
Supercharging
the Java Runtime

Rede�ning scalability and responsiveness
through Java runtime innovation

T E C H N O L O G Y  W H I T E  P A P E R



Supercharging the Java Runtime

Executive Summary  2
IT Trends  2
Supporting New Application Dynamics 2
Embracing Linux and 
    Commodity Hardware Platforms 2
Improving Time-to-Market 3
Why Doesn’t Java Always Scale Well? 3
The Java Conundrum 3

T A B L E  O F  C O N T E N T S

Solution  4
Zing: The New Foundation for Elastic, 
   Scalable Java Deployments 4
Zing Components  4
How Zing Works 5
Eliminating Application Hiccups 5
Zing Key Innovations 5
Zing Bene�ts 6

Zing Versatility 7
Summary 7
Contact Azul 7

This paper will review the current limitations of enterprise 

Java applications and the advantages of a highly 

innovative and elastic JVM and elastic runtime that can 

provide guaranteed predictability, even under load.

Executive Summary
Java-based applications are the lifeblood for many Global 
1000 companies. Every day online products and services 
organizations rely on key platforms such as portals, 
eCommerce and trading systems to achieve their 
business objectives. But in recent years these applica-
tions, which have heavy transaction loads and data-inten-
sive operations, have come under increased pressure to 
provide greater capacities with better consistency, while 
achieving lower TCO. Add the additional IT burden of 
supporting virtualization and the latest Cloud (i.e. 
SaaS/PaaS) technologies to improve “business agility” 
and it is understandable why many IT organizations are 
struggling to keep up with business innovation, despite 
choosing Java as their core application infrastructure.

Unfortunately, Java Virtual Machines (JVMs) – the very 
bytecode engine that gives Java its power and versatility 
are at the root of much of the dif�culties for IT, since 
Java runtime innovations haven’t kept pace with the 
latest technology trends or advancements over the last 
decade. Conventional Java runtimes (i.e. JVMs) are 
limited in a number of problematic ways that prevent 
applications from meeting business goals, including:

• Rigidity: �xed memory allocation size (i.e. –Xmx) 
 for each JVM instance
• Inef�ciency: proliferation of small (2-3 GB) instances   
 used in an attempt to scale applications
• Instability: inconsistent behavior outside of a small 
 operating range, particularly when under load
• Complexity: poor visibility and management within 
 and across a “proliferation” of JVMs
• Topology: ill-suited for performance-centric virtualized 
 and Cloud deployments

To remove these barriers and allow applications to 
cost-effectively meet business needs, a new approach is 
needed that frees Java execution from the limitations of 
conventional JVMs and the rigidities of standard 
Operating Systems. This paper will review the current 
limitations of enterprise Java applications and the 
advantages of a highly innovative and elastic JVM 
and elastic runtime that can provide guaranteed 
predictability, even under load.

IT Trends
Supporting New Application Dynamics
Over the past decade, large transaction processing 
applications with heavy resource requirements, such 
as eCommerce, trading systems and web portals have 
become mainstream due to the growth of the Internet. 
These business-critical applications, most based 
on the Java platform, face challenges that were 
inconceivable just a few years ago. Performance, 
scalability, availability, low latency and response time 
levels that were once needed only by the largest airline 
reservation systems or automated teller machine 
networks are now routine requirements. Accordingly, 
many businesses are struggling to meet new demands 
and support business goals.

Embracing Linux and Commodity
Hardware Platforms
To support this rapid growth in transaction volumes, 
enterprises are growing IT infrastructure at an accelerat-
ing pace and the associated capital, administration and 
facilities costs are spiraling out of control. Consequently, 
most datacenters are pursuing replatforming on Linux 
and commodity hardware to increase infrastructure 
utilization and agility while reducing complexity. This shift 
moves applications from the traditional deployment 
model on a single large, high-capacity server to pools of 
physical resources.

2



Supercharging the Java Runtime

The latest x86 servers can now be purchased with 
dozens of CPU cores and hundreds of gigabytes of 
memory for low cost, offering compelling price/perfor-
mance levels. However, with conventional Java Virtual 
Machines (JVMs), each application instance can 
utilize only a small fraction (e.g. 1/100th) of these 
resource-rich machines. Thus, each machine becomes 
host to dozens or even hundreds of small Java 
instances. Migrating these complex hosts requires 
time-consuming planning, coding and risk mitigation, 
limiting enterprises’ ability to quickly lower overall 
infrastructure TCO.

Improving Time-to-Market
As enterprises seek to lower TCO and develop
competitive advantage through new, innovative
applications and features, their initiatives are often 
slowed by deployment complexities associated with 
managing a large number of application instances and 
weeks of JVM tuning needed for production
deployments. Just making minor changes to existing
Java applications must be carefully planned to reduce 
risk, since many instances must be updated at the same 
time and tuning errors can cause ‘out of memory’ 
crashes. As organizations struggle to realize the bene�ts 
of these powerful IT trends, most enterprises have 
quickly discovered that Java runtime limitations have 
slowed their adoption and muted potential gains.

WHY DO ENTERPRISES NEED A BETTER JVM?
• Rescue Java apps that are unreliable, slow to 
 respond or are timing out end users
• Extend the lifespan of older Java apps that weren’t 
 designed for today’s business needs
• Allow companies to enter new markets and launch 
 new business initiatives based on Java apps with  
 con�dence
• Make it easy for developers and architects to create  
 applications to handle modern data- and transaction- 
 heavy systems
• Help companies get applications and features to 
 market faster by providing a JVM that works great 
 out of the box with little tuning
• Simplify Java deployments and help solve
 production issues fast

Why Doesn’t Java Always Scale Well?
The Java Conundrum
As application needs evolve and enterprises pursue new 
business initiatives such as Cloud services, the Java 
runtime is increasingly becoming a barrier to successful 
deployments. Without greater Java runtime scalability 
and elasticity, few enterprises will be able to realize the 
business bene�ts of new innovative frameworks (e.g. 
Spring), advancements in commodity severs (massive 
core and memory) and new deployment paradigms (e.g. 
SaaS/PaaS).The core limitation of conventional JVMs 
is their inability to ef�ciently consume more than a few 
gigabytes of memory without performance penalties 
due to garbage collection.

Critical issues with current Java runtimes and 
deployment platforms include:

Rigid and non-elastic. When Java instances are 
deployed, they are �xed in memory size and do not 
change dynamically based on real-time demand or 
workload. This results in over-provisioning to handle 
peak workloads and creates inherent operational 
inef�ciency and low resource utilization.

Unstable under load. As enterprises attempt to scale 
their Java applications to satisfy the continued growth of 
users as required by the business, they quickly discover 
the “fragility” of Java runtimes under load. Even though 
64-bit JVMs allow larger memory heap sizes, JVM 
instances are not able to practically utilize more than 
3-4 GBs of heap memory before applications begin to 
experience unacceptable behaviors caused by Java’s 
garbage collection process (e.g. inconsistent response 
times). This memory size limitation causes signi�cant 
architectural complexities as developers attempt to work 
around this basic scale problem. Because a single Java 
instance can’t scale beyond a few GBs, more instances 
are added to provide application capacity, causing 
greater complexity and costs. 

WE DO STRANGE THINGS WITHIN SERVERS 
NOW…
• Java runtimes “misbehave” above ~2-4 GB of 
 memory due to garbage collection
• We use 50 JVM instances to �ll up a ~$10K, 
 ~128 GB server.
• We use distributed software solutions within a 
 single commodity server
• The problem is in the software stack – arti�cial  
 constraints on memory per instance
Solve garbage collection, and you’ve solved the 
problem3

App
JVM

App
JVM

App
JVM

App
JVM

Before Zing: 
Many, Small 
Rigid Instances



Supercharging the Java Runtime

As an example of the dramatic capabilities of Zing, 
consider the real-world results shown in the picture 
above. Zing delivered an average response time 
40X lower than a tuned Oracle JVM, and a 1000X 
reduction in worst-case response time. Same 
application, unchanged code – different JVMs.

ZING BENEFITS
• Consistent performance, even under heavy load
• ~40X lower average response times and   
   ~1,000X lower worst-case response times
• Ultra-low latency

Better Java Performance, Consistency and 
Reliability for All Types of Apps

La
te

nc
y 

(m
se

c)

Zing delivers 
40X lower 
average
response 
time; 1000x 
lower worst-
case response 
time.

Time

Inefficient. Commodity x86 servers continue to grow in 
overall capacity, with single servers providing dozens of 
CPU cores and hundreds of gigabytes of memory at very 
low prices. However, given the practical memory size 
limitations of individual JVMs (as discussed above), the 
gap between the physical server resources available and 
what a given Java application instance can practically 
use, is ever-widening. As a result, in order to achieve 
high server utilization, IT groups are forced to deploy 
hundreds of Java instances per physical server (at 
numbers greater than 3:1 per core), creating an 
overwhelming number of instances that need to be 
managed and maintained. The fact that Java instances 
are not able to dynamically share memory resources 
between them further exacerbates the sprawling 
instance and low server utilization problems.

Complex to manage. The proliferation of Java instances 
has created a signi�cant burden to manage and monitor 
them. Large enterprises may have tens of thousands of 
Java instances, each of which must be individually 
managed, maintained, and monitored. Java runtimes are 
also notorious for their “black box” nature, with limited 
ability to debug and tune applications in production 
environments, signi�cantly extending time-to-market for 
new applications and time-to-resolution for issues.

Mismatched for new 
business models. 
Many companies are 
considering new 
business initiatives 
centered on Cloud 
services. The ideal 
Cloud deployment, 
whether public or 
private, allows an 
application to scale to 
meet the needs of the 

business without requiring intimate knowledge of the 
physical server infrastructure. Cloud-based services rely 
on strict SLAs and quality of service (QoS) to attract and 
keep customers. Current Java runtimes, however, often 
experience signi�cant performance degradation and 
throughput �uctuations when deployed on Cloud 
infrastructure, and require painstaking tuning in order to 
scale on a given server. This prevents companies from 
pursuing potentially lucrative opportunities, since SLA 
violations are costly, and launching new customers can 
cause response time issues or even outages.

As enterprises seek to lower TCO and develop competi-
tive advantage through new, innovative applications, the 
quest for more memory-ef�cient and scalable Java 
runtimes is growing. In addition, commodity servers 
continue to improve in overall capacity, outpacing 
conventional Java runtimes’ ability to ef�ciently consume 
these physical resources. With commodity servers now 
exceeding 48 cores and a terabyte of memory, 

enterprises need to rethink whether their current 
deployment paradigms and choice of Java runtimes to 
ensure they can support the needs and growth targets 
of the business.

Solution
Zing: The New Foundation for Elastic, Scalable 
Java Deployments
Offering unprecedented levels of scalability and through-
put, the Zing JVM shatters Java scalability barriers and 
enables existing Java applications to smoothly and 
reliably scale to dozens of CPU cores and hundreds of 
gigabytes of memory in a single instance. Optimized 
for Linux and x86, Zing’s elastic architecture can 
automatically scale individual Java application instances 
up and down in both core count and memory size, 
based on real-time demands. Because Zing uses Azul’s 
“awarding-winning” and highly innovative Pauseless 
Garbage Collector (a.k.a. Azul C4 - Continuously Concur-
rent Compacting Collector), application instances can 
grow to any size without variations in response times 
associated with conventional JVM Garbage Collectors.

Zing Components
In addition to a 100% Java-compatible JVM which installs 
and launches like any other commercial JDK/JVM, Zing 
provides a management and monitoring platform with an 
integrated, application-aware resource management and 
process controller and a true, zero-overhead, always-on 
production-time diagnostic and tuning tool.

4



Supercharging the Java Runtime

How Zing Works
Eliminating Application Hiccups
Java performance and scalability start at the JVM.
Conventional JVMs are rigid and �xed in size at start
up. In addition, the underlying OS or hypervisor does
not work in cooperation with the JVM to provide
greater elasticity as demand changes. Constrained
to just a few GBs per instance, Java applications can
experience varying response times as single instances
experience higher user-loads or greater memory
demands (such as parsing a large XML payload). As
application loads and memory demands increase,
these arti�cially small memory heap limits (usually
around 2-4 GBs) can directly impact application
performance and throughput, resulting in negative
business impact and unmet SLAs. Because of these
conventional JVM limitations, existing solutions simply
do not meet the needs of today’s business-critical
Java applications.

In contrast, the Zing JVM utilizes Azul’s proven
technology to break Java scale barriers and increase
throughput and consistency. The Zing JVM seamlessly
replaces the existing JVM. Simply point your
application or startup scripts to use the Zing JVM.
This process requires no coding changes and is
completely transparent to the rest of the deployment.
The result is applications that achieve unmatched
throughput and response time consistency with no
outliers associated with GC pauses experienced with
conventional Java runtimes.

Available for multiple operating systems, the Zing
JVM is optimized for Linux but can also of�oad Java
workloads from non-x86 systems such as SPARC
Solaris, enabling enterprises to cost-effectively
migrate applications to the latest-class of x86 servers
without changing their operating system and without
the conventional migration costs and risks.

Key Zing Innovations
Azul C4 (Continuously Concurrent Compacting 
Collector). Java garbage collection automatically frees 
the heap space used by objects that are no longer 
referenced by the application. This makes the program-
mer’s life easier, since he or she no longer has to keep 
track of and free allocated memory. Automating this 
process reduces the number of bugs in the �nal program 
and saves developers plenty of headaches. In conven-
tional JVMs, heap space is allocated per instance when 
the application is launched and is, therefore, rigidly 
limited at runtime. IT organizations spend hours tuning 
JVMs to the right amount of heap. Too much, and 
garbage collection pauses interrupt processing, too little 
and the instance is ‘out-of-memory’ and crashes. The 
Java garbage collector also has to spend time preventing 
heap fragmentation and ensuring room for new objects. 
When too much fragmentation occurs, new objects may 
not �t in the largest continuous space and ALL conven-
tional collectors must now make room through a “stop 
the world” (i.e. pause) event that is linear with the size 
of the heap.

When application loads increase, Java applications 
typically will suffer from more frequent business-interrup-
tive garbage collection pauses. Despite IT’s continued 
efforts to tune away GC occurrences, “compaction is 
inevitable” and only occurs more frequently under load.

Zing implements the unique C4 garbage collector that 
utilizes concurrent compaction, enabling the application 
to continue executing while remapping memory. This 
keeps all pause times consistently low – preventing 
spikes and making applications predictable and consis-
tent in response time. The C4 collector and its perfor-
mance is also independent of memory heap size, so a 
single instance can start at 30 GB and dynamically grow 
because of load and variability up to 2 TB or more. This 
allows applications to enjoy a smooth, wide operating 
range insensitive to data size, concurrent sessions and 
throughput. Each instance can employ hundreds of GBs 
of heap memory, achieving unmatched scale and 
consistently fast response times in a simpli�ed 
deployment with far fewer, larger instances.

5

Zing Runtime for Java

Class Loader

Object Heap
Java Stacks

HW Registers

Native Method
Stacks

Runtime Data

Tiered 
Compilations
C1 and C2

Execution Engine

Garbage
Collector

Native 
Method
Interface

Linux Operating System

JAR File

Native 
Libraries

Methods



Supercharging the Java Runtime

Conventional JVM

Limited to 
<12 GB of heap 
memory/instance

Limited, often 
intrusive 
monitoring 
tools

Complex 
deployments 
where each 
instance has 
to be managed 
individually

Impact

Complex 
deployments 
of up to 
hundreds of 
small 
instances

Dif�cult and 
time-consum-
ing to �nd and 
�x production 
issues

As the 
deployment 
grows, it 
becomes 
unmanage-
able

Zing JVM

Up to hundreds 
of GBs of heap 
memory/
instance

True, zero-over-
head, always-on 
production time 
diagnostics and 
tuning tools

Control all Java 
applications 
from a single, 
centralized 
console

Result

Simpli�ed 
deployments 
with fewer, larger 
instances

Fast production 
issue resolution

Ability to share 
resources 
dynamically 
and map 
and allocate 
resources based 
on con�gurable 
policies

Benefits

• Scalability – 100x larger heap   
 sizes with no GC pauses
• Reliability – Fewer moving parts
• Manageability – Fewer, larger   
 instances
• Consistency – response times not   
 subject to garbage collection pauses

• Reliability – Find and �x potential   
 issues before they become   
 downtime
• Visibility – �ne-grained monitoring   
 of capacity utilization and resource   
 usage at the instance level

• Scalability – Scale elastically to   
 accommodate sudden changes
 in load
• Faster time to market – No need   
 for �ne-tuning of memory size
• Reliability – Assign additional   
 resources to instances to survive   
 peaks and leaks
• Manageability – Single view to all   
 applications in the deployment

Zing Benefits

Elasticity. With the elimination of long garbage 
collection pauses, application SLAs are no longer 
impacted by growing memory heaps. Freed from the 
practical restriction on heap size, Zing provides elastici-
ty, so instances grow and shrink memory as needed. In 
conventional JVMs, administrators set a rigid heap size 
con�gured for the worst case scenario plus a safety 
factor, which leads to inef�cient use of resources, since 
unused memory is inaccessible to other instances that 
could use it. With Zing, sizing doesn’t have to be a “dark 
art”. Each instance is assigned a certain amount of 
‘Committed’ memory (i.e. -Xmx) to guarantee the live set 
and performance, but also has access to two pools of 
shared memory. ‘Performance’ memory is available as 
needed to maintain consistent response times under 
load, and ‘Insurance’ memory is accessible to instances 
to survive peaks and memory leaks. In operation, these 
pools are managed by the Zing Resource Controller, 
which automatically scales individual Java application 
instances up and down based on real-time demands, 
and dynamically maps and allocates resources based 
on con�gurable policies. The result is better resource 

utilization and reliability, as instances under load 
elastically grow into unused memory space and return it 
when it’s no longer needed, preventing out of memory 
errors, slowdowns and crashes.

Visibility. Conventional Java runtimes are notorious
for their “black box” nature. Although rich Java 
development tools exist, none of them can be used in 
production environments without signi�cantly impacting 
running applications. With this limited ability to debug 
and tune, the time it takes for IT to resolve produc-
tion-time issues signi�cantly increases. With Zing Vision 
(ZVision), a true, zero-overhead diagnostic and tuning 
tool that is integrated into the Zing JVM, developers can 
now capture application metrics and performance data 
(at the JVM level) for the running application with no 
impact on operations and no performance degradation. 
This visibility tool offers a uniquely detailed view of all 
performance aspects of the application and runtime, 
including thread, memory, and IO pro�les. ZVision 
provides always-on visibility into production workloads 
that enables fast diagnosis of issues when and where 
they happen.

ZING COMPONENTS
Zing Java Virtual Machine (Zing JVM). A highly 
scalable, full-featured, 100% Java-compatible JDK 
based on HotSpot optimized for Linux and x86 that 
transparently replaces your existing JVM

Zing Vision (ZVision). A true, zero-overhead, 
always-on production-time diagnostic and tuning 
tool instrumented into the Zing JVM

6



Supercharging the Java Runtime

Contact Azul
To discover how the Zing JVM can make 
your Java deployments more scalable, 
more elastic, more reliable, and less 
complex, contact Azul today.

Azul Systems, Inc.
385 Moffett Park Drive, Suite 115
Sunnyvale, CA 94089 USA
+1.650.230.6500

www.azul.com
info@azul.com

Zing Versatility
Zing provides a robust foundation for all types of Java 
applications. With Zing, applications elastically scale 
from a few cores and GBs of memory dozens of cores 
and hundreds of gigabytes of memory. Zing is easy to 
install and transparent to existing applications. Zing is 
ideal for:
• Large or variable numbers of concurrent users
• Microservices-based architectures
• High or variable transaction rates
• Low latency requirements
• Large data sets
• Caching, in-memory data processing
• ESBs, SOA, messaging, NoSQL, Search applications
• Multi-tenant SaaS, Platform-as-a-Service (PaaS)
• Virtualized and Cloud deployments

Zing Benefits for Common Deployment Models

Conventional JVM
• Many, rigid instances
• Complex
• Fragile
• Inef�cient, with low utilization
• Inconsistent
• Hard to grow
• Limited headroom
• Costly to operate 
With Zing
• Fewer, elastic instances
• Simpler
• More robust
• Ef�cient, with high utilization
• Responsive
• Easy to scale
• Massive shared headroom
• Lower TCO

7

Summary
At Azul, we have one thing in mind; ensure that 
customers can rely on Java-based applications for their 
business-critical services, grow their businesses and 
launch new initiatives without worrying about scalability, 
reliability or outsize infrastructure investments. To that 
end, we deliver the best JVM in the world, a very stable, 
superior, robust JVM with predictable high-performance 
and low latency capability, a JVM with all the features 
built in. Zing eliminates most of the typical JVM 
challenges and performance and scaling barriers, so 
your team can focus on the features and functions of 
your application or service, and you can focus on 
growing your business.


