
© Copyright Azul Systems 2019

© Copyright Azul Systems 2015

@speakjava

Moving Towards JDK 12:
Delivering New Java Features

Simon Ritter

Deputy CTO, Azul Systems

1

mailto:@azulsystems
mailto:@azulsystems
http://www.azulsystems.com

© Copyright Azul Systems 2019

JDK 9: Big And Small Changes

2

© Copyright Azul Systems 2019

Java Platform Module System (JPMS)

▪ The core Java libraries are now a set of modules (JEP 220)

– 75 OpenJDK modules: 26 Java SE, 48 JDK

– Oracle JDK: 14 additional JDK, 8 JavaFX, 2 Oracle specific

▪ Most internal APIs now encapsulated (JEP 260)

– sun.misc.Unsafe

– Some can be used with command line options

3

© Copyright Azul Systems 2019

jlink: The Java Linker (JEP 282)

$ jlink --module-path $JDKMODS:$MYMODS \
--addmods com.azul.zapp –-output myimage

$ myimage/bin/java –-list-modules
java.base@9
java.logging@9
java.sql@9
java.xml@9
com.azul.zapp@1.0
com.azul.zoop@1.0
com.azul.zeta@1.0

myimage

…confbin

jlink

lib

© Copyright Azul Systems 2019

Moving Java Forward Faster

© Copyright Azul Systems 2019

OpenJDK: New Release Model

▪ A new version of the JDK will be released every six months

– March and September

– Started last year with JDK 10 and JDK 11

– Continuing this year with JDK 12 and JDK 13

▪ OpenJDK development will be more agile

– Previous target was a release every two years

▪ Features will be included only when ready

– Targeted for a release when feature complete

6

© Copyright Azul Systems 2019

Long Term Support Releases

▪ Long term support for all releases is not practical

– One Long Term Support (LTS) release every three years

▪ JDK 8 has been classified as an LTS release

▪ Last JDK 8 public update last week for commercial users!

▪ Non-commercial users get updates until December 2020

▪ JDK 11 is an LTS release

▪ JDK 9 and JDK 10 are feature releases

▪ Updated only until next release

7

© Copyright Azul Systems 2019

Oracle JDK Binary

▪ Traditional Oracle branded binary (java.oracle.com)

– Oracle Binary Code License (FoU restrictions)

▪ New OpenJDK binary (jdk.java.net)

– GPLv2 with CPE license (no restrictions)

– Security and bug fix updates only for six months

▪ Only until next JDK release

▪ Two scheduled updates

8

© Copyright Azul Systems 2019

Converged Binaries

Oracle JDK

OpenJDK

Java SE

JDK 10 and earlier

Java SE

OpenJDK

& Oracle JDK

JDK 11 and later

© Copyright Azul Systems 2019

Converged Binaries (JDK 11)

▪ Some closed-source parts of the JDK will be open-sourced

– Flight recorder

– Mission control

– Others

▪ Other closed-source parts will be removed

– Browser Plugin

– Java Web Start

– JavaFX

10

© Copyright Azul Systems 2019

JDK 9 Onwards And Compatibility

11

"Clean applications that just depend on java.se

should just work" - Oracle

© Copyright Azul Systems 2019

JDK 9: The Clean Up Starts

▪ JDK 9 was a significant change for Java

– Deprecated APIs were removed for the first time

▪ Six methods and one class

▪ JDK 10 removed 1 package, 6 classes, 9 methods and 1 field

– Redundant features eliminated

▪ jhat tool, JVM TI hprof agent

▪ Numerous deprecated GC options removed

▪ JDK 10 and 11 have continued this work

▪ More features will be removed in the future

▪ CMS GC, Nashorn and Pack200 all deprecated. Others?

12

© Copyright Azul Systems 2019

Compatibility Not Guaranteed

▪ New versions of Java may include breaking changes

– Anything for removal will be deprecated first

– Minimum of one release warning

▪ Could be only six months

13

© Copyright Azul Systems 2019

Java Updates

▪ Oracle JDK binary has LTS versions (JDK 11, 17, etc.)

– Oracle OpenJDK does not

▪ Oracle JDK 11 was released under a different license

– Free for development and testing

– Requires a Java SE subscription for use in production

▪ Oracle OpenJDK binaries only updated for six months

▪ JDK 8 can be used indefinitely for free

– But without any further security patches and bug fixes

14

© Copyright Azul Systems 2019

JDK 10

© Copyright Azul Systems 2019

Local Variable Type Inference (JEP 286)

▪ Java gets var

16

var userList = new ArrayList<String>(); // infers ArrayList<String>
var stream = list.stream(); // infers Stream<String>

for (var name : userList) { // infers String
...

}

for (var i; i < 10; i++) { // infers int
...

}

© Copyright Azul Systems 2019

var: Clearer try-with-resources

17

try (InputStream inputStream = socket.getInputStream();
InputStreamReader inputStreamReader =
new inputStreamReader(is, UTF_8);

BufferedReader bufferedReader = new BufferedReader(isr)) {
// Use bufferedReader

}

© Copyright Azul Systems 2019

var: Clearer try-with-resources

18

try (var inputStream = socket.getInputStream();
var inputStreamReader = new inputStreamReader(is, UTF_8);
var bufferedReader = new BufferedReader(isr)) {
// Use bufferedReader

}

© Copyright Azul Systems 2019

var: Reserved Type (Not Keyword)

var var = new ValueAddedReseller();

public class var {
public var(String x) {
...

}
}

public class Var {
public Var(String x) {
...

}
}

© Copyright Azul Systems 2019

JDK 10: JEPs

▪ JEP 307: Parallel Full GC for G1

▪ JEP 310: Application Class-Data Sharing

▪ JEP 317: Experimental Java-based JIT compiler (Graal)

▪ JEP 319: Root Certificates

▪ JEP 296: Consolidate JDK forests into single repo

20

© Copyright Azul Systems 2019

JDK 10: JEPs

▪ JEP 316: Heap allocation on alternative devices (Intel)

▪ JEP 313: Remove javah tool

▪ JEP 304: Garbage Collector Interface (Red Hat)

▪ JEP 312: Thread-Local Handshakes

21

© Copyright Azul Systems 2019

JDK 10: APIs

▪ 73 New APIs

– List, Set, Map.copyOf(Collection)

– Collectors
▪ toUnmodifiableList

▪ toUnmodifiableMap

▪ toUnmodifiableSet

– Optional.orElseThrow()

22

© Copyright Azul Systems 2019

JDK 11

© Copyright Azul Systems 2019

JDK 11

▪ 17 JEPs

▪ 3 from outside Oracle

– JEP 318: Epsilon garbage collector (Red Hat)

– JEP 315: Improve Aarch64 intrinsics (Red Hat)

– JEP 331: Low overhead heap profiling (Google)

24

© Copyright Azul Systems 2019

323: Extend Local-Variable Syntax

▪ Local-variable syntax for lambda parameters

25

list.stream()
.map(s -> s.toLowerCase())
.collect(Collectors.toList());

list.stream()
.map((var s) -> s.toLowerCase())
.collect(Collectors.toList());

list.stream()
.map((@Notnull var s) -> s.toLowerCase())
.collect(Collectors.toList());

© Copyright Azul Systems 2019

327: Unicode 10 Support

▪ 8,518 new characters (seriously)

– Bitcoin symbol

– Nishu

– Soyombo, Zanabazar Square

▪ The long awaited (?) Colbert emoji

26

© Copyright Azul Systems 2019

330: Launch Single File Source Code

▪ JDK 10 has three modes for the Java launcher

– Launch a class file

– Launch the main class of a JAR file

– Launch the main class of a module

▪ JDK 11 adds a forth

– Launch a class declared in a source file

27

$ java Factorial.java 4

© Copyright Azul Systems 2019

Single File Source Code Shebang

28

#!$JAVA_HOME/bin/java --source 11
public class Factorial {

public static void main(String[] args) {
int n = Integer.parseInt(args[0]);
int r = (n == 0) ? 0 : 1;
for (int i = 1; i <= n; i++)

r *= i;
System.out.println("n = " + n + ", n! = " + r);

}
}

$./Factorial 4
n = 4, n! = 24

© Copyright Azul Systems 2019

Other JDK 11 JEPs

▪ 181: Nest-based Access Control

▪ 309: Dynamic Class-file constants

▪ 321: HTTP client

▪ 324: Key Agreement with Curve25519 and Curve448

▪ 329: ChaCha20 and Poly1305 Cryptographic Algorithms

▪ 332: Transport Layer Security (TLS) 1.3

▪ 333: ZGC: Experimental low-latency collector

▪ 335: Deprecate the Nashorn JavaScript Engine

▪ 336: Deprecate the Pack200 Tools and API

29

© Copyright Azul Systems 2019

New APIs

▪ New I/O methods

▪ InputStream nullInputStream()

▪ OutputStream nullOutputStream()

▪ Reader nullReader()

▪ Writer nullWriter()

▪ Optional
▪ isEmpty() // Opposite of isPresent

▪ Character
▪ toString(int) // Unicode codepoint

30

© Copyright Azul Systems 2019

New APIs

▪ New String methods

– isBlank()

– Stream lines()

– String repeat(int)

– String strip()

– String stripLeading()

– String stripTrailing()

31

© Copyright Azul Systems 2019

New APIs

▪ Predicate not(Predicate)

32

lines.stream()
.filter(s -> !s.isBlank())

lines.stream()
.filter(Predicate.not(String::isBlank))

lines.stream()
.filter(not(String::isBlank))

© Copyright Azul Systems 2019

JDK 11: Modules Removed

– The java.se.ee aggregator-module has been removed

▪ java.corba

▪ java.transaction

▪ java.activation

▪ java.xml.bind

▪ java.xml.ws

▪ java.xml.ws.annotation

33

© Copyright Azul Systems 2019

Command Line -XX Flags

▪ Big changes

▪ JDK 9

– Removed 187, added 123

▪ JDK 10

– Removed 36, added 26

▪ JDK 11

– Removed 27, added 53

34

chriswhocodes.com/hotspot_option_differences.html

© Copyright Azul Systems 2019

What Will Be in JDK 12?

© Copyright Azul Systems 2019

JEP 325: Switch Expressions (Preview)

36

int numLetters;
switch (day) {

case MONDAY:
case FRIDAY:
case SUNDAY:

numLetters = 6;
break;

case TUESDAY:
numLetters = 7;
break;

case THURSDAY:
case SATURDAY:

numLetters = 8;
break;

case WEDNESDAY:
numLetters = 9;
break;

default:
throw new IllegalStateException("Huh?: " + day); };

© Copyright Azul Systems 2019

JEP 325: Switch Expressions

int numLetters = switch (day) {
case MONDAY, FRIDAY, SUNDAY -> 6;
case TUESDAY -> 7;
case THURSDAY, SATURDAY -> 8;
case WEDNESDAY -> 9;
default -> throw new IllegalStateException("Huh?: " + day);

};

© Copyright Azul Systems 2019

JEPs

▪ 189: Shenandoah GC (Experimental)

▪ G1 GC updates

– 344: Abortable mixed collections

– 346: Return unused committed memory

▪ 334: JVM constant API

▪ 230: Microbenchmark suite

▪ 341: Default CDS archive

© Copyright Azul Systems 2019

New APIs

▪ Collectors

– teeing(Collector, Collector, BiFunction)

▪ Class

– describeConstable

▪ CompletableFuture/CompletionStage

– Five new methods for exceptions in CompletionStage

39

© Copyright Azul Systems 2019

Longer Term JDK Futures

© Copyright Azul Systems 2019

Project Amber

▪ Simplifying Java language syntax

▪ JEP 302: Lambda leftovers

– Single underscore for unused parameters

▪ JEP 326: Raw string literals

– Use single backquote

– `c:\Users\simon`

– ```A string with a `` in it```

41

© Copyright Azul Systems 2019

JEP 305: Pattern Matching

▪ Type test and switch statement support to start

42

String formatted;
switch (obj) {

case Integer i: formatted = String.format("int %d", i); break;
case Byte b: formatted = String.format("byte %d", b); break;
case Long l: formatted = String.format("long %d", l); break;
case Double d: formatted = String.format("double %f", d);

break;
case String s: formatted = String.format("String %s", s); break
default: formatted = obj.toString();

}

© Copyright Azul Systems 2019

Project Valhalla

▪ Java has:

– Primitives: for performance

– Objects: for encapsulation, polymorphism, inheritance, OO

▪ Problem is where we want to use primitives but can't

– ArrayList<int> won't work

– ArrayList<Integer> requires boxing and unboxing,

object creation, heap overhead, indirection reference

43

© Copyright Azul Systems 2019

Project Valhalla

▪ Value types

▪ "Codes like a class, works like a primitive"

– Can have methods and fields

– Can implement interfaces

– Can use encapsulation

– Can be generic

– Can't be mutated

– Can't be sub-classed

44

© Copyright Azul Systems 2019

Project Loom

▪ Further work on making concurrent programming simpler

– Threads are too heavyweight

▪ Loom will introduce fibres

– JVM level threads (remember green threads?)

– Add continuations to the JVM

– Use the ForkJoinPool scheduler

– Much lighter weight than threads

▪ Less memory

▪ Close to zero overhead for task switching

45

© Copyright Azul Systems 2019

Azul's Zulu Java

© Copyright Azul Systems 2019

Zulu Java
▪ Azul’s binary distribution of OpenJDK

– Passes all TCK tests

▪ JDK 6, 7, 8, 9, 10 and 11 available

▪ Wide platform support:

– Intel 64-bit Windows, Mac, Linux

– Intel 32-bit Windows and Linux

– ARM 32 and 64-bit

– PowerPC

47

www.azul.com/downloads/zulu

© Copyright Azul Systems 2019

Zulu Extended Support

▪ Backporting of bug fixes and security patches from

supported OpenJDK release

▪ Zulu 8 supported until March 2026

▪ LTS releases have 9 years active + 2 years passive support

▪ Medium Term Support releases

– Two interim releases between LTS releases (9, 13, 15...)

– Bridge to LTS releases

– Supported until 18 months after next LTS release

48

© Copyright Azul Systems 2019

Zulu Complete Support

▪ 24x7x365 or 8x5 telephone and e-mail contact

– Report JDK-related problems

▪ Follow-the-sun engineering team

– Highly experienced engineers

– Many ex-Sun and ex-Oracle Java team

▪ Root-cause and fix problems

– Generate custom JDK binaries for fixes

– Upstream fixes to OpenJDK where possible

49

© Copyright Azul Systems 2019

Azul Zulu Extended (Passive)

Commercial Support

2020 2021

8 (LTS)

19

18

17 (LTS)

16

15

14

13

12

11 (LTS)

10

9

7 (LTS)

2017 2018
Oracle Publicly available binaries

(unsupported)

14

13

12

11 (LTS)

10

9

8 (LTS)

7 (LTS)

Oracle Commercial

Support

Oracle Extended

Commercial Support

Azul Zulu

Community Builds

20222019
Azul Zulu Production

Commercial Support

2023 2024

19

18

17 (LTS)

16

15

Azul Zulu MTS
Support

Bridge to next LTS

Azul Zulu LTS Support
8 years active

Ja
va

 S
E

V
e

rs
io

n
Java SE Lifecycle: 5+ Years

© Copyright Azul Systems 2019

Summary

© Copyright Azul Systems 2019

Java Continues To Evolve

▪ Faster Java releases

– Feature release every 6 months

– Access to free updates is a consideration

▪ Lots of ideas to improve Java

– Value types, fibres, syntax improvements

▪ Zulu Java has wide platform and JDK version support

– Very reasonable cost for commercial support

52

© Copyright Azul Systems 2019

© Copyright Azul Systems 2015

@speakjava

Thank You!

Simon Ritter

Deputy CTO, Azul Systems

53

mailto:@azulsystems
mailto:@azulsystems
http://www.azulsystems.com

