
Falcon: Improving Java
Performance Through
Better Compilation

T E C H N O L O G Y W H I T E P A P E R

Falcon: Improving Java Performance Through Better Compilation

Introduction 2
Java: Write Once, Run Anywhere 2
JVM Design 2
Execution Of Bytecodes 2
C1 JIT 3
C2 JIT 3
Why replace the existing C2 compiler? 4
The LLVM Project 4

T A B L E O F C O N T E N T S

Falcon Optimizations For Modern Processors 5
Summary 6

Azul has developed a new compiler used internally in

the JVM, called Falcon. This replaces the existing

C2 compiler, providing much greater �exibility and

maintainability.

Introduction
Java is a mature software platform that uses a number
of techniques to make the lives of developers and
administrators easier than more traditional languages like
C and C++. Automatic memory management through the
use of a garbage collector is the feature that most people
think of with Java, but the use of bytecodes is another
aspect that can have a signi�cant impact on the perfor-
mance of an application.

Azul has developed a new compiler used internally in
the JVM, called Falcon. This replaces the existing
C2 compiler, providing much greater �exibility and
maintainability. Based on the open-source LLVM compiler
project, Falcon uses a modular design, allowing much
simpler and more rapid inclusion of new optimizations.
As CPUs improve, providing more complex processing
with fewer machine instructions, Falcon is able to rapidly
take advantage of these features delivering better
performance and throughput to Java applications, both
existing and new.

Java: Write Once, Run Anywhere
The Java language has a human-readable syntax that
enables the quick and easy development of applications
ranging from the simple to the very complex. In order to

run the application, the source code must �rst be
compiled into a form that can be understood by the
machine where the application will run.

Traditional languages like C and C++ use what is called
ahead of time (AOT) compilation. A target machine,
where the code will be deployed, is selected and a
compiler for that machine architecture is used to compile
the source code. Typically, the source code is compiled
on the same machine architecture where it will be
deployed but, that is not mandatory, as cross-compilation
can be used. The resulting compiled code contains
instructions that are speci�c to the target CPU architec-
ture and operating system. This ties the compiled code
to the deployment architecture so that an executable
generated for Windows running on the x86 CPU architec-
ture will not run on an ARM-based machine running Linux.

The Java platform takes a different approach to
compilation. When a Java source �le is compiled, a class
file is generated. Rather than the class �le being speci�c
to the target machine con�guration, it contains
bytecodes. Bytecodes are low-level instructions but
for a virtual machine, speci�cally the Java Virtual
machine (JVM).

JVM Design
The Java Virtual Machine is an abstract representation
of a computer that can run Java applications. Like a real
computer system, it has an instruction set and manipu-
lates various memory areas at run time.

The Java Virtual Machine knows nothing about the Java
programming language, only the class �le binary format.
A class �le contains JVM instructions (or bytecodes) and
a symbol table, as well as other additional information.

Like real computer instruction sets, bytecodes consist
of an opcode specifying the operation to be performed,
followed by zero or more operands providing values to
be operated on.

The JVM currently implements 149 bytecodes; three
others are reserved for internal use and are not valid in
a class �le.

Execution Of Bytecodes
Since bytecodes are not speci�c to the platform where
the application is being run, the JVM must convert the
bytecodes to the correct set of instructions for the target

2

Falcon: Improving Java Performance Through Better Compilation

3

hardware architecture and operating system. The original
design of the JVM just took the bytecodes, in sequence,
and converted them to the relevant machine-speci�c
instructions. For some instructions this is a one-to-one
mapping, for example, the iand bytecode can be
converted to an AND instruction on an x86-based
processor (other processors have similar instructions
that have different names). For more complex bytecodes,
such as invoking a method, a sequence of instructions is
generated. This approach to executing the bytecodes is
referred to as interpreted mode. Since bytecodes must
be converted every time they are used this leads to
signi�cantly reduced performance compared to AOT
compiled languages.

To provide better performance versions of the JVM since
JDK 1.2 use an adaptive compilation technique. When an
application starts, the JVM works in interpreted mode, as
described above. However, it also pro�les the code
being executed, keeping statistics of how many times
methods are called. When a method is called a pre-de-
�ned number of times, the method is considered to be
a hot spot (hence the name of the JVM). At this point,
a compiler is used to convert the bytecodes into native
instructions that can be cached and reused for subse-
quent calls to the method. Since the bytecodes are
similar to the P-code intermediate representation used
by some compilers, the back-end code generator part
of the compiler can be used in conjunction with other
optimization techniques. This is called Just In Time,
or JIT compilation.

JIT compilation was not something that was invented
just for Java. The concept was �rst used with the LISP
programming language in 1960. It is a technique that
has been used by many languages both before and after
Java was launched. SmallTalk pioneered a number of
new JIT concepts, and both JavaScript and Microsoft’s
.NET Common Language Runtime (CLR) use it.

The OpenJDK JVM uses two separate JIT compilers
called C1 and C2, sometimes referred to as client and
server. The reason for having two is due to the way
they work and the code they produce:

C1 JIT: This uses a basic code generator, which is
designed to compile code as quickly as possible but
does not have the ability to apply signi�cant optimiza-
tions to the code that it produces. The idea is to
eliminate the overhead of bytecode interpretation as
quickly as possible for frequently used methods.
Also, the generated code includes more pro�ling
instructions that can gather more detailed statistics
about how the code is executing.

C2 JIT: The compiler for C2 is much more
sophisticated and can use a much larger number of
optimizations to improve the ef�ciency of the code it
generates. The pro�ling data gathered whilst the C1
produced code executes provides input to C2 so that
it has a clear picture of the �ow of execution of the
application code. More aggressive optimization
techniques necessitate more work on the part of the
C2 JIT resulting in it taking longer to generate code.
The bene�ts of C2 are typically much more apparent
for longer running, server-side applications.

One of the techniques that the C2 JIT can use, given
the pro�ling data from C1, is speculative optimizations.
The idea is to optimize code based on how the
application has behaved so far, not necessarily using
all the original source code.

Let’s look at a example of this using the following
method:

int computeMagnitude(int val) {
 if (val > 10) {
 bias = computeBias(val);
 else {
 bias = 1;
 }
 return Math.log10(bias + 99);
}

Assume that the situation where val is greater than 10
is a very rare condition and that whilst the JVM was
running with C1 JIT compiled code it never happened.
Using the collected pro�ling data, the C2 JIT can
speculate that val will not exceed 10 in the future so
can eliminate the unnecessary (and time-consuming)
code. In this case, C2 will compile the code as if it
were written this way:

 int computeMagnitude(int val) {
 if (val > 10)
 uncommonTrap();
 return 2;
 }

Falcon: Improving Java Performance Through Better Compilation

4

No computation of the log function is required, as long as
val never exceeds 10 so the code will be heavily optimized
for performance. If this speculation turns out to be wrong
at some point, the uncommonTrap() method is called.
Since the compiled code cannot execute correctly for this
situation, the compiled code is invalidated, and execution
returns to interpreted mode so the correct calculation
can be performed. As pro�ling continues the code may
be recompiled by C2 but with the additional computation
included.

The OpenJDK JVM supports five tiers of execution:

 Tier 0: Interpreted mode
 Tier 1: C1 with full optimization (no pro�ling)
 Tier 2: C1 with basic counters.
 Tier 3: C1 with full pro�ling
 Tier 4: C2

The typical use case for the tiers is 0 followed by 3 then
4, as explained earlier. Tier 1 is used when a method is
determined to be trivial, in which case the code generated
by C1 and C2 will be the same so recompiling with C2 will
have no effect. Tier 2 is used when the queue of
methods waiting to be compiled by C2 becomes too long,
which will delay optimized compilation of the method.
Using Tier 2, the method can execute approximately 30%
faster until C2 can process the pro�ling data and recom-
pile the method. Whilst running in tier 2 the JVM monitors
how many times a method is invoked as well as whether it
is executing a high iteration loop. It makes a lot of sense
to compile a method that has a loop that executes the
same set of instruction many times, even if the method
running the loop does not get called frequently.

Why replace the existing C2 compiler?
The existing C2 compiler was aging poorly. As we’ll
explain later one of the key performance features of
modern processor design is vectorization, which enables
a CPU to execute a single instruction on multiple data
(SIMD). Since C2 was initially developed in the late
1990s, this feature was added much later and did not
integrate well with the core design. In addition, C2 has
a very complex code base which makes it very hard to
either �x bugs or test the compiler in isolation.

What was required was an entirely new replacement.
When approaching the development of Falcon, the
engineers had two primary goals:

To outperform the code generated by the
competition. The OpenJDK source code uses a
different version of C2, and we wanted to make sure
that our new compiler would be better than that.
The C2 OpenJDK JIT sets a high bar for performance,
being one of the best JITs that is available today.

The velocity of performance improvements. Given
that CPU architectures are continuing to evolve and
adding signi�cant new features to improve application
performance it was essential that these could be
exploited as quickly and ef�ciently as possible.

The LLVM Project
Rather than developing an entirely new JIT compiler,
the team at Azul looked around to see if there was any
existing work that they could use as a starting point.
The team’s research led them to an open source project
called LLVM.

The LLVM compiler infrastructure project is a collection
of modular and reusable compiler and toolchain technolo-
gies used to develop compiler front ends and back ends.
The project was started in 2000 at the University of
Illinois at Urbana–Champaign. Originally, LLVM was an
acronym for Low-Level Virtual Machine. This has since
been dropped, as the project now has much broader
scope including compiler front ends, intermediate
representation, backends, a linker, and debugger.

Pro�ling data from the C1 JIT is critical to optimizations
that can be exploited by the C2 JIT. LLVM provides an
extensive set of metadata and attributes, which provide
the semantics necessary for the optimizer code.

The LLVM project is supported with signi�cant contribu-
tions from a number of highly respected IT companies.
Amongst these are Intel, Apple, ARM, NVidia, IBM, and
Microsoft. Being able to take advantage of such an
effectively large engineering team was one of the major

Falcon: Improving Java Performance Through Better Compilation

Azul’s engineers also extended LLVM to

enable it to, in effect, question the JVM during

optimization via callback methods. This allows

for lazy querying as the optimizer runs, which

is more ef�cient during JIT compilation.

5

factors in Azul's decision to use LLVM. In addition,
LLVM's stability and widespread adoption, as well as its
support for new micro-architectures made it a clear choice.

Although LLVM provided a great starting point for Falcon,
considerable work was required to integrate it into the
JVM. Much of this work was in the area where the JVM
handles memory management automatically. The JIT
compiler needs to work closely with the garbage collector
(GC) to ensure that it uses safepoints correctly. A thread
is said to be at a safepoint when the thread's representa-
tion of it's Java machine state is well described, and can
be safely manipulated and observed by other threads.

Azul’s engineers also extended LLVM to enable it to, in
effect, question the JVM during optimization via callback
methods. This allows for lazy querying as the optimizer
runs, which is more ef�cient during JIT compilation.

Azul has subsequently contributed back much of this work
to the LLVM project.

Falcon Optimizations For Modern Processors
With the basics of LLVM in place, more advanced
optimizations could be used in compiling methods.

As mentioned earlier, one of the more recent advances
in CPU performance related features is in the area of
vectorization. These are supported by Intel and AMD
processors through extensions to the x86 instruction set,
referred to as Advanced Vector Extensions (AVX). These
were �rst introduced in 2011 as part of the Sandy Bridge
range of processors from Intel and later in the Bulldozer
range of processors from AMD.

AVX instructions have developed over time, starting with
Streaming SIMD Extensions (SSE), �rst introduced in the
Pentium III in 1999 followed more recently by AVX, AVX2,
and AVX-512. This is one of the critical challenges for JIT
compilers, to use the right instruction set architecture
(ISA) to ensure the highest level of optimization.

Vectorization exploits the idea of Single Instruction,
Multiple Data (SIMD) processing, which implements data
level parallelism. CPUs that support this feature include
one or more very wide registers (currently either 256 or
512 bits). These registers can hold multiple data values,
for example, a 256-bit wide register can hold eight 32-bit
single-precision floating point numbers or four
64-bit double-precision �oating point numbers.

An AVX enabled processor can simultaneously execute an
operation on multiple data operands in a single instruc-
tion. For example, if we have a simple loop that multiplies
together values from two separate arrays:

 for (i = 0; i < size; i++) {
a[i] = b[i] * c[i];

}

Without AVX each value of the arrays b and c must be
loaded into registers before performing the multiplication
operation. The number of operations required is equal to
the size of the arrays. With AVX, assuming we have 32-bit
values and 512-bit wide registers, 16 array elements can
be loaded. Only a single instruction is required to multiply
all 16 values (the operation happens in parallel on all
data elements). This reduces the time to process the
arrays by a factor of 16.

There are now three versions of AVX available with
different processor versions:

AVX: The original, using 16 256-bit registers including
backward compatible support for the earlier SSE
instructions that used 128-bit registers. This also
supports three-operand instructions, where the destina-
tion register is distinct from the two source operands.
For example, an SSE instruction using the conventional
two-operand form a = a + b can now use a non-destruc-
tive three-operand form c = a + b, preserving both
source operands.

AVX2: This was introduced in the Haswell range of
processors from Intel. In addition to the AVX features,
it expands most vector integer SSE and AVX instructions
to 256-bits as well as including three-operand gener-
al-purpose bit manipulation and multiply instructions.

AVX-512: This was introduced in the Knights Landing
range of processors from Intel. This expands the
registers used for AVX to 512-bits. It also adds some
new instructions that can handle four operands, which
enables conditional copying from one of two registers
to a third register based on a bitmask stored in a
fourth register.

Falcon: Improving Java Performance Through Better Compilation

6

Find out more
Try Zing free for 30 days, available from
azul.com/zingtrial

For up-to-date Falcon benchmark results,
send a note to info@azul.com

Azul Systems, Inc.
385 Moffett Park Drive, Suite 115
Sunnyvale, CA 94089 USA
+1.650.230.6500
www.azul.com

Because AVX support has been available for some time
the existing C2 compiler does have limited support for
this. In the case of our simple example, the JIT would use
the AVX instructions where available.

Falcon can exploit AVX instructions in many more places
than C2 can. Given the very complex code base of C2, it
is not practical to be able to integrate new opportunities
to use features like AVX. Falcon’s modular more open
design makes this very straightforward.

Let’s look at another example. Rather than using the
simple multiplication of each element in two arrays let’s
add some more logic and change the operation to an
addition:

 for (int i = 0; i < a.length; i++) {
 if ((b[i] & 0x1) == 0) {
 a[i] += b[i];
 }
 }

In this case, we are using a conditional to only add the
value of elements in array b to a corresponding element
in array a if the element in array b is even. This is
de�nitely something that can be optimized using AVX
instructions. If we look at the code generated by C2 for
this, we �nd that it performs each operation on the arrays
as a separate instruction. Falcon can identify this as an
opportunity to use vectorization and generates the
appropriate AVX instruction sequence.

This is just one example of optimization that is possible
with Falcon that is not possible with C2. Azul's engineers
are continually working on identifying more places where
vectorization, as well as other low-level processor
optimizations, can be utilized to deliver better overall
performance for applications running on the JVM.

Vectorization is not the only technique that Falcon uses
to improve the performance of code running on the JVM.
There are two other areas that Falcon �nds easy to
optimize in comparison to code produced by the C2 JIT
compiler. These are primarily relevant to newer features
in Java and more modern styles of coding.

Firstly, there is �eld �nality. Falcon can optimize these
ef�ciently, whereas C2 does not optimize these at all.
Falcon will generate correctly working code even if a
developer use re�ection to mutate a �nal value.
Immutable objects have become very popular with the
inclusion of functional style programming constructs like
streams, introduced in JDK 8. JDK 9 includes factory
methods for collections that return unmodi�able collec-
tions, and JDK 10 adds new methods to the collections
API to return unmodi�able copies.

The second area is where an application uses heavily
abstracted code with lots of functions and small libraries.
The C2 compiler often struggles with this type of code due
to the complexities of the heuristics and limits on how
much code can be inlined. Falcon due to its use of LLVM
does not have these limitations. This is especially useful
for the case where an application uses several
independently developed libraries (something that is
very common in complex enterprise applications).

Summary
The Falcon JIT compiler forms part of the Zing JVM,
which has been developed speci�cally with the purpose
of delivering the best possible performance for Java
applications.

Using the LLVM open source project as a starting point
and leveraging the wealth of contributions from many
companies and individuals has enabled an extremely
high-performance JIT compiler to be developed.

For many types of server type workloads, Zing will not
only radically reduce pause times associated with memory
management and garbage collection but will also increase
the throughput of the application.

Zing provides a very cost-effective solution to enable
enterprise IT departments to meet their Service Level
Agreements, both internally and externally. With more and
more applications moving to the cloud, improving through-
put and reducing latency is easy to calculate in reduced
running costs.

