
Driving the IoT with Open Source Java

T E C H N O L O G Y  W H I T E  P A P E R



Driving the IoT with Open Source Java

The IoT Brings Challenges for Software  2
Development Teams 
Open Source Technologies in the IoT 2
Zulu: An Open Source Build of OpenJDK –  3
Java for the IoT
Zulu Advantages for IoT Development Teams 4
What’s Holding Java Back in the IoT? 5
Runtime Performance 5

T A B L E  O F  C O N T E N T S

Memory Footprint 5
Low-Level Operations For Device Access 6
Conclusion – Why Open Source Java is the  6
Best Choice for the IoT

The IoT Brings Challenges for Software 
Development Teams
The Internet of Things (IoT) is something that will have a 
profound impact on most enterprises over the next few 
years. Organizations like Gartner predict that there will be 
nearly 26 billion connected devices by 2020. The impact 
of being able to collect and analyze huge volumes of 
�ne-grained data on everything from healthcare to the 
global climate cannot be underestimated.

Moore’s law of increasing transistor density has an 
inverse, which is that the same complexity chip becomes 
exponentially cheaper. The cost of providing computing 
power and network connectivity in virtually any device
has now fallen to the point that it is not an issue when 
considering the bill of materials. To demonstrate this, 
consider the Raspberry Pi Zero, which has a 32-bit ARM 
CPU clocked at 1GHz with 512Mb RAM and can drive a 
quite usable desktop computing environment. All for 
only $6.

Eliminating the issue of hardware cost is only part of 
making the Internet of Things a reality. The more 
signi�cant part is how to develop software that can 
handle three tasks:

1. Collect data from attached sensors.
2. Send the data, potentially with some preprocessing,
     to the cloud for aggregation and analysis.
3. Making decisions about how to control actuators,
    either using sensor data directly or based on results
    returned from the Cloud.

The volume of data produced by the IoT has led to the 
widespread adoption of a three-tier architecture rather 
than the more familiar client-server. With sensor devices 
generating vast quantities of data it is not feasible (or 
necessary) to send all this data to the cloud for analysis 
and storage, even with what appears to be limitless 
computing resources. To reduce sensor data to manage-
able levels sensor devices can be connected to 
gateways. These gateways perform a level of �ltering, 
processing and aggregation on the raw data before 
sending re�ned data to the cloud. 

Open Source Technologies in the IoT
Developing embedded software is notoriously hard work. 
There are a number of challenges that make it this way:

The complexity of writing software that interfaces to 
external sensors and actuators. This often requires 
developers to have an understanding and ability to use 
low-level protocols, direct memory access, bus master-
ing, etc.

The requirement to modify applications, or port them, 
to each new revision of hardware that is used. This is 
time-consuming and introduces the potential for new 
bugs without adding any new value.

The difficulty of making applications reliable. The use of 
low-level languages like C and C++ expose developers to 
many potential problems. The use of explicit pointers 
and memory management can lead to abrupt application 
termination as well as memory leaks leading to the need 
to restart devices on a regular basis. 

2

Top 5 IoT Industries – and trends from previous years

IoT
Platform

Industrial
Automation

Energy
Management

Connected
Cities

Home 
Automation

Source: Ian Skerrett, IoT Developer Survey 2017



Driving the IoT with Open Source Java

3

The use of explicit pointers in languages like C and 
C++ also presents would-be hackers with greater 
opportunities to subvert devices. The use of buffer 
overruns is a standard technique for gaining 
unauthorized access.

Access to resources. Skilled embedded developers are 
a rare breed and can be dif�cult to recruit and retain. 
Salary expectations are higher than for many other 
developer groups. 

Adequate tooling to help speed the development of 
embedded applications. Most embedded development 
still relies on command line tool chains with complex 
cross-compiler setups making it considerably slower 
than other forms of development.

Lack of easy code reuse. Enterprise development relies 
heavily on libraries and frameworks to eliminate most of 
the common code required for typical applications. In 
the case of embedded device development, there are 

very few libraries 
and frameworks 
and those that do 
exist tend to be 
commercial with 
expensive licensing 
fees. The impact of 
this is that the 
average embedded 
developer spends a 
lot of time replicat-
ing work for each 
new project.

The complexities of parallel programming. Moore’s law 
combined with the physical limitations of the energy 
required to make clock speeds higher and higher has led 
to the widespread use of multi-core processors, even in 
embedded devices. Languages like C and C++ do not 

have the concept of multithreaded programming built in, 
requiring the use of external libraries. Writing code for 
co-operating threads, which is almost always needed, 
poses further challenges for the development of reliable, 
robust code.

Remote management. Once devices are deployed into 
the �eld, they may well be spread out over a large area 
in potentially inaccessible places (think of devices that 
might be used to monitor and control street lighting). 
Remote management of these devices can be built into 
applications but adds complexity and size to the end 
product. An even greater challenge is how to update 
application code over a network without physical access.

Zulu: An Open Source Build of OpenJDK – Java 
for the IoT
An ideal solution that addresses all these challenges is 
the Java platform. The most �exible and cost-effective 
open source binary distribution is Azul Zulu. Azul Zulu 
also has signi�cantly less-encumbered licensing than 
other commercial alternatives.

Let’s look at what Zulu is and how it makes the develop-
ment of IoT embedded software simpler and quicker with 
more reliable and secure deployments.

The source code for the Java Development Kit (JDK) was 
released by Sun Microsystems under an open-source 
license when they created the OpenJDK project in 2006. 
Over the space of two years, the complete JDK source 
code was released, so it is now possible to build a JDK, 
conformant to the Java SE speci�cation without the use 
of any closed source.

Azul uses the OpenJDK source to create binary distribu-
tions of Zulu; Zulu is a fully-tested and supported build of 
OpenJDK. Versions are available for Intel and ARM 
processors in both 32 and 64 form as well as PowerPC 
64 bit. OpenJDK is the reference implementation of the 

IoT Architectures

Ian Skerrett, Eclipse Foundation



Driving the IoT with Open Source Java

Interoperability

Security

Connectivity

4

Java Standard Edition (SE) speci�cation, as de�ned by 
the Java Community Process (JCP). Azul runs the full set 
of tests provided by the Technology Compatibility Kit 
(TCK) to guarantee that Zulu fully conforms to the 
speci�cation. Azul has also performed a meticulous 
analysis of the license terms of every source �le to 
ensure our customers are not liable for the use of 
unlicensed intellectual property.

Zulu Advantages for IoT Development Teams
Zulu provides a number of features that address the 
challenges of embedded, IoT, software development:

“Write once, run anywhere”: By compiling to bytecodes 
rather than native machine instructions, it is the JVM 
that is responsible for running application code. Once 
the JVM has been ported to a particular hardware 
platform, any Java code can be run on it. No more 
endless porting of applications each time there is a new 
revision of the hardware.

Automatic memory management: When programming in 
C and C++ the developer is responsible for all memory 
management, allocating memory through APIs like malloc 
and deallocating it through free. If memory being used is 
not explicitly deallocated the application exhibits a 
memory leak. Assuming memory continually needs to be 
allocated the application will eventually fail when free 
memory is exhausted. In Java all objects are allocated by 
the JVM in a heap, references to objects are tracked and 
when no longer required the memory is reclaimed by the 
garbage collector, which runs automatically in the 
background.

No explicit pointers: Again, using languages like C and 
C++ have drawbacks because of the use of pointers 
to reference explicit memory addresses. Buffer overrun 
security �aws and references to invalid memory 
addresses causing application crashes are both 
consequences of this. In Java you only have implicit 
pointers to objects. These cannot be manipulated, other 
than to point at a different (valid) object. This eliminates 
a broad range of potential application �aws before you 
even start writing code.

Comprehensive Libraries: The current release of Java 
has over 4,000 classes available by default to develop-
ers. This rich set of functionality means developers are 
saved a lot of time not having to reinvent the wheel by 
writing their own list class, for example. If more applica-
tion speci�c APIs are required there is most likely a 
third-party library available; most of the time this will be 
both free and open source.

Flexible Deployment: A comprehensive set of libraries is 
great, but in an embedded environment this can mean 
the runtime takes up too much storage space. The 
current version of the JDK provides a way to subset the 
standard libraries to reduce the storage they require. 
Java 9 extends this capability further to a fully modular 
runtime.

Multi-threading support: From its �rst version, Java 
has included a standard way to create new threads of 
execution. That provided fundamental threading so, in 
recent versions, Java has added increasingly sophisticat-
ed, yet simple ways to organize groups of threads that 
work together. Higher level constructs like semaphores, 
mutexes and atomic operations were followed by the 
fork-join framework for decomposing large tasks and 
assigning them to a pool of threads. Most recently, the 
introduction of streams in JDK 8 provides a powerful, 
functional style of programming that can utilize multiple 
threads by using a single API to make the thread 
parallel.

Remote management built in: Java has a set of Java 
Management Extensions (JMX), which includes MBeans 
(Managed Beans). This provides an architecture that can 
remotely manage resources dynamically at runtime. This 
solves the problem of dealing with devices that are hard 
to access physically. 

Remote Application Updates: OSGi started as the 
Open Services Gateway Initiative and has evolved to 
become a popular module system for use in enterprise 
Java applications. Despite this, it retains its relevance 
to the embedded and IoT space by providing a clean 
and simple way to deliver services to remote devices. 
‘Bundles’ can be created and con�gured for deployment 

Key IoT Concerns

Source: Ian Skerrett, IoT Developer Survey 2017



Driving the IoT with Open Source Java

5

to a remote JVM and can make use of versioning 
information so updates are only downloaded when 
required.

A huge pool of trained developers: According to some 
estimates there are nine million Java developers in the 
world. Regardless of exact numbers it’s fair to say that 
there are millions of developers trained in Java. Most 
universities use Java as a teaching language for 
object-oriented techniques because of its appeal to 
employers and practicality. What this all means is that 
when you want to staff a project being developed in Java 
you have a big pool of talent to draw on.

Access to powerful Development Tools: Having skilled 
developers is good, but for them to be really productive 
they need great tools. Again, Java has what’s needed. 
There are several great integrated development environ-
ments (IDEs) like Eclipse (Azul is a member of the 
Eclipse Foundation), NetBeans and IntelliJ, all of which 
have free and open source versions. In addition, there 
are many useful tools covering all aspects of Java 
software development with free and open source 
versions: VisualVM, JUnit, Jenkins, Gradle and GC 
Viewer to name but a few.

Simplified Licensing: Azul Zulu is built from OpenJDK 
source code that has been released under a GPL license 
with the classpath exception. Primarily, this means that 
you can ship an application with a Java Runtime 
Environment (JRE) without being required to make the 
source code of your application public (as is generally 
required by the viral nature of the GPL). However, this 
also means that Azul Zulu is unencumbered by the 
traditional �eld-of-use (FOU) restriction that has required 
users to license embedded Java from Oracle in the past.

What’s Holding Java Back in the IoT?
Despite its maturity and popularity for enterprise 
application development, Java tends not to be as widely 
used in IoT and embedded applications as would be 
expected.

A survey of Embedded developers asked about their 
reasons for using or not using Java.

The top three reasons developers cited for not using 
Java were:

1. Run time speed is slow
2. Memory requirements are large
3. Inability to perform low-level operations, 
    such as device IO

We’ll examine each of these to see how Azul Zulu 
overcomes these objections.

Runtime Performance
In the early days of Java, the JVM implementation was 
simplistic, using an interpreter to convert bytecodes to 
native instructions and rudimentary algorithms for 
memory management (both space allocation and 
garbage collection). Now that Java is into its third decade 
of development things have improved considerably.

The JVM uses adaptive compilation through a 
Just-In-Time (JIT) compiler to compile frequently used 
sections of code into native instructions at run time. 
These sections of code are cached and reused to avoid 
repeatedly interpreting the same set of bytecodes. Using 
a JIT has advantages that can enable Java to not just 
match the performance of natively compiled code but in 
certain cases exceed it. To understand how this is 
possible it is important to be aware that Java supports 
dynamic class loading as part of its design. For 
Ahead-Of-Time, statically compiled, code this restricts 
the level of optimizations that can be applied due to the 
lack of absolute knowledge about what classes will be 
loaded at runtime. The JIT compiles code at runtime, and 
so knows exactly what classes are loaded; allowing it to 
optimize code more aggressively. Another powerful 
technique that can only be used at runtime, when 
pro�ling information is available, is the use of specula-
tive optimizations.

Memory Footprint
Again, much work has been done over the lifetime of the 
Java platform to improve its performance and reduce 
its overall footprint. Since Java provides a managed 
environment for resources such as memory, there may 
be occasions where the runtime footprint will be bigger. 
Given the size of memory in use by the majority of 
today’s devices, this difference will be negligible in 
real terms.

Gateways

Top IoT Programming Languages

Source: Ian Skerrett, IoT Developer Survey 2017

Constrained
Devices

IoT
Cloud



Driving the IoT with Open Source Java

6

Azul Zulu provides the complete set of programming APIs 
available in Java. This is a real bonus for developers 
since they do not need to implement many common 
classes such as a linked list, semaphore and so on. 
Having a rich set of APIs to choose from does, however, 
have the drawback of increasing the size of the runtime 
platform. To address this, the current release (JDK 8) 
allows the use of subsets of the standard APIs called 
compact pro�les, of which there are three, the smallest 
being less than 11Mb in size. For greater �exibility and a 
much-reduced footprint, the next release will support a 
full module system. The JDK 9 runtime libraries have 
been divided into 26 modules, which can be included or 
excluded as necessary for the functionality of the 
application.

Low-Level Operations For Device Access
As previously mentioned, one of the dominant features 
of the Java platform is the rich variety of libraries and 
frameworks available, either commercially or as open 
source. As such, embedded systems libraries that 
simplify device interaction are already available. For the 
Raspberry Pi boards, there is an open source library, 
Pi4J that provides a simple API for accessing GPIO, I2C, 
SPI and UART pins on the board. For a more general-pur-
pose solution, there is the Device IO APIs. Originally 
designed for the Java Micro Edition (ME) version, these 
have now been ported to Java SE and provide similar 
functionality to Pi4J on any development board that 
supports it.

For low-level access that requires support beyond these 
libraries, there is the Java Native Interface (JNI). Java API 
wrappers can be created for native libraries written in C 
and C++ with the simple movement of data between the 
two. Once the wrapper has been created, use of the 
native code becomes just like any other Java API. 
Looking to the future, there are plans for a project 
called Panama to make this process even simpler.

Conclusion – Why Open Source Java is the Best 
Choice for the IoT
As you can see Azul Zulu provides an ideal solution 
for the development of IoT and embedded device 
applications.

Here’s a summary of Azul Zulu’s advantages for the IoT:

• Built from OpenJDK source, tested to be fully 
 conformant to the Java SE speci�cation.
• As a JDK, millions of developers know how to use it   
 and can take advantage of the wide availability of 
 commercial and open source libraries.
• Scalable through the use of pro�les and the upcoming 
 module system to �t demanding resource constraints 
 of edge devices.
• Faster time to market: having more developers to   
 recruit from, better tooling and libraries with a simpler  
 overall development process
• Lower on-going costs: Java’s more reliable code   
 structure combined with simpler remote management  
 and deployment all reduce costs once development is  
 complete.
• Released under the GPL license with classpath   
 exception eliminating concerns of complex licensing   
 and reporting issues.

Find out more
To learn more about Azul and Zulu Embedded, contact 
Azul Systems today.

Azul Systems, Inc.
385 Moffett Park Drive, Suite 115
Sunnyvale, CA 94089 USA
+1.650.230.6500
www.azul.com
www.azul.com/products/zulu-embedded

Download Zulu free:
www.azul.com/downloads/zulu-embedded
www.zulu.org/download

Send a note to info@azul.com if you’d like to discuss 
custom builds of Zulu for your next IoT project.

© 2017 Azul Systems, Inc. 
385 Moffett Park Drive, Suite 115.  Sunnyvale, CA 94090 USA.


