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Azul has developed a new compiler used internally in 

the JVM, called Falcon.  This replaces the existing 

C2 compiler, providing much greater �exibility and 

maintainability.

Introduction
Java is a mature software platform that uses a number 
of techniques to make the lives of developers and 
administrators easier than more traditional languages like 
C and C++.  Automatic memory management through the 
use of a garbage collector is the feature that most people 
think of with Java, but the use of bytecodes is another 
aspect that can have a signi�cant impact on the perfor-
mance of an application.

Azul has developed a new compiler used internally in 
the JVM, called Falcon.  This replaces the existing 
C2 compiler, providing much greater �exibility and 
maintainability.  Based on the open-source LLVM compiler 
project, Falcon uses a modular design, allowing much 
simpler and more rapid inclusion of new optimizations.  
As CPUs improve, providing more complex processing 
with fewer machine instructions, Falcon is able to rapidly 
take advantage of these features delivering better 
performance and throughput to Java applications, both 
existing and new.

Java: Write Once, Run Anywhere
The Java language has a human-readable syntax that 
enables the quick and easy development of applications 
ranging from the simple to the very complex.  In order to 

run the application, the source code must �rst be 
compiled into a form that can be understood by the 
machine where the application will run.

Traditional languages like C and C++ use what is called 
ahead of time (AOT) compilation.  A target machine, 
where the code will be deployed, is selected and a 
compiler for that machine architecture is used to compile 
the source code.  Typically, the source code is compiled 
on the same machine architecture where it will be 
deployed but, that is not mandatory, as cross-compilation 
can be used.  The resulting compiled code contains 
instructions that are speci�c to the target CPU architec-
ture and operating system.  This ties the compiled code 
to the deployment architecture so that an executable 
generated for Windows running on the x86 CPU architec-
ture will not run on an ARM-based machine running Linux.

The Java platform takes a different approach to 
compilation. When a Java source �le is compiled, a class 
file is generated.  Rather than the class �le being speci�c 
to the target machine con�guration, it contains 
bytecodes.  Bytecodes are low-level instructions but 
for a virtual machine, speci�cally the Java Virtual 
machine (JVM).  

JVM Design
The Java Virtual Machine is an abstract representation 
of a computer that can run Java applications.  Like a real 
computer system, it has an instruction set and manipu-
lates various memory areas at run time.

The Java Virtual Machine knows nothing about the Java 
programming language, only the class �le binary format. 
A class �le contains JVM instructions (or bytecodes) and 
a symbol table, as well as other additional information.

Like real computer instruction sets, bytecodes consist 
of an opcode specifying the operation to be performed, 
followed by zero or more operands providing values to 
be operated on.

The JVM currently implements 149 bytecodes; three 
others are reserved for internal use and are not valid in
a class �le.

Execution Of Bytecodes
Since bytecodes are not speci�c to the platform where 
the application is being run, the JVM must convert the 
bytecodes to the correct set of instructions for the target 
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hardware architecture and operating system.  The original 
design of the JVM just took the bytecodes, in sequence, 
and converted them to the relevant machine-speci�c 
instructions.  For some instructions this is a one-to-one 
mapping, for example, the iand bytecode can be 
converted to an AND instruction on an x86-based 
processor (other processors have similar instructions 
that have different names).  For more complex bytecodes, 
such as invoking a method, a sequence of instructions is 
generated.  This approach to executing the bytecodes is 
referred to as interpreted mode.  Since bytecodes must 
be converted every time they are used this leads to 
signi�cantly reduced performance compared to AOT 
compiled languages.  

To provide better performance versions of the JVM since 
JDK 1.2 use an adaptive compilation technique.  When an 
application starts, the JVM works in interpreted mode, as 
described above.  However, it also pro�les the code 
being executed, keeping statistics of how many times 
methods are called.  When a method is called a pre-de-
�ned number of times, the method is considered to be 
a hot spot (hence the name of the JVM).  At this point, 
a compiler is used to convert the bytecodes into native 
instructions that can be cached and reused for subse-
quent calls to the method.  Since the bytecodes are 
similar to the P-code intermediate representation used 
by some compilers, the back-end code generator part 
of the compiler can be used in conjunction with other 
optimization techniques.  This is called Just In Time, 
or JIT compilation.

JIT compilation was not something that was invented 
just for Java.  The concept was �rst used with the LISP 
programming language in 1960.  It is a technique that 
has been used by many languages both before and after 
Java was launched.  SmallTalk pioneered a number of 
new JIT concepts, and both JavaScript and Microsoft’s 
.NET Common Language Runtime (CLR) use it.

The OpenJDK JVM uses two separate JIT compilers 
called C1 and C2, sometimes referred to as client and 
server.  The reason for having two is due to the way 
they work and the code they produce:

C1 JIT: This uses a basic code generator, which is 
designed to compile code as quickly as possible but 
does not have the ability to apply signi�cant optimiza-
tions to the code that it produces.  The idea is to 
eliminate the overhead of bytecode interpretation as 
quickly as possible for frequently used methods.  
Also, the generated code includes more pro�ling 
instructions that can gather more detailed statistics 
about how the code is executing.

C2 JIT: The compiler for C2 is much more 
sophisticated and can use a much larger number of 
optimizations to improve the ef�ciency of the code it 
generates.  The pro�ling data gathered whilst the C1 
produced code executes provides input to C2 so that 
it has a clear picture of the �ow of execution of the 
application code.  More aggressive optimization 
techniques necessitate more work on the part of the 
C2 JIT resulting in it taking longer to generate code.  
The bene�ts of C2 are typically much more apparent 
for longer running, server-side applications.

One of the techniques that the C2 JIT can use, given 
the pro�ling data from C1, is speculative optimizations.  
The idea is to optimize code based on how the 
application has behaved so far, not necessarily using 
all the original source code.

Let’s look at a example of this using the following 
method:

int computeMagnitude(int val) {
  if (val > 10) {
   bias = computeBias(val);
  else {
   bias = 1;
  }
  return Math.log10(bias + 99); 
}

Assume that the situation where val is greater than 10 
is a very rare condition and that whilst the JVM was 
running with C1 JIT compiled code it never happened.  
Using the collected pro�ling data, the C2 JIT can 
speculate that val will not exceed 10 in the future so 
can eliminate the unnecessary (and time-consuming) 
code.  In this case, C2 will compile the code as if it 
were written this way:

 int computeMagnitude(int val) {
  if (val > 10) 
   uncommonTrap();
  return 2;
 }
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No computation of the log function is required, as long as 
val never exceeds 10 so the code will be heavily optimized 
for performance.  If this speculation turns out to be wrong 
at some point, the uncommonTrap() method is called.  
Since the compiled code cannot execute correctly for this 
situation, the compiled code is invalidated, and execution 
returns to interpreted mode so the correct calculation 
can be performed.  As pro�ling continues the code may 
be recompiled by C2 but with the additional computation 
included. 

The OpenJDK JVM supports five tiers of execution:

 Tier 0: Interpreted mode
 Tier 1: C1 with full optimization (no pro�ling)
 Tier 2: C1 with basic counters. 
 Tier 3: C1 with full pro�ling
 Tier 4: C2

The typical use case for the tiers is 0 followed by 3 then 
4, as explained earlier.  Tier 1 is used when a method is 
determined to be trivial, in which case the code generated 
by C1 and C2 will be the same so recompiling with C2 will 
have no effect.  Tier 2 is used when the queue of 
methods waiting to be compiled by C2 becomes too long, 
which will delay optimized compilation of the method.  
Using Tier 2, the method can execute approximately 30% 
faster until C2 can process the pro�ling data and recom-
pile the method.  Whilst running in tier 2 the JVM monitors 
how many times a method is invoked as well as whether it 
is executing a high iteration loop.  It makes a lot of sense 
to compile a method that has a loop that executes the 
same set of instruction many times, even if the method 
running the loop does not get called frequently.

Why replace the existing C2 compiler?
The existing C2 compiler was aging poorly.  As we’ll 
explain later one of the key performance features of 
modern processor design is vectorization, which enables 
a CPU to execute a single instruction on multiple data 
(SIMD).  Since C2 was initially developed in the late 
1990s, this feature was added much later and did not 
integrate well with the core design.  In addition, C2 has 
a very complex code base which makes it very hard to 
either �x bugs or test the compiler in isolation.  

What was required was an entirely new replacement.  
When approaching the development of Falcon, the 
engineers had two primary goals:

To outperform the code generated by the 
competition. The OpenJDK source code uses a 
different version of C2, and we wanted to make sure 
that our new compiler would be better than that.  
The C2 OpenJDK JIT sets a high bar for performance, 
being one of the best JITs that is available today.

The velocity of performance improvements. Given 
that CPU architectures are continuing to evolve and 
adding signi�cant new features to improve application 
performance it was essential that these could be 
exploited as quickly and ef�ciently as possible.

The LLVM Project
Rather than developing an entirely new JIT compiler, 
the team at Azul looked around to see if there was any 
existing work that they could use as a starting point.  
The team’s research led them to an open source project 
called LLVM.

The LLVM compiler infrastructure project is a collection 
of modular and reusable compiler and toolchain technolo-
gies used to develop compiler front ends and back ends.  
The project was started in 2000 at the University of 
Illinois at Urbana–Champaign.  Originally, LLVM was an 
acronym for Low-Level Virtual Machine.  This has since 
been dropped, as the project now has much broader 
scope including compiler front ends, intermediate 
representation, backends, a linker, and debugger.

Pro�ling data from the C1 JIT is critical to optimizations 
that can be exploited by the C2 JIT.  LLVM provides an 
extensive set of metadata and attributes, which provide 
the semantics necessary for the optimizer code.

The LLVM project is supported with signi�cant contribu-
tions from a number of highly respected IT companies.  
Amongst these are Intel, Apple, ARM, NVidia, IBM, and 
Microsoft.  Being able to take advantage of such an 
effectively large engineering team was one of the major 
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factors in Azul's decision to use LLVM.  In addition, 
LLVM's stability and widespread adoption, as well as its 
support for new micro-architectures made it a clear choice.

Although LLVM provided a great starting point for Falcon, 
considerable work was required to integrate it into the 
JVM.  Much of this work was in the area where the JVM 
handles memory management automatically.  The JIT 
compiler needs to work closely with the garbage collector 
(GC) to ensure that it uses safepoints correctly.  A thread 
is said to be at a safepoint when the thread's representa-
tion of it's Java machine state is well described, and can 
be safely manipulated and observed by other threads.  

Azul’s engineers also extended LLVM to enable it to, in 
effect, question the JVM during optimization via callback 
methods.  This allows for lazy querying as the optimizer 
runs, which is more ef�cient during JIT compilation.

Azul has subsequently contributed back much of this work 
to the LLVM project.

Falcon Optimizations For Modern Processors
With the basics of LLVM in place, more advanced 
optimizations could be used in compiling methods. 

As mentioned earlier, one of the more recent advances 
in CPU performance related features is in the area of 
vectorization.  These are supported by Intel and AMD 
processors through extensions to the x86 instruction set, 
referred to as Advanced Vector Extensions (AVX).  These 
were �rst introduced in 2011 as part of the Sandy Bridge 
range of processors from Intel and later in the Bulldozer 
range of processors from AMD.

AVX instructions have developed over time, starting with 
Streaming SIMD Extensions (SSE), �rst introduced in the 
Pentium III in 1999 followed more recently by AVX, AVX2, 
and AVX-512.  This is one of the critical challenges for JIT 
compilers, to use the right instruction set architecture 
(ISA) to ensure the highest level of optimization.

Vectorization exploits the idea of Single Instruction, 
Multiple Data (SIMD) processing, which implements data 
level parallelism.  CPUs that support this feature include 
one or more very wide registers (currently either 256 or 
512 bits).  These registers can hold multiple data values, 
for example, a 256-bit wide register can hold eight 32-bit 
single-precision floating point numbers or four
64-bit double-precision �oating point numbers.

An AVX enabled processor can simultaneously execute an 
operation on multiple data operands in a single instruc-
tion.  For example, if we have a simple loop that multiplies 
together values from two separate arrays:

 for (i = 0; i < size; i++) {
a[i] = b[i] * c[i];

}

Without AVX each value of the arrays b and c must be 
loaded into registers before performing the multiplication 
operation.  The number of operations required is equal to 
the size of the arrays.  With AVX, assuming we have 32-bit 
values and 512-bit wide registers, 16 array elements can 
be loaded.  Only a single instruction is required to multiply 
all 16 values (the operation happens in parallel on all 
data elements).  This reduces the time to process the 
arrays by a factor of 16.

There are now three versions of AVX available with 
different processor versions:

AVX: The original, using 16 256-bit registers including 
backward compatible support for the earlier SSE 
instructions that used 128-bit registers.  This also 
supports three-operand instructions, where the destina-
tion register is distinct from the two source operands. 
For example, an SSE instruction using the conventional 
two-operand form a = a + b can now use a non-destruc-
tive three-operand form c = a + b, preserving both 
source operands.

AVX2: This was introduced in the Haswell range of 
processors from Intel.  In addition to the AVX features, 
it expands most vector integer SSE and AVX instructions 
to 256-bits as well as including three-operand gener-
al-purpose bit manipulation and multiply instructions.

AVX-512: This was introduced in the Knights Landing 
range of processors from Intel.  This expands the 
registers used for AVX to 512-bits.  It also adds some 
new instructions that can handle four operands, which 
enables conditional copying from one of two registers 
to a third register based on a bitmask stored in a 
fourth register.
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Because AVX support has been available for some time 
the existing C2 compiler does have limited support for 
this.  In the case of our simple example, the JIT would use 
the AVX instructions where available.  

Falcon can exploit AVX instructions in many more places 
than C2 can.  Given the very complex code base of C2, it 
is not practical to be able to integrate new opportunities 
to use features like AVX.  Falcon’s modular more open 
design makes this very straightforward.

Let’s look at another example.  Rather than using the 
simple multiplication of each element in two arrays let’s 
add some more logic and change the operation to an 
addition:

 for (int i = 0; i < a.length; i++) {
     if ((b[i] & 0x1) == 0) {
         a[i] += b[i];
     }
 }

In this case, we are using a conditional to only add the 
value of elements in array b to a corresponding element 
in array a if the element in array b is even.  This is 
de�nitely something that can be optimized using AVX 
instructions.  If we look at the code generated by C2 for 
this, we �nd that it performs each operation on the arrays 
as a separate instruction.  Falcon can identify this as an 
opportunity to use vectorization and generates the 
appropriate AVX instruction sequence.

This is just one example of optimization that is possible 
with Falcon that is not possible with C2.  Azul's engineers 
are continually working on identifying more places where 
vectorization, as well as other low-level processor 
optimizations, can be utilized to deliver better overall 
performance for applications running on the JVM.

Vectorization is not the only technique that Falcon uses 
to improve the performance of code running on the JVM.  
There are two other areas that Falcon �nds easy to 
optimize in comparison to code produced by the C2 JIT 
compiler.  These are primarily relevant to newer features 
in Java and more modern styles of coding.

Firstly, there is �eld �nality.  Falcon can optimize these 
ef�ciently, whereas C2 does not optimize these at all.  
Falcon will generate correctly working code even if a 
developer use re�ection to mutate a �nal value.  
Immutable objects have become very popular with the 
inclusion of functional style programming constructs like 
streams, introduced in JDK 8.  JDK 9 includes factory 
methods for collections that return unmodi�able collec-
tions, and JDK 10 adds new methods to the collections 
API to return unmodi�able copies.

The second area is where an application uses heavily 
abstracted code with lots of functions and small libraries.  
The C2 compiler often struggles with this type of code due 
to the complexities of the heuristics and limits on how 
much code can be inlined.  Falcon due to its use of LLVM 
does not have these limitations.  This is especially useful 
for the case where an application uses several 
independently developed libraries (something that is 
very common in complex enterprise applications).

Summary
The Falcon JIT compiler forms part of the Zing JVM, 
which has been developed speci�cally with the purpose 
of delivering the best possible performance for Java 
applications.

Using the LLVM open source project as a starting point 
and leveraging the wealth of contributions from many 
companies and individuals has enabled an extremely 
high-performance JIT compiler to be developed.  

For many types of server type workloads, Zing will not 
only radically reduce pause times associated with memory 
management and garbage collection but will also increase 
the throughput of the application.

Zing provides a very cost-effective solution to enable 
enterprise IT departments to meet their Service Level 
Agreements, both internally and externally.  With more and 
more applications moving to the cloud, improving through-
put and reducing latency is easy to calculate in reduced 
running costs.


