map* and moved to the *Plot* menu. It can now create maps for any regions defined by a BNA boundary file. Included with Statgraphics Centurion are sample boundary files, including one that defines department boundaries in France:

[Demographic Map
DEPTCODE DEPTNAME POPULATION EMPLOYMENT UNEMPLOYMENT Data Copyright	Data: UNEMPLOYMENT Region names or abbreviations: DEPTNAME (Weights:) (Labels:) (Labels:) (Select:) Soundary file: Departements_Metropole.bna
Sort column names	
OK Cancel	Delete Transform Help

The *Analysis Options* dialog box is used to specify the type of data to be plotted and how to color the regions:

Demographic Map Options				
Data type: C Categorical	ОК			
C Discrete	Cancel			
 Continuous 	Help			
Classes: From: To: By: Use color gradient Hold scaling constant				

Continuous data may be plotted using a color gradient:

Demographic Map Brushing Statlet

This new Statlet plots a demographic map in which each region is colored either blue or red to illustrate the value of a selected variable. Using the Statlet controls, the analyst may change the cutoff that divides red from blue. Interactively changing the cutoff helps in visualizing the distribution of the specified variable throughout the map.

The procedure can map any regions defined by an Atlas Boundary File (file extension BNA). Such files are available for many states and countries:

Demographic Map Visualizer Statlet

This new Statlet is designed to illustrate changes in regional statistics over time. Given data for each region during *p* time periods, the program generates a dynamic display that illustrates how the data have changed in each region. Each region is drawn using a color that illustrates the level of the selected statistic.

As time increases, the analyst can follow changes in each region. Various options are offered for smoothing the data and for dealing with missing values.

The procedure can map any regions defined by an Atlas Boundary File (file extension BNA).

Design of Experiments Wizard

Several significant enhancements have been made to the Design of Experiments Wizard:

- 1. The maximum number of response variables has been increased from 16 to 32.
- 2. 3-level fractional factorial designs have been added to the list of available Response Surface Designs for experiments with 3 to 8 experimental factors.
- 3. A new class of designs called *Computer Generated Designs* has been added. These designs allow you to create experimental designs which have optimal properties with respect to the estimation of specific statistical models. Given the definition of an experimental region, a model to be estimated, and the number of experimental runs that can be performed, the program searches for a set of runs that maximizes a selected design optimality criteria. Unlike in Version 16, you do not have to specify a set of candidate runs.

			Computer (Generated Desig	Ins	
1 2 3 4 5 6 7 8	BLOCK	temperature degrees C	pressure bar	speed cpm	supplier	
9 10 11 12 13 14 15 16						
17 18 19 20 21 22						
CGe	fficiency fficiency fficiency	Number of coefficients: 18 Display Original units C Coded units Randomize run order	8 Number of base runs: Number of replicates: Number of centerpoin	0 its: 0	D-efficiency: G-efficiency: A-efficiency: Average prediction variance:	OK Cancel Create

4. For Computer Generated designs, the experimental region may be constrained based on linear combinations of the factors.

		Design Fa	ctor Constraints	X
0	A+ 0	B+ 0	C+0	D 🗌 Coded units
+0	E+0	F+ 0	G+0	Н
+0	I+ 0	J+ 0	K+0	L
+0	M+0	N+0	0+0	P <= ▼ 0
	OK		Cancel	Help

5. The optimality criteria offered now include D-optimality, A-optimality, G-optimality, and I-optimality.

	temperature	pressure	speed	supplier	
	degrees C	bar	cpm		
1 1	193.0	2.2	50.0	3	
2 1	217.05	3.2	32.0	3	
3 1	230.0	2.2	50.0	3	
4 1	193.0	3.2	44.6	3	
5 1	230.0	3.2	32.0	2	
6 1	230.0	3.2	50.0	3	
7 1	230.0	2.2	50.0	1	
8 1	193.0	2.2	50.0	2	
9 1	193.0	2.2	41.0	1	
0 1	193.0	3.2	32.0	1	
1 1	193.0	3.2	32.0	2	
2 1	193.0	2.2	32.0	2	
3 1	230.0	2.7	32.0	1	
4 1	230.0	2.2	50.0	2	
5 1	193.0	2.7	50.0	1	
6 1	193.0	3.2	50.0	2	
7 1	230.0	3.2	50.0	2	
8 1	211.5	3.2	50.0	1	
9 1	230.0	3.2	41.0	1	
20 1	230.0	2.2	32.0	2	
21 1	193.0	2.55	32.0	3	
22 1	211.5	2.2	32.0	1	
					•
ptimize	Number of coefficient	s: 18 Number of base ru	uns: 24	D-efficiency: 55.71%	OK
D-efficiency	Display-		J	G-efficiency: 92.81%	Cance
G-efficiency	 Original units 	Number of replicat	ites: 0		
A-efficiency	C Coded units	Number of center	points:	A-efficiency: 27.76%	Creat

Deviation Dashboard Statlet

This new Statlet indicates the status of multiple variables by displaying how much they deviate from their respective means. The primary format shows each variable using a vertical bar, the color of which indicates how many standard deviations the variable is from its mean:

The toolbar controls may be used to dynamically change the time period indicated on the plot.

A secondary format show all variables displayed as a normalized control chart:

Exponential Smoothing Statlet

This new Statlet applies various types of exponential smoothers to a time series. It generates forecasts with associated forecast limits. Using the Statlet controls, the user may interactively change the values of the smoothing parameters to examine their effect on the forecasts.

The types of exponential smoothers included are:

- 1. Brown's simple exponential smoothing with smoothing parameter α .
- 2. Brown's linear exponential smoothing with smoothing parameter $\boldsymbol{\alpha}.$
- 3. Holt's linear exponential smoothing with smoothing parameters α and β .
- 4. Brown's quadratic exponential smoothing with smoothing parameter α .
- 5. Winters' seasonal exponential smoothing with smoothing parameters α , β , and γ .

Interesting features of this Statlet include:

- 1. Sliders that allow the user to interactively change the smoothing parameters. As the parameters change, so do the forecasts, forecast limits, and summary statistics.
- 2. An *Optimize* button that instructs the program to find optimal values of the smoothing parameters.
- 3. A slider that controls the location of the crosshair cursor. The forecast and forecast limits corresponding to the cursor location are displayed in the right margin of the graph.
- 4. Unless *Lock points* is checked, users may drag historical data to new positions along the vertical axis to observe the effect of individual data values on the forecasts.

Factor Analysis

New tests have been added to the *Factor Analysis* procedure to determine whether it is useful to perform a factor analysis on a set of variables. The factorability tests include the Kaiser-Meyer-Olsen (KMO) measure of sampling adequacy and Bartlett's test of sphericity:

Factorability Tests

Kaiser-Meyer-Olkin Measure of Sampling Adequacy KMO = 0.920192

Bartlett's Test of Sphericity Chi-Square = 1299.83 D.F. = 55 P-Value = 0.0

The StatAdvisor

The factorability tests provide indications of whether or not it is likely to be worthwhile attempting to extract factors from a set of variables. The KMO statistic provides an indication of how much common variance is present. For factorization to be worthwhile, KMO should normally be at least 0.6. Since KMO = 0.920192, factorization is likely to provide interesting information about any underlying factors.

Bartlett's test for sphericity tests the hypothesis that the correlation matrix amongst the variables is an identity matrix, indicating that they share no common variance. Since the P-value is < 0.05, that hypothesis is rejected. Note: Bartlett's test is very sensitive and is usually ignored unless the number of samples per variable is no more than 5. In this case, the number of samples per variable equals 8.45455.

Factorial Repeated Measures ANOVA

This new procedure analyzes experimental designs in which multiple measurements have been made on the same subjects, and in which one or more factors differentiate the subjects. In many cases, the measurements are taken sequentially in order to examine how the effect of the between-subject factors varies over time. The need for a special procedure stems from potential dependence between observations made on a given subject.

Included in the procedure is Mauchley's test for *sphericity*, which is a condition requiring that the variance between any two estimated treatment means be the same. Corrections to the standard F-test are included for cases when sphericity is not present. Alternative MANOVA tests are also included.

Sphericity	Tests	and	Adjustments
------------	-------	-----	-------------

Mauchly's Sphericity Test

W	Chi-square	D.f.	P-value
0.631214	9.07439	5.0	0.106134

Epsilon

Huynh-Feldt	Greenhouse-Geisser	Lower-bound
0.963045	0.776916	0.333333

Tests of Within-Subject Effects

Source	Sphericity Correction	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Time	None	289.615	3.0	96.5382	12.96	0.0000
	Huynh-Feldt	289.615	2.88913	100.243	12.96	0.0000
	Greenhouse-Geisser	289.615	2.33075	124.258	12.96	0.0000
	Lower-bound	289.615	1.0	289.615	12.96	0.0017
Time*Drug	None	527.417	6.0	87.9028	11.80	0.0000
	Huynh-Feldt	527.417	5.77827	91.2759	11.80	0.0000
	Greenhouse-Geisser	527.417	4.6615	113.143	11.80	0.0000
	Lower-bound	527.417	2.0	263.708	11.80	0.0004
Residual	None	469.219	63.0	7.44792		
	Huynh-Feldt	469.219	60.6718	7.73372		
	Greenhouse-Geisser	469.219	48.9457	9.58651		
	Lower-bound	469.219	21.0	22.3437		

Multivariate Tests

Effect	Test	Value	F	Hypothesis D.F.	Error D.F.	P-Value
Time	Wilks' lambda	0.293279	15.2616	3.0	19.0	0.0000
	Pillai trace	0.706721	15.2616	3.0	19.0	0.0000
	Hotelling-Lawley trace	2.40973	15.2616	3.0	19.0	0.0000
	Roy's largest root	2.40973	15.2616	3.0	19.0	0.0000

Frequency Histogram

Two significant enhancements have been made to the *Frequency Histogram* procedure. The first enhancement is the addition of an *Analysis Options* dialog box on which the user specifies whether the data are continuous or discrete:

Frequency Histogram Options				
Data Type	ОК			
C Continuous	Cancel			
Oiscrete	Help			

If the data are discrete, the histogram will automatically create a bar for each integer value within the range of the data:

The second enhancement is the addition of a *Save Results* dialog box which allows the user to save the calculated frequencies to a datasheet:

Sá	ave Results Options	×
Save	Target Variables	ОК
🔽 🛛 Axis Labels	XLABEL	Cancel
Counts	COUNT	Help
Autosave	Save comments	

The resulting columns are in the format needed for input to the *Tabulation* procedure:

⊞			<untitled></untitled>			
	XLABEL	COUNT	Col_3	Col_4	Col_5	Col_6
	X Axis	Counts				
1	0	0				
2	1	0				
3	2	2				
4	3	0				
5	4	23				
6	5	41				
7	6	18				
8	7	8				
9	8	1				
10	9	0				
11	10	0				
12						
13						
14						
15	00					
$ \mathbf{H} \leftrightarrow \rightarrow \rightarrow$	93cars B	L.				Þ

G Chart

This new procedure creates a control chart for the length of time between the occurrence of rare events. It is based on the geometric distribution, which assumes that every time an opportunity for an event arises, there is a probability *p* that the event will occur. This type of chart is used frequently in the health sciences to monitor the occurrence of events such as post-surgical infections.

Input data may consist of either the times at which events occurred or the length of time between events:

	g Chart ×
Date of infection	Data:
	Type of data
	 Time of occurrence
	C Time between occurrences
	(Labels:)
	(LSL:) (Nominal:) (USL):
	(Select:)
Sort column names	
OK Cance	el Delete Transform Help

Specification limits may also be added to the chart.

The control chart is similar to others generated by Statgraphics:

The graph also displays the observed mean time between events and the estimated probability of an event at each point in time.

In addition to checking for standard runs rules violations, the program will check consecutive zeroes at a specified alpha level (the default value is 5 consecutive zeroes corresponding to α = 0.135%.)

Graphics Options

Several significant enhancements have been made to the graphics created by Statgraphics Centurion.

Added text

When new text strings are added to a graph, the reference position for the text may now be specified:

Text Options				
Text: An added text string				
Direction Horizontal Vertical	Reference Posit C Top left C Center left C Bottom left	C Top center C Center	C Top right C Center right r C Bottom right	
OK	Cancel	Fonts	Help	

The reference position is the location on the text string that remains fixed when the size of the graph is changed. This makes it easier to position text relative to objects such as points.

Adding Objects

A new button has been added to the analysis toolbar that allows objects to be added to any graph. A dialog box is used to select the object to be added:

Ac	ld Object	×
Object 1: Text string Horizontal line Vertical line Diagonal line Line segment Rectangle Ellipse <u>Arrow</u> Function	X1: 100.0 Dor Y1: 46.0 Appl X2: He Y2:	y
First Previous	Properties Fonts. Text: Outlier Next Last De	

Objects that may be added include text strings (alone, within rectangles or ellipses, or next to an arrow), lines and line segments, arrows and functions. The plot below shows an X-Y Plot with added objects:

Axis tickmarks

Axis tickmarks may be reversed so that larger values are on the left (or top) and smaller values are on the right (or bottom):

A new control on the analysis toolbar \times ticks: Horizontal \checkmark also allows x-axis tickmarks to be rotated without having to access the *Graphics Options* dialog box.

Brushing scatterplots

Scatterplots may now be brushing using either 2 colors (as in Version 16) or a color gradient:

	Brushing
Revs per Mile Manual Fueltank Passengers Length Wheelbase Width U Turn Space Rear seat Luggage Weight	Brush with: Length Type Two colors Gradient
🔲 Sort column names	
OK Car	Delete Help

When brushed using a gradient, each point is colored based on its location with respect to the current color palette (the default palette runs from blue at the minimum value to red at the maximum value):

The palette may be changed using *Graphics Options*:

Grap	hics Option	S	×
Layout Grid Points Top	Title X-Axis	Y-Axis Pal	ette Profile
Color Ramp	٦	Color	Size
Cold to hot	Change		0.25
C Hot to cold	Change		0.25
C Black to white	Change		
O White to black	Change		0.25
C Custom	Change		0.25
ок с	ancel	Apply	Help
	ancei	Abbià	Help

Dashed and Dotted Lines

The width of dashed and dotted lines may now be increased. In Version 16, the width attribute applied only to solid lines.

Overriding attributes

A new button has been added to the analysis toolbar to allow users to change the attributes of a single point, line, rectangle, or polygon. After clicking on an object, pushing the button displays a dialog box relevant for the object clicked:

This can be useful for emphasizing selected objects:

Recording videos

A new button H has been added to the analysis toolbar to assist in recording videos. It displays the following dialog box:

	Record Video	x
Start	Frames per second: 5	View
Stop	Duration: 0 seconds	Save
Clear	Compression	Hide

The *Start* and *Stop* buttons are used to begin and end the recording. The *View* button plays back the last recorded video.

Text fonts

A new control ha	as been added to	the analysis to	olbar to assist in	increasing or	decreasing the	size of all
text on a graph:	Text font size: 🔳	L Cr	anges occur imr	mediately.		

Zooming and panning

New buttons have been added to the analysis toolbar to facilitate the process of zooming and panning whenever a graph is displayed:

The + and – buttons expand or contract the current graph around its center. These buttons work in conjunction with the scrollbars along the margins of each graph, which are used for panning back and forth.

Another feature added to Version 17 is the automatic appearance of additional tickmarks as the graph is expanded.

Hypothesis Tests (Describe)

A new test has been added for the value of the Pearson correlation coefficient:

Hypothes	sis Tests
Parameter	ОК
C Normal Mean	Cancel
C Normal Sigma	Help
C Binomial Proportion	
Correlation Coefficient	
Null Hypothesis:	
Sample Mean: 0.0	Sample Sigma: 1.0
Sample Proportion: 0.5	Sample Rate: 1.0
Sample Correlation:	
Sample Size: 100	

Both two-sided and one-sided tests are provided.

The output also contains a confidence interval or confidence bound for the correlation:

Hypothesis Tests
Sample correlation coefficient $= 0.85$
Sample size $= 100$
95.0% confidence interval for correlation coefficient: [0.78457,0.896708]
Null Hypothesis: correlation $= 0.9$
Alternative: not equal
Computed Z statistic = -2.12801
P-Value = 0.033336
Reject the null hypothesis for $alpha = 0.05$.

Hypothesis Tests (Compare)

A new test has been added to compare the values of two Pearson correlation coefficients:

Hypothesis Tes	sts (Compare)
Compare Normal Means Normal Sigmas Binomial Proportions Poisson Rates Correlation Coefficients	OK Cancel Help
Null Hypothesis for Difference of C	orrelation Coefficients:
Sample 1 Mean: 0.0 Sample 1 Sigma: 1.0	Sample 2 Mean: 0.0 Sample 2 Sigma: 1.0
Sample 1 Proportion: 0.5	Sample 2 Proportion:
Sample 1 Rate:	Sample 2 Rate:
Sample 1 Correlation: 0.56	Sample 2 Correlation: 0.62
Sample 1 Size: 100	Sample 2 Size: 100

Both two-sided and one-sided tests are provided.

Hypothesis Tests
Sample correlations = 0.56 and 0.62
Sample sizes $= 100$ and 100
Null Hypothesis: difference between correlations $= 0.0$
Alternative: not equal
Computed Z statistic = -0.641903
P-Value = 0.520934
Do not reject the null hypothesis for $alpha = 0.05$.

Item Reliability Analysis

This new procedure is designed to estimate the reliability or consistency of a set of variables. It is commonly used to assess how well a set of questions in a survey, each of which is designed to illicit information about the same characteristic, give consistent results.

The major output of the procedure is Cronbach's alpha. Alpha may be calculated directly from the input variables, or the variables may first be standardized so that they have equal variances. The effect on alpha when each variable is separately omitted is also estimated, so that unreliable questions can be identified.

Variable	Count	Sample Mean	Std. Deviation
Q1	15	3.4	1.29835
Q2	15	3.33333	1.17514
Q3	15	3.53333	1.0601
Q4	15	4.06667	0.798809
Q5	15	3.06667	1.38701
Q6	15	3.73333	1.27988
Sum	15	21.1333	4.85308

Cronbach's alpha = 0.772503 (lower 95% confidence bound = 0.582388)

Omitted Item Statistics

Omitted	Adj. Sum	Adj. Sum	ltem-Total	Squared	Alpha if
Variable	Mean	Std. Deviation	Correlation	Multiple R	Omitted
Q1	17.7333	3.76955	0.782267	0.742626	0.660188
Q2	17.8	4.03909	0.616996	0.728303	0.712931
Q3	17.6	4.13694	0.605884	0.595351	0.719254
Q4	17.0667	4.18273	0.810943	0.738456	0.696108
Q5	18.0667	4.84719	-0.138824	0.451907	0.905959
Q6	17.4	3.73784	0.83015	0.704872	0.645876

The Alpha Plot shows how alpha would change if individual questions were deleted:

Large increases in alpha, as for Q5 above, indicate that the corresponding question is not reliable.

Interactive Histogram Statlet

This new Statlet creates a frequency histogram for a column of numeric data. The controls on the toolbar make it easy to change the definition of the classes into which the data are grouped. The density function of a normal distribution with the same mean and standard deviation as the data may be superimposed on the histogram. In addition, a nonparametric density trace may be drawn.

Kriging

A new procedure has been added for estimating the value of a random variable based on measurements made at locations distributed throughout a 2-dimensional region. Called Kriging, the procedure first creates a variogram to estimate the spatial dependence between measurements. Estimates are then made at unmeasured locations throughout the region.

The main output is a map similar to that shown below:

The estimates may also be viewed as a 3-dimensional perspective diagram:

In addition to the estimates, the estimated variance is also obtained and plotted:

Kriging Statlet

A new Statlet has been added to visualize the effect of changing Kriging parameters:

MIL-STD-105E Acceptance Sampling for Attributes

This new procedure calculates required sample sizes for single, double and multiple sampling plans to be used with the ANSI Z1.4 (previously MIL-STD-105E) sampling methodology. The standard has been established for the acceptance or rejection of lots based on the evaluation of item attributes. Based on one or more samples taken from a batch or lot containing *N* units, the batch or lot is either accepted or rejected.

Acceptance Sampling Options (Attributes)
Attribute
Percent nonconforming
C Nonconformities per unit
Lot size:
281-500 💌
Inspection level:
II (default)
AQL:
1.0%
Type of inspection:
Normal
Sampling plan:
Double 🗸
OK Cancel Help

The procedure also plots operating characteristic curves and average sample number curves to compare alternative sampling plans.

MIL-STD-414 Acceptance Sampling for Variables

This new procedure calculates required sample sizes based on the ANSI Z1.9 (formerly MIL-STD-414) standard. ANSI Z1.9 is a standard sampling methodology that has been established for the acceptance or rejection of lots using measurements made on a sample of units taken from that lot. Based on a sample of *n* units taken from a batch or lot containing *N* items, the batch or lot is either accepted or rejected.

Acceptance Sampling Options (Variables)
Variability
• Unknown
C Known
Lot size:
26-50 💌
Inspection level:
II (default)
AQL:
1.0%
Type of inspection:
Normal
OK Cancel Help

In addition to calculating the required sample sizes, the procedure will analyze a set of measurements and determine whether or not the lot should be accepted.

Variables Acceptance Sampling		—
Measurements	Action © Determine sample size	
	O Analyze mean and sigma	
	Mean:	Sigma:
	 Analyze data sample 	
	Measurements	
	(Select:)	
	(Lower specification limit:)	(Upper specification limit:)
		209.0
🔲 Sort column names	,	,
OK Cancel	Delete	ansform Help

The procedure also plots operating characteristic curves to compare alternative sampling plans.

MIL-STD-1916 Acceptance Sampling for Attributes

This procedure calculates the required sample sizes needed to implement MIL-STD-1916. MIL-STD-1916 is a standard sampling methodology that has been established for the acceptance or rejection of lots based on the evaluation of item attributes. A sample of *n* units is taken from a batch or lot containing *N* units. If the sample contains no nonconforming units, the batch or lot is accepted. Otherwise, the batch or lot is rejected. Such a plan is often referred to as a "zero acceptance number sampling plan". The MIL-STD-1916 standard specifies the appropriate sample sizes for different verification levels, which are usually specified by contract.

Acceptance Sampling Options (Attributes)	×
Lot size:	
3,073-5,440	
Verification level:	
IV 💌	
Type of inspection:	
Normal	
OK Cancel Help	

It also determines the required sampling frequency for implementing continuous sampling plans.

Design Continuous Sampling Plan	—X —
Target clearance number:	ОК
500	Update
Minimum sampling frequency: 0.101574 (1/9.84505)	Cancel
	Help

The procedure also plots operating characteristic curves to compare alternative sampling plans.

MIL-STD-1916 Acceptance Sampling for Variables

This procedure calculates the required sample sizes needed to implement MIL-STD-1916. MIL-STD-1916 is a standard sampling methodology that has been established for the acceptance or rejection of lots based on the evaluation of item measurements. A sample of *n* units is taken from a batch or lot containing *N* units. If the sample contains no nonconforming units and the sample mean and sample standard deviation yield acceptable quality indices, the batch or lot is accepted. Otherwise, the batch or lot is rejected. To calculate the quality indices, either one or two specification limits for the measurements must be entered.

Acceptance Sampling Options (MIL-ST	D-1916) 💌
Lot size:	
2-170	·
Verification level:	_
<u> </u>	•]
Type of inspection:	_
Normal	•]
OK Cancel	Help

In addition to calculating the required sample sizes, the procedure will analyze a set of measurements and determine whether or not the lot should be accepted.

Variables Acceptance Sampling		—
Measurements	Action C Determine sample size	
	C Analyze mean and sigma	
	Mean:	Sigma:
	 Analyze data sample 	
	Measurements	
	(Select:)	
	(Lower specification limit:)	(Upper specification limit:)
		209.0
🔲 Sort column names	,	,
OK Cancel	Delete	ansform Help

The procedure also plots operating characteristic curves to compare alternative sampling plans.

Multiple Sample Comparison

A new method has been added for simultaneously comparing several means. Called the *Games-Howell* procedure, it is similar to the Tukey procedure, except that it does not assume equal variances within each group. This is a good choice if the *Variance Check* indicates significant differences amongst the group variances.

Multiple	Range T	ests		
Method: 9	1	-	es-Howell	
	Count	Mean	Homoger	neous Groups
Task 6	11	28.818	2 X	
Task 5	12	29.5	XX	
Task 2	12	31.083	3 XX	
Task 1	13	31.923	1 XX	
Task 3	10	35.8	XX	
Task 4	10	38.0	Х	
Contrast		Sig.	Difference	+/- Limits
Task 1 -	Task 1 - Task 2 0.1		0.839744	7.0518
Task 1 - '	Task 3		-3.87692	6.80671
Task 1 - '	Task 4		-6.07692	6.19608
Task 1 - '	Task 5		2.42308	7.0067
Task 1 - '	Task 6		3.1049	8.16719
Task 2 - '	Task 3		-4.71667	7.42918
Task 2 - '	Task 4	*	-6.91667	6.91298
Task 2 - '	Task 5		1.58333	7.59217
Task 2 - '	Task 6		2.26515	8.60071
Task 3 - '	Task 4		-2.2	6.65731
Task 3 - '	Task 5	Ì	6.3	7.37977
Task 3 - '	Task 6		6.98182	8.43302
Task 4 - '	Task 5	*	8.5	6.86642
Task 4 - '	Task 6	*	9.18182	8.065
Task 5 - '	Task 6		0.681818	8.55813
* denotes	a statistic	cally sign	nificant differe	nce.

The output of the Kruskal-Wallis test has also been expanded to include Bonferroni intervals for the difference between each pair of medians:

Kruskal-	Wallis Test	ţ		
	Sample Siz	;e	Average Rank	k
Task 1	13		33.3846	
Task 2	12		30.5833	
Task 3	10		46.4	
Task 4	10		50.35	
Task 5	12		26.7083	
Task 6	11		23.3636	
Test statis	tic = 15.999	95 P-	Value = 0.006	84551
95.0 perce	ent Bonferro	oni inte	ervals	
Contrast		Sig.	Difference	+/- 1
Task 1 - '	Task 2		2.80128	23.23
Task 1 - '	Task 3		-13.0154	24.412
Task 1 - '	Task 4		-16.9654	24.41
Task 1 - '	Task 5		6.67628	23.2
Task 1 - '	Task 6		10.021	23.7
Task 2 - 7	Task 3		-15.8167	24.8
Task 2 - '	Task 4		-19.7667	24.8
Task 2 - '	Task 5		3.875	23.6
Task 2 - '	Task 6		7.2197	24.22
Task 3 - '	Task 4		-3.95	25.95
Task 3 - '	Task 5		19.6917	24.85
Task 3 - '	Task 6		23.0364	25.35
Task 4 - '	Task 5		23.6417	24.85
Task 4 - '		*	26.9864	25.35
Task 5 - '			3.3447	24.227
* denotes	a statistical	ly sigr	nificant differe	nce.

Bonferroni intervals permit the simultaneous comparison of many differences at a specified family confidence level.

Multiple Variable Analysis

Two major enhancements have been made to the Multiple Variable Analysis procedure:

- 1. A *Correlation Plot* has been added to display correlations graphically.
- 2. The partial correlations now allow the user to specify which variables are partialed out.

The Correlation Plot (also called a Corrgram) displays the estimated correlations or partial correlations in the form of a matrix with colored cells:

Pearson Product-Moment Correlations 1.0 1.0 0.94 0.31 0.62 0.79 0.81 0.63 0.64 0.54 0.62 MPG Highway 1.00 0.94 0.31 0.62 0.79 0.81 0.63 0.64 0.54 0.62 MPG City 0.94 1.00 0.36 0.66 0.81 0.84 0.71 0.72 0.67 0.67 MPG City 0.31 0.36 1.00 0.04 0.33 0.43 0.43 0.55 0.54 0.40 0.47 MPG Sity 0.31 0.36 1.00 0.04 0.33 0.43 0.43 0.55 0.54 0.44 0.47 MPG Sity 0.62 0.64 0.04 1.00 0.74 0.73 0.64 0.55 0.49 More power 0.62 0.63 0.71 1.00 0.89 0.76 0.80 0.69 0.76
MPG Highway 1.00 0.94 0.31 -0.62 -0.79 -0.81 -0.63 -0.64 -0.54 -0.62 MPG City 0.94 1.00 0.36 -0.67 -0.81 -0.63 -0.67
MPG City 0.94 1.00 0.36 -0.67 -0.81 -0.84 -0.71 -0.72 -0.67 -0.67 RPM 0.31 0.36 1.00 0.04 -0.33 -0.43 -0.55 -0.54 -0.44 -0.47 Horsepower -0.62 -0.67 0.04 1.00 0.71 0.74 0.73 0.64 0.55 0.49
MPG City 0.94 1.00 0.36 -0.67 -0.81 -0.84 -0.71 -0.72 -0.67 -0.67 RPM 0.31 0.36 1.00 0.04 -0.33 -0.43 -0.55 -0.54 -0.44 -0.47 Horsepower -0.62 -0.67 0.04 1.00 0.71 0.74 0.73 0.64 0.55 0.49
RPM 0.31 0.36 1.00 0.04 -0.33 -0.43 -0.55 -0.54 -0.44 -0.47 Horsepower -0.62 -0.67 0.04 1.00 0.71 0.74 0.73 0.64 0.55 0.49
Fueltank -0.79 -0.81 -0.33 0.71 1.00 0.89 0.76 0.80 0.69 0.76
Weight <mark>-0.81 -0.84 -0.43</mark> 0.74 0.89 1.00 0.85 0.87 0.81 0.87
Engine Size <mark>-0.63 -0.71 -0.55</mark> 0.73 0.76 0.85 1.00 0.87 0.78 0.73
Width -0.64 -0.72 -0.54 0.64 0.80 0.87 0.87 1.00 0.82 0.81
Length <mark>-0.54 -0.67 -0.44</mark> 0.55 0.69 0.81 0.78 0.82 1.00 0.82
Wheelbase <mark>-0.62 -0.67 -0.47 0.49 0.76 0.87 0.73 0.81 0.82 1.00</mark>
MPG Highway MPG City RPM Horsepower Fueltank Weight Weight Uength Length

Various options are available to control the ordering of the variables:

Correlation Plot Options
Type of correlation
 Pearson product-moment correlation
C Spearman rank correlation
C Kendall rank correlation
C Partial correlation
Order by
C Input dialog box
C First eigenvector
 First 2 eigenvectors
✓ Include main diagonal ✓ Display numeric values
Decimal places:
2
OK Cancel Help

Estimation of partial correlations has been enhanced by letting users specify the set of variables to be partialed out, rather than always partialing out all variables:

Partial Correlation Options	
Partial out All other variables Selected variables MPG City MPG Highway Engine Size Horsepower RPM Fueltank Length Wheelbase Width Weight	
OK Cancel Help	

Multivariate Visualizer

This new Statlet is designed to plot multiple time series in a manner that helps users visualize the changes in multiple variables over time. Given *n* samples for each of *m* variables observed over *p* time periods, the program generates a dynamic display that illustrates how each of the variables has changed over time. Typical applications include plotting:

- 1. Yearly demographic variables for different countries.
- 2. Quarterly sales figures for multiple divisions within a company.
- 3. Monthly economic indices on a state-by-state basis.
- 4. Daily closing stock prices for multiple equities within a portfolio.

Several different types of plots may be created, including barcharts, piecharts, profile plots, strip plots, starplots, and Chernoff faces. As time evolves, the analyst can follow changes in all of the variables in all of the samples simultaneously. Various options are offered for smoothing the data and for dealing with missing values.

Barcharts:

🔢 Multivariate Dynamic Visualizer	- • •
Slice: 1965	Frames per second: 5
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware	Year = 1965 Burglary Larceny - Theft Motor Vehicle Theft
District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa	
Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota	
Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico	
New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island	
South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington	
West Virginia Wisconsin Wyoming	

Piecharts:

		amic Visuali:	zer						
Slice:	1965	•						O Replay: U	p 💽 Frames per se
	Alabama	Alaska	Arizona	Arkansas	California	Colorado	Connecticu	t Delaware	Year = 1965
									Larceny - Theft Motor Vehicle Theft
Distric	ct of Colum	biālorida	Georgia	Hawaii	Idaho	Illinois	Indiana	lowa	
					\bigcirc				
	Kansas	Kentucky	Louisiana	Maine	MarylandM	assachuse	ttsMichigan	Minnesota	
м	lississippi	Missouri	Montana	Nebraska	Nevada Ne	ew Hampsh	inkew Jersey	y New Mexico	
	(
N	New York N	orth Carolin	North Dakota	Ohio	Oklahoma	Oregon	Pennsylvan	iaRhode Island	
			堕						
Sou	uth Carolin	outh Dakota	Tennessee	Texas	Utah	Vermont	Virginia	Washington	
		•							
We	est Virginia	Wisconsin	Wyoming						
		•							

Profile plots:

Strip plots:

Star plots:

Chernoff faces:

Nonlinear Regression

The maximum number of unknown parameters in the model to be estimated has been increased from 12 to 36. Additional buttons labeled *Next* and *Previous* have been added to the dialog box for specifying the initial parameter estimates:

Initial Parameter Estimates		
a: 0.1 b: 0.1	h: 0.1 i: 0.1	OK Cancel Help
c: 0.1 e: 0.1	i: 0.1 k: 0.1	Next Previous
f: 0.1 g: 0.1	l: 0.1 m: 0.1	

Normal Probability Plot

Several major enhancements have been made to the Normal Probability Plot procedure:

- 1. A third method of fitting a line based on the sample mean and sigma has been added.
- 2. Crosshairs may be drawn at a selected percentile based on the fitted line.
- 3. If the line is estimated using the sample mean and sigma, confidence limits may be drawn around the line.
- 4. The sample mean, standard deviation, and results of a Shapiro-Wilk test for normality may be drawn in the margins of the plot.

Normal Probability Plot Options			
Direction Horizontal Vertical Fitted Line None Using Quartiles Using Least Squares	OK Cancel Help		
 ✓ Using Mean and Sigma Include ✓ Percentile Tail Area: 90.0 % Confidence Limits: ○ None ○ Two-Sided Interval ○ Lower Bound 			
⊂ Upper Bound Level: 95.0 % ▼ Shapiro-Wilk Test			

A plot containing all of the new options is shown below:

One-Dimensional Visualizer

This new Statlet is designed to plot multiple time series in a manner that helps users visualize the changes in multiple variables over time. Given *n* time series observed over *p* time periods, the program generates a dynamic display that illustrates how each of the variables has changed over time. Typical applications include plotting:

- 1. Yearly demographic variables for different countries.
- 2. Quarterly sales figures for multiple divisions within a company.
- 3. Monthly economic indices on a state-by-state basis.
- 4. Daily closing stock prices for multiple equities within a portfolio.

The basic plot shows bubbles plotted on an X-Y display. The position along the Y axis represents the value of the primary data variable. The size and color of the bubbles may be used to illustrate other variables. As time increases, the analyst can follow changes in all of the variables. Various options are offered for smoothing the data and for dealing with missing values.

Breadcrumbs may be added to display past values:

One Variable Analysis

The new options for the *Normal Probability Plot* have also been added to this procedure:

Oneway ANOVA

A new method has been added for simultaneously comparing several means. Called the *Games-Howell* procedure, it is similar to the Tukey procedure, except that it does not assume equal variances within each group. This is a good choice if the *Variance Check* indicates significant differences amongst the group variances.

Method: 95	5.0 perce	nt Games-H	owell
material	Count	Mean	Homogeneous Group
D	8	20.5	Х
С	8	22.625	Х
В	8	31.875	XX
А	8	43.125	Х
	•		
Contrast	Sig.	Difference	+/- Limits
A - B		11.25	12.8992
A - C	*	20.5	15.5273
A - D	*	22.625	13.1754
B - C		9.25	15.5023
B - D		11.375	13.1407
C - D		2.125	15.6958
		ally significa	

The output of the Kruskal-Wallis test has also been expanded to include Bonferroni intervals for the difference between each pair of medians:

	Sampl		gth by material werage Rank
A	8		6.125
В	8	1	7.6875
С	8	1	2.0625
D	8	1	0.125
Fest statistic	c = 14.0	0787 P-Val	ue = 0.00279989
5 0 managem	Donfo		1
<u>.</u>		erroni interva	
Contrast	t Bonfe Sig.	Difference	+/- Limits
Contrast A - B		<i>Difference</i> 8.4375	+/- <i>Limits</i> 12.3745
Contrast A - B A - C	Sig.	Difference 8.4375 14.0625	+/- Limits 12.3745 12.3745
Contrast A - B A - C A - D	Sig.	Difference 8.4375 14.0625 16.0	+/- Limits 12.3745 12.3745 12.3745
Contrast A - B A - C	Sig.	Difference 8.4375 14.0625	+/- Limits 12.3745 12.3745

Bonferroni intervals permit the simultaneous comparison of many differences at a specified family confidence level.

Oneway Repeated Measures ANOVA

Hotelling-Lawley trace

Roy's largest root

24.8226

24.8226

41.371

41.371

3.0

3.0

5.0

5.0

0.0006

0.0006

A new procedure has been added to simplify the analysis of oneway repeated measures designs. The need for a special procedure stems from potential dependence between observations made on a given subject. Included in the procedure is Mauchley's test for *sphericity*, which is a condition requiring that the variance between any two estimated treatment means be the same. Corrections to the standard F-test are included for cases when sphericity is not present. Alternative MANOVA tests are also included.

W	Chi-square	D.f.	P-value							
0.712325	1.9411	5.0	0.857233							
Epsilon										
· Huynh-Feldi	t Greenhou	ise-Ge	isser	Low	ver-bour	d]			
1.0	0.804865	i		0.33	33333		1			
Tests of With	hin-Patient Effec	tc								
Source	Sphericity C		on	Sum of Squares		Df Mean Square		F-Ratio	P-Value	
Time	None	. ,			594		3.0	222.531	39.05	0.0000
	Huynh-Feld	Huynh-Feldt					3.0	222.531	39.05	0.0000
	Greenhous	e-Geiss	er	667.	594		2.41459	276.483	39.05	0.0000
	Lower-bou	Lower-bound			594		1.0	667.594	39.05	0.0004
Error(Time)	None			119.656			21.0	5.69792		
	Huynh-Feld	Huynh-Feldt Greenhouse-Geisser			656		21.0	5.69792	5.69792	
	Greenhous				656		16.9022	7.07935		
	Lower-bou	nd		119.	656		7.0	17.0937		
Multivariate	Tests					-				_
Test		V	'alue	F I		Hypotl	nesis D.F.	Error D.F.	P-Value	
Wilks' lamb	da	C	.0387258	41.371 3.0				5.0	0.0006	
Pillai trace		0	.961274	41.371 3.0				5.0	0.0006	

Open-High-Low-Close Candlestick Plot Statlet

This new Statlet is designed to plot security prices in a manner often used by stock traders. It shows the opening price for each trading session, high and low prices during the session, and the closing price using a graphical image often referred to as a candlestick. Trading volumes may also be displayed as bars along the bottom of the plot.

In addition to the raw data, a smoother may be added to the plot using either a simple moving average or an exponentially weighted moving average. Trading bands may be plotted around the smoothed line at either a fixed percentage or using the method developed by Bollinger. The %b statistic is calculated to measure where the closing price lies with respect to the bands. A bandwidth is also calculated to measure volatility.

Interesting features of the Statlet include:

- 1. The bars for each session extend from the opening price to the closing price and are colored red if the price fell and green if the price rose. The lines extend to the low and high prices observed during the session.
- 2. Data for the session corresponding to the location of the vertical cursor are displayed in the right margin of the plot. The slider bar may be used to dynamically change the time period at which the cursor is positioned.
- 3. Users may dynamically change the smoothing parameters and the sigma multiple to visualize the effect of those values on the smooth.
- 4. Alerts may be generated for various types of events:

StatFo	lio Alerts ×
General Control Charts Capability Analyses Open-High-Lo	ow-Close
Low %b: 0 or less	Low BW: 0.1 or less
High %b: 1.0 or greater	High BW: 0.3 or greater
Increase in close: 5.0 or greater	Decrease in close: -5.0 or greater
Increase in close: 5.0 % or greater	Decrease in close: -5.0 % or greater
High minus low: 5.0 or greater	
High minus low: 5.0 % or greater	
OK Cancel Show XML Help	

When an alert occurs, the actions that are automatically taken include sending an e-mail to a specified address.

P Chart

New diagnostic tests have been added to test the assumption that the counts charted follow a binomial distribution. The diagnostic plot displays a variance ratio, which compares the observed variance of the counts to their expected variation. A variance ratio in excess of the displayed upper limit or less than 60% indicates that the Poisson assumption is not valid.

For data that are overdispersed (the variance exceeds the mean), a new Laney P' chart has been added as an alternative to the P chart.

P' Chart

A new control chart has been added to the program which may be used to plot proportions which are overdispersed compared to a binomial distribution. It can prevent a high rate of false alarms, particularly for large sample sizes.

The graph also displays $\hat{\sigma}_z$, which is an estimate of the relative amount of process variation not explained by the binomial distribution alone.

Power Transformations Statlet

This new Statlet may be used to explore the effect of applying various power transformations to a column of numeric data. It may be used to find the transformation that makes the transformed data most closely characterized by a normal distribution. The controls on the toolbar allow the user to interactively change the power. Alternatively, the Box-Cox approach may be used to find an optimal power.

The output includes the root mean squared error (RMSE) and the results of a Shapiro-Wilk test for normality, performed on the transformed data. As the user moves the slider on the Statlet toolbar, the values of these statistics are updated dynamically.

Preferences

The *Preferences* dialog box available on the *Edit* menu has been modified to contain new options.

	Preferences	×
Control Charts Runs General EDA Confidence Level 95 % % Significant Digits 0 3 0 4 0 5 0 6 0 7 0 8	Preferences	aphics Gage Studies Language
C 9 C 10 For Save Results 6 OK Car	Temporary File Directory	Number each line BROWSE

Specific changes include:

- 1. *General* tab addition of options to control what is added to the session log and whether StatFolios should save a copy of any external data.
- 2. EDA tab additional options for creating normal probability plots.
- 3. *Graphics* tab new option for the orientation of ternary plots.
- 4. *Text* tab new tab with options that control text output, including the option to replace row numbers in tables with row labels:

I	Preferences
	on Forecasting Stats Dist. Fit Capability
OK Cancel Show >	KML Help

Note two new options for text not available in the previous version:

- 1. The ability to reduce the size of text within tables relative to normal text.
- 2. The ability to replace row numbers in tables with corresponding row labels.

Principal Components Analysis

New tests have been added to the *Principal Components Analysis* procedure to determine whether it is useful to perform a PCA on a set of variables. The factorability tests include the Kaiser-Meyer-Olsen (KMO) measure of sampling adequacy and Bartlett's test of sphericity:

Factorability Tests

Kaiser-Meyer-Olkin Measure of Sampling Adequacy KMO = 0.920192

Bartlett's Test of Sphericity Chi-Square = 1299.83 D.F. = 55 P-Value = 0.0

The StatAdvisor

The factorability tests provide indications of whether or not it is likely to be worthwhile attempting to extract factors from a set of variables. The KMO statistic provides an indication of how much common variance is present. For factorization to be worthwhile, KMO should normally be at least 0.6. Since KMO = 0.920192, factorization is likely to provide interesting information about any underlying factors.

Bartlett's test for sphericity tests the hypothesis that the correlation matrix amongst the variables is an identity matrix, indicating that they share no common variance. Since the P-value is < 0.05, that hypothesis is rejected. Note: Bartlett's test is very sensitive and is usually ignored unless the number of samples per variable is no more than 5. In this case, the number of samples per variable equals 8.45455.

Probabilistic Fractal

This new Statlet is designed to illustrate the concepts of randomness and uncertainty. It is based on the famous Snowflake Fractal. To create the fractal, an equilateral triangle is first drawn. A number of iterations are then performed during which a new equilateral triangle is added to the exterior of each side of the current figure, with each side having one-third the length of the side on which it is placed.

To make the fractal probabilistic, you may set a probability p that, when a new triangle is added to the figure, it is oriented inward rather than outward, thus removing part of the figure rather than adding to it. By pressing the *Rerandomize* button, the fractal may be redrawn using a new set of random numbers. It will be apparent that the amount of "chaos" in the figure is a function of p.

Process Capability Analysis Statlet

This new Statlet performs a capability analysis on measurement data. The data may be collected one at a time (individuals data) or in groups. Any of 21 probability distributions may be selected, although the normal distribution is used by default. The Statlet will calculate:

- 1. Capability indices (both long-term and short-term).
- 2. DPM (defects per million).
- 3. Goodness-of-fit tests for the selected distribution.
- 4. Statistical tolerance limits (for many of the available distributions).

The data may also be transformed using a standard power transformation.

Process Map

The *Process Map* procedure has been significantly reworked. The most evident change is the layout of the *Analysis Options* dialog box:

Р	roce	ess	M	app	oin	g (Dpt	tio	ns	
Dbjects	Lay	out								
1:Flow Chart Process (Preparation)		Α	В	С	D	Ε	F	G	Н	
2:Audit Process (Activity)	1				_	1	1	1		
3:Problems? (Decision)	2					1	1	1		
4:Correct Problems (Activity) 5:Collect Data (Activity)	3					-		-		
S:Analyze Data (Activity)	4				_	2	2	2		
7:In Control? (Decision)	5					2	_	2		
3:Plot Histogram (Activity)	6					2	4	4	-	
B:Estimate process Capability (Activity)		4	4	4		2	2	2	-	
10:Capable? (Decision)	7	4	4	4		3		3	_	
11:Sort Product (Activity)	8	4	4	4		3	3	3	_	
I 2:Improce Capability (Activity) I 3:Meeting (Meeting)	9								-	
i S.Meeung (Meeung)	10				_	5		5	_	
	11					5	5	5		
Add Edit Insert Delete	12									
	13					6	6	6		
inks	14					6	6	6		
1:20	15									
2.3 ()		13	13	13		7	7	7		
3:4 (Yes)		13				7		7		
3:5 (No)	18				_	·	·	·		
4:20	19					8	8	8	-	
560								8	-	
5:7 () 7:8 (Yes)	20					0	0	0	-	
7:13 (No)	21					~	~	~	_	
3:9 ()	22					9	-	9	- 1	
3.10 ()	23					9	9	9	-	
10:12 (Yes)	24									
10:11 (No)	25	11	11	11		10	10	10		
11:12 0	, ы.			of ro			2	0	_	Vumber objects
Add Edit Delete	N	umo	erc	и то	WS.		14	.5		Number objects
	N	umb	ero	of co	lum	ns:	8	1		🔲 Rotate map
OK Ca	ancel							Н	elp	Fonts

Specifically:

- 1. A new field has been added displaying all of the links.
- 2. The definition of the map is stored in the StatFolio rather than in a separate data file.
- 3. Objects and links are defined through a properties dialog box which contains more types of objects than were available previously:

	Add/Edit Objects	×
Label: Flow Chart Process		_
⊂ Type ◯ Activity (rectangle)	C Responsibility (inverted triangle)	
C Decision (diamond)	🔿 Data (parallelogram)	
 Preparation (hexagon) 	C Document	
C Terminator (oval)	C Delay (D)	
C Meeting (triangle)	C Connector (circle)	
ОК	Cancel Help	

4. Changes made to objects and links are automatically reflected on the map without closing the *Analysis Options* dialog box.

A typical map is shown below:

Reliability Demonstration Test Plan

This new Statlet creates test plans to demonstrate that a failure time distribution satisfies stated conditions. For example, it may be desired to show with 95% confidence that the reliability of a product equals or exceeds 90% at the end of the warranty period. During the demonstration, n units will be tested for a duration equal to t. The demonstration will be considered successful if no more than f units fail during the test.

The user specifies either the number of units to be tested or the duration of the test. The procedure solves for the other quantity.

Sample Size Determination Statlet

This new Statlet determines the sample size needed to estimate or test values of various parameters. The size may be based on either the width of a confidence interval or the power of a hypothesis test. Parameters for which sample sizes may be determined are:

- 1. The mean μ of a normal distribution.
- 2. The standard deviation σ of a normal distribution.
- 3. The proportion of successes θ in a binomial distribution.
- 4. The rate of events λ in a Poisson distribution.
- 5. The difference between the means of 2 normal distributions.
- 6. The ratio of the standard deviations of 2 normal distributions.
- 7. The difference between the parameters of 2 binomial distributions.
- 8. The difference between the parameters of 2 Poisson distributions.
- 9. The maximum difference between the means of 3 or more normal distributions.
- 10. The Pearson correlation coefficient.
- 11. The capability index Cp.
- 12. The capability index Cpk.
- 13. The capability index Cpm.

The Statlet window displays:

- 1. The sample size required to perform a test with the specified errors.
- 2. A power curve.

- 3. A confidence interval centered at the null hypothesis.
- 4. The calculated power at the alternative hypothesis.

As users change input values on the toolbar, the plot updates dynamically.

StatFolio Alerts

A new tabbed dialog box has been created to handle StatFolio alerts:

StatFolio Alerts	×							
General Control Charts Capability Analyses Open-High-Low-Close								
Alert message file: C:\Data\sgalamfile.csv BROWSE DISPLAY								
Actions Image: Display message box Image: Sound audio alarm Image: Send e-mail from: neilpolhemus@gmail.com Recipient e-mail addresses:								
neil@statpoint.com								
OK Cancel Show XML Help								

New alerts are provided for large changes in the *Open-High-Low-Close* Statlet:

StatFol	io Alerts ×
General Control Charts Capability Analyses Open-High-Lo	ow-Close
Low %b: 0 or less	Low BW: 0.1 or less
High %b: 1.0 or greater	High BW: 0.3 or greater
	-
✓ Increase in close: 5.0 or greater	Decrease in close: -5.0 or greater
Increase in close: 5.0 % or greater	Decrease in close: -5.0 % or greater
High minus low: 5.0 or greater	
High minus low: 5.0 % or greater	
OK Cancel Show XML Help	

As in Version 16, alerts are also generated by the control charts and capability analysis procedures.

StatFolio Passwords

Both owner and user passwords may now be added to a StatFolio. Selecting *Edit – StatFolio Properties* from the main menu displays the following dialog box:

StatFolio Properties								
Owner Access (full privileges) No password required Password protected StatFolio password: ***** Reenter password: *****	User Access (limited privileges) C None C No password required Password protected User password: ****** Reenter password: ******							
User Privileges C Read-only © Custom								
 May change data May create new analyses May change input variables in existing analyses 	 May save numeric results May edit StatReporter May edit StatGallery 							
 May change Analysis Options May save StatFolio with different name May select tables and graphs May change Tabular and Graphical Options 								
OK Cancel Help								

Owners have unlimited privileges and may change a StatFolio in any manner. Users are limited to the privileges specified on the dialog box.

StatLog

A new window called the StatLog appears by default whenever Statgraphics is loaded. The StatLog stores information about the current session:

L StatLog								
1>Session log created: Thursday, September 12, 2013 16:41:52								
2>Statgraphics Centurion Version 17.0.00 (64-bit)								
3>Cleared all	windows and datas	heets.						
4>Loaded Sta	tFolio: C:\DocData	160\simple reg.sgp	•					
5>Opened wi	ith full owner privil	eges.						
6>Loaded dat	ta file for sheet A: C	:\DocData160\non	lin.sgd					
7>Simple Reg	gression - chlorine v	s. weeks						
Simple Regression - chlorine vs. weeks Dependent variable: chlorine (percent available) Independent variable: weeks (weeks since production) Squared-Y reciprocal-X model: Y = sqrt(a + b/X) Number of observations: 44								
	Least Squares	Standard	Т]			
Parameter	Estimate	Error	Statistic	P-Value				
Intercept	0.131783	0.00319479	41.2495	0.0000]			
Slope	0.895725	0.0516424	17.3448	0.0000]			
Line 103								

Certain information is always included, such as the opening and closing of files and the creation of analysis windows. Other information, such as the contents of statistical tables and graphs, are only

included if specified on the *Preferences* dialog box. At any time, the *Log* button ^{Log} on the analysis toolbar may be used to copy the current analysis to the StatLog.

The contents of the StatLog may be saved in an RTF file at any time. These files may be opened in Microsoft Word.

Surface-Fitting Statlet

This new procedure fits linear and nonlinear regression models involving a dependent variable Y and two independent variables X_1 and X_2 . The general model that is fit contains each variable raised to a power plus an interaction term involving the two independent variables:

$$Y^{p} = a + bX_{1}^{q_{1}} + cX_{2}^{q_{2}} + dX_{1}^{q_{1}}X_{2}^{q_{2}}$$

Using the Statlet control bar, you may interactively visualize the effect of transforming one or more of the variables.

The values of the powers may be changed interactively using the sliders on the toolbar, or the buttons may be used to numerically optimize the powers. A LOWESS smooth may also be added to the plot to compare it with the fitted model:

The Window slider may be used to interactively change the width of the smoothing window.

T Chart

This new procedure creates a control chart for the length of time between the occurrence of rare events. It is based on the Weibull distribution, defined by shape and scale parameters. This type of chart is used frequently in the health sciences to monitor the occurrence of events such as post-surgical infections.

Input data may consist of either the times at which events occurred or the length of time between events:

t Chart					×
Infection time	Data:	Infection time Type of data Time of c Time bet			
	(LSL:) (Select:		(Nominal:)		
Sort column names	Cancel	Delete	Transform	Help	

Specification limits may also be added to the chart.

The control chart is similar to others generated by Statgraphics:

The graph also displays the shape and scale parameters.

Tabulation

The data input dialog box for the *Tabulation* procedure has been modified to allow for specification of a *Counts* column:

	Tabulation	×
RPM Revs per Mile Manual Fueltank Passengers Length Wheelbase Width U Turn Space Rear seat Luggage Weight Domestic XLABEL COUNT	Data: LABEL (Counts:) COUNT (Select:)	
🔲 Sort column names		
OK Cancel	Delete Select Help	

If used, the *Counts* column specifies the frequency associated with each value in the *Data* column. If not used, each frequency is assumed to equal 1 as in Version 16.

Ternary Plot

This new procedure may be used to create a scatterplot of 3 variables which always sum to a constant value. It shows the values of the variables on a plot shaped like an equilateral triangle. It is sometimes called a *simplex plot* or a *de Finetti* diagram.

The Analysis Options dialog box sets the minimum value for each axis:

Ternary Plot Option	S	×
Factor A minimum:	OK	
Factor B minimum:	Cancel	
75	Help	
Factor C minimum:		
Number of tickmark divisions: 5		

Points may be color coded according to the value of a fourth variable. The direction of the axes may be switched from clockwise to counterclockwise using the *Graphics* tab of the *Edit – Preferences* dialog box.

Three-Dimensional Visualizer

This new Statlet is designed to plot multiple time series in a manner that helps users visualize the changes in multiple variables over time. Given *n* time series observed over *p* time periods, the program generates a dynamic display that illustrates how each of the variables has changed over time. Typical applications include plotting:

- 1. Yearly demographic variables for different countries.
- 2. Quarterly sales figures for multiple divisions within a company.
- 3. Monthly economic indices on a state-by-state basis.
- 4. Daily closing stock prices for multiple equities within a portfolio.

The basic plot shows bubbles plotted on an X-Y-Z display. The positions along the X, Y and Z axes represent the values of three primary data variables. The size and color of the bubbles may be used to illustrate other variables. As time increases, the analyst can follow changes in all of the variables simultaneously. Various options are offered for smoothing the data and for dealing with missing values.

Two-Dimensional Visualizer

This new Statlet is designed to plot multiple time series in a manner that helps users visualize the changes in multiple variables over time. Given *n* time series observed over *p* time periods, the program generates a dynamic display that illustrates how each of the variables has changed over time. Typical applications include plotting:

- 1. Yearly demographic variables for different countries.
- 2. Quarterly sales figures for multiple divisions within a company.
- 3. Monthly economic indices on a state-by-state basis.
- 4. Daily closing stock prices for multiple equities within a portfolio.

The basic plot shows bubbles plotted on an X-Y display. The positions along the X and Y axes represent the values of two primary data variables. The size and color of the bubbles may be used to illustrate other variables. As time increases, the analyst can follow changes in all of the variables. Various options are offered for smoothing the data and for dealing with missing values.

Breadcrumbs may be added to trace the movement of individual bubbles.

U Chart

New diagnostic tests have been added to test the assumption that the counts charted follow a Poisson distribution. The diagnostic plot displays a variance ratio, which compares the observed variance of the counts to their expected variation. A variance ratio in excess of the displayed upper limit or less than 60% indicates that the Poisson assumption is not valid.

For data that are overdispersed (the variance exceeds the mean), a new Laney U' chart has been added as an alternative to the U chart.

U' Chart

A new control chart has been added to the program which may be used to plot counts which are overdispersed compared to a Poisson distribution. It can prevent a high rate of false alarms, particularly for large sample sizes.

The graph also displays $\hat{\sigma}_z$, which is an estimate of the relative amount of process variation not explained by the Poisson distribution alone.

Miscellaneous

Data

Users have the option in Version 17 of storing data in the StatFolio. This may be done in two ways:

- 1. If data is entered in a datasheet but not saved in an external data file, the data will automatically be saved in the StatFolio.
- 2. If the *Save copy of external data* option is selected on the *General* tab of the *Edit-Preferences* dialog box, a copy of all data in the DataBook will be saved in the StatFolio whenever the StatFolio is saved. If the original data source is not available when a StatFolio is loaded, the stored data will be retrieved instead.

Other data changes include:

- 1. Imported data files in formats such as Excel or delimited text are now saved on the recent data files list.
- 2. The maximum length of variable names has been expanded from 64 to 256 characters.

Statgraphics Operators

New operators have been added:

- 1. ACOSG, ASING, ATANG, COSG, SING, and TANG: for calculating trigonometric functions for angles specified in gradians.
- 2. CONTAINS, ENDSWITH and STARTSWITH: for identifying rows containing a specified string. To be used in the "Select" field on data input dialog boxes.

Toolbar Shortcuts

The main toolbar now allows for 12 user-specified shortcuts rather than 11.