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1 The Problem

In this research project we set out to de-
termine if machine learning could be used
to classify a large collection of images into
a taxonomy that relates to a specific client
or set of clients within an industry. Ac-
complishing this would help to reduce the
reliance on human operators and improve
their workflow. While it may not be possible
to fully automate this process, utilising ma-
chine learning to perform the monotonous
tasks would free up humans to deal with
more complex or interesting issues. In this
particular task, there is an added complex-
ity that some of the clients describe their
images in more abstract concepts. For ex-
ample, a university would find it beneficial
to differentiate between images of lecturers
and students but may also wish to deter-
mine if the students are happy. On the other
hand, a shop would look to differentiate be-
tween products being modelled rather than
the models themselves. While recent ad-
vancements in deep learning have provided
a solid framework for basic image classifi-
cation, learning adjectives that describe hu-
man emotions or interactions between ob-
jects in an image is a much more complex
task.

2  Owur Approach

To begin, we compiled a shortlist of ap-
proaches that we thought may be successful:

1. An unsupervised, clustering based ap-
proach similar to the word vector model
but for images.

2. A supervised, fine-tuned binary clas-
sification approach developing a set
of highly accurate yes/no questions to
classify the images.

3. A weakly-supervised, fine-tuned, mul-
ticlass approach that builds on top
of the type of approach used in the
ImageNet[2] challenge.

For the clustering approach, we looked
to determine if the internal vector represen-
tation learned by a model trained on Im-
ageNet model could be used to group the
images with similar content via, for exam-
ple, Euclidean distance. To achieve this,
we extracted the 4096-dimensional vector
of activations at layer ‘fc7’ of a VGG19[6]
model for a set of images. We hoped to
apply dimensionality reduction to this vec-
tor to provide a visual representation of
the data and an interface for a human op-
erator to select clusters of images to la-
bel. Both principal component analysis
(PCA) and t-Distributed Stochastic Neigh-
bour Embedding[5] (t-SNE) were tested to
perform the clustering. In the case of t-SNE,
we would first use PCA to reduce the dimen-
sionality such that it retained approximately
80% of the total variance. While t-SNE
did produce reasonable results for a well-
defined set of objects like shoes and bags,
both t-SNE and PCA results were unusable



for more complex data. We suspect this
is likely caused by the relatively low data
variance (15-20%) maintained by the algo-
rithms once they had projected down to two
or three dimensions. As a result, we decided
to avoid pursuing this avenue any further.

Next, we moved onto our second area of
research, a tree of binary classifiers. We
thought this may produce good results as
binary classification accuracy is typically
very high, as seen in our results. Unfortu-
nately, this method does not scale as well
as we would like across a large taxonomy
and would require huge amount of compute
power to do so. During this, we tested
the performance of several well known deep
learning algorithms to determine which per-
formed best on the type of data we were us-
ing. The chosen algorithms were Inception-
v3[7], ResNet-100[3], and VGG19. While
these are no longer state of the art in terms
of ImageNet performance, they require sig-
nificantly less memory to use and would al-
low us to take advantage of TensorFlow’s
GPU acceleration.  Additionally, Tensor-
Flow Slim has model checkpoints that have
been trained on ImageNet that we can fine-
tune from with some model surgery, this al-
lows us to benefit from transfer learning. In
our testing, we found Inception-v3 to be the
best performing algorithm in terms of accu-
racy, validation loss, and training time thus
we chose to continue our experimentation
with this algorithm.

Lastly, we investigated the potential of a
multiclass approach to address the scalabil-
ity problem of our binary approach. For
this, we fine-tuned the Inception-v3 algo-
rithm to classify two different sets of data.
The first set of data is reasonably well de-
fined while the second set of data contains
a fair amount of noise. That is to say, some
images appear in more than one class. We
found that the Inception-v3 algorithm was
somewhat resilient to this noise and pro-

duced good top-1 accuracy in addition to
near perfect top-3 accuracy in both tests.
The idea behind this approach would be to
fine-tune a model for each group of tax-
onomies, one per industry. For example,
one network that specialises in identifying
university-related classes, another in shop-
product related classes, etcetera. This would
allow us to classify very specific concepts
that can have different, but semantically
similar, human-readable labels for each in-
dividual client.

3 Existing Commercial Al-
ternatives

To determine the validity of our research, we
needed to construct a fair method of com-
parison. We began by researching a few of
the existing commercial alternatives and dis-
cuss our findings:

1. Google Cloud Vision

Google Cloud Vision does not cur-
rently support training a custom model
around a specific data set. This is not
as desirable as a specialised model will
outperform a generalised model at the
task it is designed for and as such will
not provide much meaningful insight.

2. Amazon Rekognition

Amazon Rekognition is a generic image
classification system in a similar light to
Google Cloud Vision and as such suffers
the same problems.

3. Amazon SageMaker

Amazon SageMaker allows the user
to train a new model to fit their
data. They also advertise the
ability to write your own Tensor-
Flow/MXNet/PyTorch/etc code and
use their platform as hosting similar to
the other AWS platforms. As they do



not appear to offer a generalised pre-
built system, we would just be testing
our code on their hardware which would
lead to identical results. This bespoke
code is likely to give the best accuracy
as there is a finer degree of control.

. IBM Watson

IBM Watson offers support for custom
models, but the free tier is limited to
1000 events per month. This is not re-
ally enough to generate an accurate rep-
resentation of their performance and as
such is left omitted from the compari-
son.

. Clarifai

Clarifai let the user process 5000 im-
ages for free in a month, and support
custom fine-tuned models which makes
them an ideal candidate to benchmark
against. However, it is noteworthy that
this image limit includes both training
and testing. Additionally, their API al-
lows for the creation, training, evalu-
ation, and inference of custom models
programmatically with just a few func-
tion calls. This API is available in sev-
eral languages including Python, Node,
Java, and C+#.

. Vize

Vize also has a 5000 image per month
limit for free users using custom trained
models and thus can also be used as
a benchmark. However, their REST
API is less friendly to use than their
competitors library, requiring signifi-
cantly more code to execute basic com-
mands. Additionally, they do not cur-
rently support multi-label classification
unlike other services like Clarifai.

4 Comparison Methodology

For our testing, we chose four sets of data:

1. Facial expression binary classification

This set contains 13,315 images from
WaterAid in which we attempt to clas-
sify whether or not the persons in the
image are smiling or not. We chose this
set as it is a more difficult task for com-
puter vision and yet is something that
is very intuitive to humans.

. Well defined objects

This set contains 8999 images from The
Hut Group. Each image contains either
a bag or shoes. We chose these because
they are very distinct objects that we
would expect a neural network to per-
form very well in classifying, and con-
sequently provide a solid baseline mea-
surement.

. Multiclass-4

A set of 22,314 images that belong
to one of the four classes mentioned
prior, this requires a slightly different
approach to classification in the net-
work and typically results in slightly
poorer performance than a binary clas-
sification approach. However, this mod-
ification enables a single model to scale
across a taxonomy of potentially hun-
dreds or thousands of labels.

. Multiclass-6

Our final testing set, containing 36,100
images. KEach image belongs to one
of six labels; the four mentioned prior,
boy, or girl. We noticed that there was
significant pollution between the labels
where an image would, for example, ap-
pear in both the smiling and boy cat-
egories. This is designed to simulate
a more real world approach where the
data may be noisy and some of the con-
cepts may be difficult to differentiate
between.



Due to restrictions in the free trials of each
of the commercial alternatives, we randomly
sampled 1000 images for training from the
training set, and 100 images for testing from
the testing set. This allowed us to process
each of the four sets for a total of 4400 im-
ages to keep within our 5000 image restric-
tion. Additionally, we retrained our models
on this smaller 1000 image subset to pro-
vide a comparable measure. While this does
not necessarily provide an exact measure of
how well the networks would perform if fully
trained on all the data, it does create a level
playing field. These results can be compared
to determine the efficacy of each of the ap-
proaches on each type of data set. Therefore,
as we would expect to see a roughly equal
improvement in each model as the number
of training images increases, it is logical that
the relative performances of each approach
should be similar on the full set.

5 Comparison Results

The results of the comparison follow, the
top-1 and top-3 accuracies of each method
were tested where applicable. The top-1 ac-
curacy represents the percentage of images
for which the prediction with the highest
score matches the label for the image. The
top-3 accuracy represents this same percent-
age when one of the three most likely predic-
tions from the network matches the label.

As can be seen in Table [T, our method
significantly outperformed the existing com-
petitors in all but one test, in which it per-
formed 1% worse than Vize.
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Figure 1: 95% Confidence Intervals for Top-
1 predictions

for which, roughly speaking, we can be 95%
certain that the true mean of the data points
exists within this range. This helps to dis-
till some of the intrinsic variation contained
within neural networks as a result of the op-
timisation process. Additionally, it helps us
to reason about statistically significant dif-
ferences between the methods based on how
much overlap exists between two ranges.

From the information displayed in Figure

To further verify our findings, we calculate we can draw some conclusions as to the

the 95% confidence interval for these mea-
surements. By treating each classification in
the testing set as a 1 or a 0, we can convert
our results into a small population. If the
network outputs the correct prediction it is
marked as a 1, otherwise it is marked as a
0. Using this data we can calculate a range

efficacy of our method. In the facial expres-
sion and multiclass-4 data sets, we find a sig-
nificant jump in mean, and very little over-
lap in the confidence intervals. This leads
us to believe that our method is definitely
better in these tasks. For the well defined
objects set, we can conclude that Clarifai



Dataset Accuracy Measurement Our method Clarifai Vize

Facial Expressions Top-1 87% 2% 76%
Well Defined Objects Top-1 96% 91%  97%
. Top-1 95% 85%  85%
Multiclass-4 Top-3 100% 100%  91%

. Top-1 67% 56%  43%
Multiclass-6 Top-3 98% 90%  85%

Table 1: Table of results

was definitely the worst performer and that
our method and Vize perform very similarly.
Therefore, our 1% loss is likely a result of
the particular minima that was found in this
training cycle. Finally, we find a large gap
in mean between each of the methods in the
multiclass-6 set. While there is some over-
lap, it suggests that our network is likely also
much more suited for this task. Addition-
ally, we note a very low score for Vize in
this test despite the network typically hav-
ing very high confidence in its prediction
(>90%).

In this case, we found the use of trans-
fer learning to be paramount to the method.
Training our model from scratch saw our
top-1 accuracy fall by 37%, with top-3 accu-
racy falling by 8%. In addition to this, the
model took 3.6 times longer to converge at
36 epochs from 10 using ImageNet weights as
our initialisation. Without more knowledge
as to the processes that Vize and Clarifai are
using behind the scenes, it is difficult to con-
clude the exact causes for our performance
improvement. For example, Clarifai provide
no further information than ‘We developed a
proprietary, state-of-the-art neural network
architecture, and trained the network over
billions of training samples to offer world-
leading models for our customers’. However,
we hypothesise that one factor may be that
they are intialising their custom models with
weights from their bespoke prebuilt models
rather than ImageNet, which could impact

the performance slightly. Another factor
could be due to the method of image aug-
mentation used to artificially increase the
size of the training set while making the net-
work invariant to changes in the image that
do not affect the label, for example a change
in brightness or a horizontal flip. Addition-
ally, differing algorithms and hyperparame-
ters such as the learning schedule could also
be responsible.

Overall, we conclude that our method
matches or significantly outperforms the ex-
isting alternatives across the board, most no-
tably in the tasks that are typically more
difficult for machines to classify. As this
was a focus for this project, we believe these
are particularly important categories. For
example, our method was very resilient to
the noise present in the multiclass-6 set, and
handled the multiple faces in many images
in the facial expression set very well.

6 Implementation of

method

our

Our method was implemented using Python
and the TensorFlow[l] library, written pri-
marily in Python and C++. We utilised
several NVidia GTX 780Ti’s to hasten the
training process as training on a GPU
is much faster than a CPU. Additionally,
we make use of the ImageNet pretrained
Inception-v3 model from the TensorFlow



Slim research repository for transfer learn-
ing. Using this model, we remove the final
1 x 1 convolutional layer and replace it with
our own so that we can fine-tune to our spe-
We freeze the weights in the
stem, and train only from the first Incep-
tion module. We split the data into training,
validation, and testing sets with a 70/10,/20
split respectively. We train on the training
data, periodically testing on the validation
set to check we are not overfitting the train-
ing data. At the end of each pass through
the data, or epoch, we compare the perfor-
mance on the validation set. If it has wors-
ened then we decay the learning rate by a
factor of 10, if we dropped the learning rate
after the previous epoch and we have still
not improved then we deem the model fully
trained. We save this model state so that we
can benchmark the performance using the
testing data set.

cific classes.

In terms of future expansion and improve-
ment of the model, the weakly supervised
approach begins with one trained model on
the data available at the current time. As
this model sees use and classifies new im-
ages, we can retrain the model using the,
now larger, classified data set. Alternatively,
with some code modifications it would be
possible to fine-tune the model on the fly but
adds some complexity to ensuring the model
is not getting worse by doing so. We believe
this could be best achieved by designing an
interface that allows the user to upload sev-
eral images in a batch. This interface can
then call, for example, a REST API that cal-
culates the model predictions for each image
and returns the top n predictions, where n
is a proportion of the total number of classes
in that taxonomy. This data could then be
further verified by a human operator if nec-
essary, for example the system may warn the
user if the network has a particularly low
confidence in it’s prediction and ask the user
to select the relevant labels. An algorithm

to solve this may involve comparing the pre-
dictions starting with the highest probabil-
ity and checking if the percentage difference
between it and the next highest probability
is under a certain threshold.

For the infrastructure required to use such
a model, a machine with several GPUs
would be ideal. For example, each GPU can
be designated to run a model related to a
specific industry. This would allow very few
physical machines to host the system, but
training the models could be sped up signif-
icantly by parallelising across several GPUs.
For example instead of training on batches
of images sequentially, one batch can be sent
to each GPU and the gradient updates can
be collated, averaged, and pushed back to
each GPUs copy of the model. This can
achieve near linear scaling with the num-
ber of GPUs used. These models can be
trained and used on the CPU, but this does
take significantly longer and it would be very
slow to train multiple models at once on one
machine. Additionally, in terms of perfor-
mance per unit cost the multi-GPU solution
should be cheaper and more cost effective
than multi-CPU.

The time required to design and imple-
ment a useable interface will vary depend-
ing on the required features. In addition
to this, the time taken to train the models
will largely depend on the available hard-
ware and number of images in the set. Our
multiclass-6 test using all 36,000 images
(25000 training images) took approximately
3 hours to train to model convergence on
a single GTX 780Ti. This process will be
much faster in larger batches on a GPU with
more memory. With more modern hardware
and some optimisations to the input pipeline
to make reading data from disk faster, this
process may be possible in under 2 hours.
These numbers should scale linearly with the
number of images used so it could be ex-
pected for a model on similar hardware to



train for about 24 hours per 200,000 train-
ing images. However, it is possible that this
may require a different number of epochs to
converge which will affect training time. In-
ference for a batch of images (the same as
the batch size used for training) on a trained
model will likely take in the region of 200-
400 milliseconds and as such is likely not an
issue.

In summary, a web interface could be
paired with a REST API to submit images
to a server that can gather predictions from
the relevant model. It could then automat-
ically classify images that it has high con-
fidence for, and prompt the user to verify
the lower confidence images. These tags can
then be saved with the image metadata in a
database for later retrieval. Additionally, it
may be helpful to store the prediction prob-
ability with the image such that this can be
used as an additional factor for determining
the most relevant images to the end user’s
query. However the exact methodology for
this would depend on the existing technol-
ogy stack.

7 Recommendations

Our recommendation to take forward the
method tested for tagging all images from
clients, we recommend a series of steps:

1. Creating generic/sector specific tax-
onomies and gather content for these
(with permission of clients).

2. Exploring whether generic objects can
be classified using existing systems. In
principle this is possible based on the re-
sults shown in section[5] but this will be
less accurate than re-training the net-
work.

3. Training multi-class models for more
specific terms in the taxonomy. There is

| Low StdDev  High StdDev

Min StdDev 0.2176 0.3397

Max StdDev 0.2484 0.3521
1 label 60 90
2 labels 39 9
3 labels 1 1
Boy 22 6
Girl 40 12
Smiling 20 21
Not Smiling 14 9
Shoe 3 33
Bag 1 19

Table 2: Label noise with respect to the
standard deviation (StdDev) of the trained
networks output. This shows the number of
images by category and by label within the
100 highest and 100 lowest standard devia-
tions of the network outputs.

a need for further exploration of max-
imum number of classes which can be
incorporated in one model.

4. Creating interfaces to query the net-
work over the Internet.

5. Developing usable interfaces to tag and
browse content.

With regards to infrastructure, it is possi-
ble to use systems such as Amazon Sage-
maker to host the sytsem and train cus-
tom models. It is also possible, to develop
the company’s own infrastructure (hardware
and software).

8 Further Research

In this section we discuss some of the po-
tential research areas that may provide an
improvement to our results.



An Evolutionary Approach to Clean-
ing Labels

Our findings also pose a question as to
whether the clustering method we explored
might be combined with our final method-
ology to further improve our accuracy. We
hypothesise the existence of a connection be-
tween noisy labels and their neighbours in
high dimensional space. That is to say, as
noisy labels are inherently misclassified, we
may be able to detect their presence by look-
ing for outliers at the layer just before the
final fully connected layer.
image that is very close in Euclidean dis-
tance to several other images and it is la-
belled as, for example, a dog, but it’s neigh-
bours are all cats then we may be able to
alter the label. We could achieve this using
a k-nearest neighbour method if the network
also has a low confidence in it’s prediction.
To gather more insight into the viability of
this method, we define a small experiment.
As the internal vector representation can be
mapped to the networks output vector we
can use the output vector to perform a sim-
plified experiment. By calculating the stan-
dard deviation of the output vector of each
image in the testing set, we can order the im-
ages by the networks confidence. The more
uncertain the network becomes of it’s pre-
diction, the closer the output of the softmax
for each element in the vector tends to the

If there is an

mean, or — where n is the number of classes.

This, in tﬁrn, results in a low standard de-
viation. Therefore, we sort the testing im-
ages by standard deviation and determine
how many of the images are poorly labelled,
and the distribution of the labels within the
highest and lowest 100 standard deviations.
As can be seen in Table [2| we find a poten-
tial correlation between the poorly labelled
images in the testing set and the standard
deviation of the output vector of the model.

This cross validation technique may help

to remove some of the label noise, thus in-
creasing the accuracy of the model, and
could even be applied to the whole data set
in a k-fold cross validation technique. If we
train £ models to calculate this information
for the whole data set, using the rest of the
set as training data, we could remove some
proportion of the low standard deviation ex-
amples, a. This value o may differ between
data sets, but could theoretically be learned
using, for example, a genetic algorithm to
remove varying « sections of the data and
retrain the models. Removing data from the
low end of this distribution removes a larger
percentage of dirty labels than exists for the
whole data set. Ideally, fine-tuning this «
could clean the optimal amount of data au-
tomatically, such that we find a local max-
ima for the percentage of clean labels within
the largest subset of the data, ultimately im-
proving the accuracy of the models trained
from this subset.

Binarised Normed Gradient Object
Detection and Semantic Descriptions

An alternative approach that may see im-
proved results, in a commercial sense, would
be to turn the multi-class problem into a
multi-label problem via the use of BING
objectness detection. The useful bounding
boxes extracted from the algorithm could
generate a larger data set that would allow
us to classify more than one object per im-
age, and assign several labels as a result. An
unlabelled image could be passed through
this algorithm to sample n images for the
model to evaluate. These evaluations of
the objects in the image could be used ei-
ther as direct labels, or as information for
a secondary network to construct a descrip-
tion of the image. A network like this is
more complex, but there is existing research
surrounding it’s application to well known
datasets|4]. These types of semantic descrip-
tions of an image are more difficult to train



and produce but could be very helpful for
the end users.

We attempted to develop some prelim-
inary results for this method using the
Python version of the OpenCV implementa-
tion, but it did not provide a score to filter
the bounding boxes. Unfortunately we did
not have enough time to reimplement the
BING algorithm or create an interface for
the other existing C+-+ implementations.
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