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JDK 9: Big And Small Changes

2



© Copyright Azul Systems 2019

Java Platform Module System (JPMS)

▪ The core Java libraries are now a set of modules (JEP 220) 

– 75 OpenJDK modules: 26 Java SE, 48 JDK

– Oracle JDK: 14 additional JDK, 8 JavaFX, 2 Oracle specific

▪ Most internal APIs now encapsulated (JEP 260)

– sun.misc.Unsafe

– Some can be used with command line options
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jlink: The Java Linker (JEP 282)

$ jlink --module-path $JDKMODS:$MYMODS \
--addmods com.azul.zapp –-output myimage

$ myimage/bin/java –-list-modules
java.base@9
java.logging@9
java.sql@9
java.xml@9
com.azul.zapp@1.0
com.azul.zoop@1.0
com.azul.zeta@1.0

myimage

…confbin

jlink

lib
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Moving Java Forward Faster
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OpenJDK: New Release Model

▪ A new version of the JDK will be released every six months

– March and September

– Started last year with JDK 10 and JDK 11

– Continuing this year with JDK 12 and JDK 13

▪ OpenJDK development will be more agile

– Previous target was a release every two years

▪ Features will be included only when ready

– Targeted for a release when feature complete
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Long Term Support Releases

▪ Long term support for all releases is not practical

– One Long Term Support (LTS) release every three years

▪ JDK 8 has been classified as an LTS release

▪ Last JDK 8 public update last week for commercial users!

▪ Non-commercial users get updates until December 2020

▪ JDK 11 is an LTS release

▪ JDK 9 and JDK 10 are feature releases

▪ Updated only until next release
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Oracle JDK Binary

▪ Traditional Oracle branded binary (java.oracle.com)

– Oracle Binary Code License (FoU restrictions)

▪ New OpenJDK binary (jdk.java.net)

– GPLv2 with CPE license (no restrictions)

– Security and bug fix updates only for six months

▪ Only until next JDK release

▪ Two scheduled updates
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Converged Binaries

Oracle JDK

OpenJDK

Java SE

JDK 10 and earlier

Java SE

OpenJDK

& Oracle JDK

JDK 11 and later
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Converged Binaries (JDK 11)

▪ Some closed-source parts of the JDK will be open-sourced

– Flight recorder

– Mission control

– Others

▪ Other closed-source parts will be removed

– Browser Plugin

– Java Web Start

– JavaFX
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JDK 9 Onwards And Compatibility
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"Clean applications that just depend on java.se

should just work" - Oracle
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JDK 9: The Clean Up Starts

▪ JDK 9 was a significant change for Java

– Deprecated APIs were removed for the first time

▪ Six methods and one class

▪ JDK 10 removed 1 package, 6 classes, 9 methods and 1 field

– Redundant features eliminated

▪ jhat tool, JVM TI hprof agent

▪ Numerous deprecated GC options removed

▪ JDK 10 and 11 have continued this work

▪ More features will be removed in the future

▪ CMS GC, Nashorn and Pack200 all deprecated. Others?
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Compatibility Not Guaranteed

▪ New versions of Java may include breaking changes

– Anything for removal will be deprecated first

– Minimum of one release warning

▪ Could be only six months
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Java Updates

▪ Oracle JDK binary has LTS versions (JDK 11, 17, etc.)

– Oracle OpenJDK does not

▪ Oracle JDK 11 was released under a different license

– Free for development and testing

– Requires a Java SE subscription for use in production

▪ Oracle OpenJDK binaries only updated for six months

▪ JDK 8 can be used indefinitely for free

– But without any further security patches and bug fixes
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JDK 10
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Local Variable Type Inference (JEP 286)

▪ Java gets var
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var userList = new ArrayList<String>(); // infers ArrayList<String>
var stream = list.stream();             // infers Stream<String>

for (var name : userList) {             // infers String
...

}

for (var i; i < 10; i++) {              // infers int
...

}
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var: Clearer try-with-resources
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try (InputStream inputStream = socket.getInputStream();
InputStreamReader inputStreamReader = 
new inputStreamReader(is, UTF_8);

BufferedReader bufferedReader = new BufferedReader(isr)) {
// Use bufferedReader

}
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var: Clearer try-with-resources
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try (var inputStream = socket.getInputStream();
var inputStreamReader = new inputStreamReader(is, UTF_8);
var bufferedReader = new BufferedReader(isr)) {
// Use bufferedReader

}
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var: Reserved Type (Not Keyword)

var var = new ValueAddedReseller();

public class var {
public var(String x) {
...

}
}

public class Var {
public Var(String x) {
...

}
}
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JDK 10: JEPs

▪ JEP 307: Parallel Full GC for G1

▪ JEP 310: Application Class-Data Sharing

▪ JEP 317: Experimental Java-based JIT compiler (Graal)

▪ JEP 319: Root Certificates

▪ JEP 296: Consolidate JDK forests into single repo
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JDK 10: JEPs

▪ JEP 316: Heap allocation on alternative devices (Intel)

▪ JEP 313: Remove javah tool

▪ JEP 304: Garbage Collector Interface (Red Hat)

▪ JEP 312: Thread-Local Handshakes
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JDK 10: APIs

▪ 73 New APIs

– List, Set, Map.copyOf(Collection)

– Collectors
▪ toUnmodifiableList

▪ toUnmodifiableMap

▪ toUnmodifiableSet

– Optional.orElseThrow()
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JDK 11



© Copyright Azul Systems 2019

JDK 11

▪ 17 JEPs

▪ 3 from outside Oracle

– JEP 318: Epsilon garbage collector (Red Hat)

– JEP 315: Improve Aarch64 intrinsics (Red Hat)

– JEP 331: Low overhead heap profiling (Google)
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323: Extend Local-Variable Syntax

▪ Local-variable syntax for lambda parameters
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list.stream()
.map(s -> s.toLowerCase())
.collect(Collectors.toList());

list.stream()
.map((var s) -> s.toLowerCase())
.collect(Collectors.toList());

list.stream()
.map((@Notnull var s) -> s.toLowerCase())
.collect(Collectors.toList());
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327: Unicode 10 Support

▪ 8,518 new characters (seriously)

– Bitcoin symbol

– Nishu

– Soyombo, Zanabazar Square

▪ The long awaited (?) Colbert emoji
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330: Launch Single File Source Code

▪ JDK 10 has three modes for the Java launcher

– Launch a class file

– Launch the main class of a JAR file

– Launch the main class of a module

▪ JDK 11 adds a forth

– Launch a class declared in a source file

27

$ java Factorial.java 4
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Single File Source Code Shebang

28

#!$JAVA_HOME/bin/java --source 11
public class Factorial {

public static void main(String[] args) {
int n = Integer.parseInt(args[0]);
int r = (n == 0) ? 0 : 1;
for (int i = 1; i <= n; i++)

r *= i;
System.out.println("n = " + n + ", n! = " + r);

}
}

$ ./Factorial 4
n = 4, n! = 24
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Other JDK 11 JEPs

▪ 181: Nest-based Access Control

▪ 309: Dynamic Class-file constants

▪ 321: HTTP client

▪ 324: Key Agreement with Curve25519 and Curve448

▪ 329: ChaCha20 and Poly1305 Cryptographic Algorithms

▪ 332: Transport Layer Security (TLS) 1.3

▪ 333: ZGC: Experimental low-latency collector

▪ 335: Deprecate the Nashorn JavaScript Engine

▪ 336: Deprecate the Pack200 Tools and API
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New APIs

▪ New I/O methods

▪ InputStream nullInputStream()

▪ OutputStream nullOutputStream()

▪ Reader nullReader()

▪ Writer nullWriter()

▪ Optional
▪ isEmpty()  // Opposite of isPresent

▪ Character
▪ toString(int) // Unicode codepoint
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New APIs

▪ New String methods

– isBlank()

– Stream lines()

– String repeat(int)

– String strip()

– String stripLeading()

– String stripTrailing()

31



© Copyright Azul Systems 2019

New APIs

▪ Predicate not(Predicate)

32

lines.stream()
.filter(s -> !s.isBlank())

lines.stream()
.filter(Predicate.not(String::isBlank))

lines.stream()
.filter(not(String::isBlank))
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JDK 11: Modules Removed

– The java.se.ee aggregator-module has been removed

▪ java.corba

▪ java.transaction

▪ java.activation

▪ java.xml.bind

▪ java.xml.ws

▪ java.xml.ws.annotation
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Command Line -XX Flags

▪ Big changes

▪ JDK 9

– Removed 187, added 123

▪ JDK 10

– Removed 36, added 26

▪ JDK 11

– Removed 27, added 53

34

chriswhocodes.com/hotspot_option_differences.html
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What Will Be in JDK 12?



© Copyright Azul Systems 2019

JEP 325: Switch Expressions (Preview)

36

int numLetters;
switch (day) {

case MONDAY:
case FRIDAY:
case SUNDAY:

numLetters = 6;
break;

case TUESDAY:
numLetters = 7;
break;

case THURSDAY:
case SATURDAY:

numLetters = 8;
break;

case WEDNESDAY:
numLetters = 9;
break;

default:
throw new IllegalStateException("Huh?: " + day); };
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JEP 325: Switch Expressions

int numLetters = switch (day) {
case MONDAY, FRIDAY, SUNDAY -> 6;
case TUESDAY -> 7;
case THURSDAY, SATURDAY -> 8;
case WEDNESDAY -> 9;
default -> throw new IllegalStateException("Huh?: " + day);

};
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JEPs

▪ 189: Shenandoah GC (Experimental)

▪ G1 GC updates

– 344: Abortable mixed collections

– 346: Return unused committed memory

▪ 334: JVM constant API

▪ 230: Microbenchmark suite

▪ 341: Default CDS archive
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New APIs

▪ Collectors

– teeing(Collector, Collector, BiFunction)

▪ Class

– describeConstable

▪ CompletableFuture/CompletionStage

– Five new methods for exceptions in CompletionStage

39
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Longer Term JDK Futures
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Project Amber

▪ Simplifying Java language syntax

▪ JEP 302: Lambda leftovers

– Single underscore for unused parameters

▪ JEP 326: Raw string literals

– Use single backquote

– `c:\Users\simon`

– ```A string with a `` in it```

41
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JEP 305: Pattern Matching

▪ Type test and switch statement support to start

42

String formatted;
switch (obj) {

case Integer i: formatted = String.format("int %d", i); break;
case Byte b:    formatted = String.format("byte %d", b); break;
case Long l:    formatted = String.format("long %d", l); break;
case Double d:  formatted = String.format("double %f", d); 

break;
case String s:  formatted = String.format("String %s", s); break
default:        formatted = obj.toString();

}



© Copyright Azul Systems 2019

Project Valhalla

▪ Java has:

– Primitives: for performance

– Objects: for encapsulation, polymorphism, inheritance, OO

▪ Problem is where we want to use primitives but can't

– ArrayList<int> won't work

– ArrayList<Integer> requires boxing and unboxing, 

object creation, heap overhead, indirection reference

43
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Project Valhalla

▪ Value types

▪ "Codes like a class, works like a primitive"

– Can have methods and fields

– Can implement interfaces

– Can use encapsulation

– Can be generic

– Can't be mutated

– Can't be sub-classed

44
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Project Loom

▪ Further work on making concurrent programming simpler

– Threads are too heavyweight

▪ Loom will introduce fibres

– JVM level threads (remember green threads?)

– Add continuations to the JVM

– Use the ForkJoinPool scheduler

– Much lighter weight than threads

▪ Less memory

▪ Close to zero overhead for task switching

45
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Azul's Zulu Java
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Zulu Java
▪ Azul’s binary distribution of OpenJDK

– Passes all TCK tests

▪ JDK 6, 7, 8, 9, 10 and 11 available

▪ Wide platform support:

– Intel 64-bit Windows, Mac, Linux

– Intel 32-bit Windows and Linux

– ARM 32 and 64-bit

– PowerPC

47

www.azul.com/downloads/zulu
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Zulu Extended Support 

▪ Backporting of bug fixes and security patches from 

supported OpenJDK release

▪ Zulu 8 supported until March 2026

▪ LTS releases have 9 years active + 2 years passive support

▪ Medium Term Support releases

– Two interim releases between LTS releases (9, 13, 15...)

– Bridge to LTS releases

– Supported until 18 months after next LTS release

48
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Zulu Complete Support

▪ 24x7x365 or 8x5 telephone and e-mail contact

– Report JDK-related problems

▪ Follow-the-sun engineering team

– Highly experienced engineers

– Many ex-Sun and ex-Oracle Java team

▪ Root-cause and fix problems

– Generate custom JDK binaries for fixes

– Upstream fixes to OpenJDK where possible
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Summary
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Java Continues To Evolve

▪ Faster Java releases

– Feature release every 6 months

– Access to free updates is a consideration

▪ Lots of ideas to improve Java

– Value types, fibres, syntax improvements

▪ Zulu Java has wide platform and JDK version support

– Very reasonable cost for commercial support
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Thank You!

Simon Ritter

Deputy CTO, Azul Systems
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