

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

1 Chapter 13: Object-Oriented Programming

Chapter 13

Object-Oriented Programming

Most professional programming is done in languages based on the object-oriented paradigm. C# is no

exception and is in fact one of the languages with the best support for proper object-oriented

programming. Throughout the previous chapters of this book, you have actually made frequent use of

many object-oriented principles and techniques. For instance, every user interface element such as Button,

TextBox, and Label are all objects. In this chapter, you will discover what object-oriented programming

(OOP) is, how you can create and work with your own objects, and how to develop applications using

OOP.

One of the primary reasons object-oriented programming is so popular in professional programming is

that if you follow proper object-oriented principles, it leads you in the direction of a well-designed

system. However, care still has to be taken in how this is achieved. The goal is to create a set of classes

that can be reused in different contexts. For instance, you will see an Employee class throughout this

chapter that could be used in a Payroll system or a Performance Evaluation system. If it is used for both

purposes, once it has been put into production, it cannot be changed without considering the effect on

both systems.

Topics

13.1 Introduction to Objects and Classes 13.6 Introduction to Inheritance

13.2 Classes vs. Objects 13.7 Implementing Inheritance

13.3 Information Hiding (Encapsulation) 13.8 Using Subclasses and Superclasses

13.4 Properties 13.9 Overriding Methods

13.5 Calling Methods (Sending Messages to

Objects)

 13.10 Polymorphism

13.1 Introduction to Objects and Classes

Object-oriented programmers generally distinguish between the problem domain and the application

domain. The problem domain involves the parts of the real world that the computer system is working

with and solving problems for. For instance, the problem domain for a payroll system would contain the

employees of the company, the actual hours worked by those employees, and all the rules governing how

salaries, taxes, and other deductions are calculated and paid out. The application domain, on the other

hand, is the actual payroll computer system and its users. The users will work with representations of the

problem domain (real world) in order to solve the problems the system is intended to solve.

With object-oriented programming, we start by creating representations of the problem domain inside the

application. The problem domain typically contains multiple entities like employee and payroll. The

instances of entities we want to keep track of in the problem domain are represented in the application

2 13.2 Classes vs. Objects

domain by objects. So, in the payroll system, each employee becomes an object, every pay period

becomes an object, every pay check becomes an object, and so on. The set of objects that represent the

instances of an entity is described in computer code with a construct called a class. A class is like a

blueprint that can be used as a template to create many instances (objects) that have the same properties.

In this way, a class represents an entity of the real-world problem addressed by the application. For

example, a payroll application for an organization may use an Employee class to represent employees of

the organization.

13.2 Classes vs. Objects

With object-oriented programming, you start by creating classes that represent real-world entities. A class

consists of code that describes a group of data items that represent the attributes of the entity and methods

that represent the behavior of the entity. The name, birthdate, and address of the employee are examples

of the data items of the Employee class. The data items in a class are accessed using an interface of

publicly available methods and properties of the class. Behaviors are the activities or functions of an

entity. Updating the hourly rate for an employee would be a behavior of the employee entity, which may

be implemented by a method called PayRaise within the Employee class.

Figure 13-1 shows the Employee class in Unified Modeling Language (UML) notation. In UML, a class

is represented by a box divided into three sections. The top portion contains the class name, the middle

portion contains the attributes or properties, and the lower portion contains the methods. The plusses and

minuses signify whether the element is public or private, respectively. Public elements make up the public

interface that other classes in the system can access, whereas private elements can only be accessed from

within the class itself. The notation for the methods is similar to C# but also slightly different. The name

of the method is given first, followed by parentheses that list the parameters that the method accepts as

well as the data type for each parameter. If the method returns a value, the data type for the return value is

given after the parameters. In this example, the PayRaiseAmount method is public and takes a single

parameter of the type decimal. It doesn’t return anything.

Figure 13-1: Employee class in UML notation

The Employee class describes the attributes and behavior of the employees of an organization. To

represent an individual employee like John Smith, an application creates an instance of the Employee

class in memory, called an object. So, the object is an instantiation of the class.

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

3 Chapter 13: Object-Oriented Programming

The class is an abstraction of the real-world entity written in computer code; thus, the same Employee

class can be used to create multiple objects, each object representing a different employee. The class is

often compared to the blueprint of a house, and the objects compared to multiple houses that are built

from the same blueprint.

Objects in C# are characterized by three general concepts:

 Identity: Just like every employee is distinct from every other employee, so too is every object in

the computer system distinct from every other object. Once an object has been created, we can

distinguish it from all other objects in the system. This is similar to the concept of a primary key

in a database, but object-oriented systems automatically implement an identity mechanism.

 State: The state of an object is the set of values of the attributes that we care about regarding that

object. For employees, we would likely care about things like their name, birthdate, address, job

title, and pay rate, whereas we are not likely to be concerned about their hair color. Each object

has specific values for the things we care about. So, we might have two employees with these two

states:

Table 13-1: Examples of objects

Attributes Employee 1 Employee 2

Name John Smith Rebecca Jones

Birthdate 12/10/1993 10/5/1994

Address 200 Main St 100 Elm St

Job Title Network Engineer Software Developer

Hourly Pay $35 $45

It’s important to realize that the state of an object changes over time. In fact, anytime the value of

an attribute changes, the state of the object has changed. So, for instance, if Rebecca gets a pay

raise to $47 per hour, the state of the Employee 2 object has changed.

 Behavior: Each object has specific behavior that is also modeled in the system. In the problem

domain, we might have employees punch in for work, punch out, get their salary paid out, get a

pay raise, etc. In the application domain, behavior is implemented as methods that can be called

on an object. The method code specifies what action happens when the method is called on a

particular object.

The concepts of class and objects are often confused and described in overlapping terms, but they are two

distinct concepts that are important to keep separated. Classes are described in code and are used as the

blueprints to instantiate (create) the objects. Each object in an application represents an instance of a real-

world entity. There would only be one Employee class, but many Employee objects (one for each actual

employee in the organization).

4 13.3 Information Hiding (Encapsulation)

Review Questions

13.1 Identify several objects in your world from the following classes

o Book

o Car

o Account

o Student

o Professor

13.2 For each of the classes above, identify a few attributes and behaviors that might be relevant to

represent in an information system.

13.3 In your own words, describe the difference between class and object.

13.3 Information Hiding (Encapsulation)

One of the defining principles of object-oriented programming is that of Information Hiding (sometimes

also referred to as encapsulation). The idea is that the way the data is presented by an object to other parts

of the system is independent of how it is actually stored in the object.

This distinction provides several advantages. First, it allows for a simple and consistent internal

representation of data in an object. For example, the total time worked by an employee could be stored in

minutes, but it could be presented in the public interface by a method that returns fractional hours.

Second, it protects the state of the object from being changed in inappropriate ways. For example, if the

time worked by an employee is really represented by successively punching in and out, it would be

inappropriate to be able to change the total time worked directly; it should only be changed through the

transactions. Lastly, it also allows for restricting how the data inside an object can be accessed. Some

attributes of an object should not be changed from outside of that object. As an example, consider a pay

rate for an employee that must fall within certain bounds. If the pay rate could be changed directly, it

could not be guaranteed to stay within its bounds.

To achieve this, each object provides a private implementation of data and a public interface, and only the

public interface is available to other parts of the system. The implementation is thus “hidden” or

“encapsulated” inside the object. In Figure 13-1, the attributes and methods marked with a plus represent

the public interface, whereas the ones with a minus are private. A UML class diagram might omit some

private implementations, and as we discuss later, attributes are implemented in C# using private fields

that are exposed through public properties and methods.

As an example, consider the Employee object described above. We have specified that it has a Name

attribute. How should that be actually stored in the object? A simple approach could be to store it in a

single string. However, you could also split it in two and store first and last name separately. In that case,

the attribute that provides the full name would be responsible for combining the first and last name and

presenting it to its clients in that form. We could also do the opposite and define public access to both first

and last name. If the name was stored internally in a single string, the first and last name attributes would

be responsible for extracting the proper string and returning. Similarly, for hourly pay, which is defined as

a whole number of dollars, we could store this as a decimal and provide public access as a rounded value

as an integer.

When you design the system and decide on how to represent the data inside the objects, some

representations are clearly better than others, so you have to carefully design both the public interface and

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

5 Chapter 13: Object-Oriented Programming

the internal representation. It is much easier to combine a first and last name string into a full name than

to attempt to create rules for extracting a first and last name from a full name.

As another example, consider the PayPeriod class shown in Figure 13-2. Each PayPeriod object contains

data that allows for calculating the salary for an employee during that period. One of the items stored is

the time that the employee worked during the pay period. But what is the best way to store this value? As

whole minutes, fractional hours, or a combination of hours and minutes? This is obviously an important

decision, but for the client classes that use the PayPeriod, it is largely irrelevant, as the programmer of the

PayPeriod class could just provide methods for retrieving the time in all three formats and then have those

methods do conversions as necessary.

Figure 13-2: PayPeriod class

There are several advantages to encapsulating the implementation like this:

 It allows for conversion between different formats or units—for example, between hours and

minutes.

 It allows for having read-only and write-only attributes. There are many situations where it is

useful to restrict the ability to change the attribute of a class directly. For instance, in an Account

class you might have an attribute for the Balance on the account, but in most systems, the balance

would only be changed by performing transactions on the account, and not by setting it directly.

So, the Balance is better represented by a read-only attribute. Write-only attributes are rare in

practice but would allow for the value to be changed but not read directly.

 The software becomes easier to maintain. By having a single internal representation and

controlled access, there is only one place to make changes internally, and conversions can be

done in a single spot as well.

 You will have fewer mistakes in the code due to unintended changes of values in an object. When

access to the stored values in an object is properly protected, it is less likely to have unintended

changes or end up with inconsistent values for an object.

 You can change the implementation of a class without affecting the public interface.

6 13.3 Information Hiding (Encapsulation)

Review Questions

13.4 Imagine a Thermostat class that allows for a temperature to be set to specific values within

minimum and maximum bounds. Discuss how encapsulation can be helpful for this class, as well

as what problems might arise if data in the class were not encapsulated.

13.5 Draw a UML class diagram for the Thermostat class in the previous question.

Tutorial 1: Create an Employee Class

In this tutorial, you will create your first class and several objects from this class to be used in a payroll

system. The class is the Employee class that was mentioned above. In the context of this simplified

system, an employee will have the following attributes:

 Name—of type string

 Birthdate—of type DateTime

 Hourly salary—of type decimal

 Job title—of type string

 Tax rate—of type double (must be between 0 and 1)

Employee objects will have the following behavior:

 Given a number of hours worked during a pay period, calculate the gross salary, the tax amount,

and the net amount of money to be paid out.

Step 1-1: Start Visual Studio and create a new Windows Forms Application project called Payroll.

Step 1-2: Add the Employee class.

Right click the project in the Solution Explorer and select Add > Class…

Name the class Employee.cs and click Add.

Fields

When implementing classes, fields are variables at the class level that represent the attributes for the class

and allow for storing the values of the attributes (the state) of an object. Fields should always be marked

private. If you do not add an access modifier, C# will default to the most restricted access you could

declare for that member. This would be private for fields, but it is recommended to still add the private

key word to signal your intent clearly.

Step 1-3: Add fields to the Employee class.

Add the code shown in Figure 13-3 to the Employee class.

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

7 Chapter 13: Object-Oriented Programming

Figure 13-3: Fields of Employee class

Each of the fields declared here helps describe an Employee. Notice how they correspond to the attributes

shown in Table 13-1. When you create different objects from the Employee class, each object will have a

different set of values for the fields because each object represents a different employee.

Each field is declared using the private key word, which is a way to express that the variable cannot be

directly accessed from outside the class and that details of how the data is stored is to be kept internal to

the object. This will allow you to change the implementation without affecting the external usage of the

class.

The Constructor

The constructor is a special method that is called when creating an object from a class. The constructor

has two purposes: Create the object and initialize the fields. Creating the object happens behind the scenes

by the runtime environment when your program is running; you don’t have to do anything special in the

constructor code. However, you will have to write the code to initialize the fields, which you will see in

the next step.

The constructor takes parameters that can be used to initialize the fields. In this case, there are parameters

for each of the fields except the tax rate, which is set to a default value of 0.25 (all employees pay 25%

tax by default).

In C#, the constructor follows a specific pattern:

 Constructors are given the same name as the class.

 Constructors do not return anything (not even void).

 Each field is initialized in the constructor. If you do not explicitly initialize a field, it will get a

default value, depending on its data type (numbers become zero, strings become null, Booleans

become false, etc).

Step 1-4: Add the constructor to the Employee class.

Add the following code after the declaration of the fields, before the closing brace of the

Employee class.

8 13.3 Information Hiding (Encapsulation)

Figure 13-4: Employee constructor

The key word “this” is used to refer to the current object instance, and allows you to distinguish between

fields and parameter values, as in line 19:

this.name = name;

At first blush, this line looks a little strange, but it is actually quite simple: this.name refers to the field

name (line 11 in Figure 13-3), and the name on the right side of the equal sign refers to the parameter

name. You can see this in Visual Studio by placing the cursor inside each of the two occurrences of name.

When you click on the one on the right, the parameter is highlighted, and when you click on this.name,

the field is highlighted. It isn’t a requirement that the constructor parameters match the name of the fields,

but it is fairly common that they do.

The ToString method

It is often useful to have an object be able to provide a brief one-line description of itself. This is usually

done by implementing a method called ToString. There are technical reasons for the method to be called

ToString that will be covered later, when we discuss the concept of inheritance. For now, just add this

method to the Employee class.

Step 1-5: Add the ToString method to the Employee class.

Figure 13-5: ToString method

As you can see, the method just returns a string that includes most of the fields. The meaning of the

override key word in line 26 will also be discussed later during the coverage of inheritance.

Step 1-6: Create the user interface.

Rename Form1.cs in Solution Explorer to EmployeeForm.cs (and rename in the code as well

when you’re asked). Change the Text property of the form to Employees.

In order to demonstrate how objects are created, add a label named lblEmployee to the Form in

the project.

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

9 Chapter 13: Object-Oriented Programming

Double click the background of the form (not the label) to switch to the code view of the form. It

should look like Figure 13-6.

Figure 13-6: Initial code in the EmployeeForm class

As you can see from line 13, the Form is in fact a class, called EmployeeForm. This means that when the

program is running and the Form is being displayed, an EmployeeForm object is created. This class

currently has two methods:

1. A constructor, specified in lines 15–18, that takes no parameters and calls the method

InitializeComponent, which is created by Visual Studio to create all the user interface components in

the form. If you want to see this auto-generated code, you can right click on the method name and

select Go To Definition.

2. A method called EmployeeForm_Load, specified in lines 20–23, that takes two arguments. The

EmployeeForm_Load method is called automatically by the system when the form is loaded. There

are a number of other event handler methods that you can add to your form and insert code into to

execute code at certain times in the life cycle of a form.

Creating an Object

When creating an object, you follow a specific pattern:

ClassName variableName = new ClassName();

This line declares a variable on the left side of the equal sign and on the right side calls the constructor for

the class. The right side generates an object that is then assigned to the variable on the left side.

The key here is the use of the new key word in front of the call to the constructor. The new key word is

used to indicate that an object is created from the specified class. Let’s create our first Employee object.

Step 1-7: Create objects and display ToString.

Add the following code to the EmployeeForm_Load event handler:

DateTime birthday = new DateTime(1999, 5, 1);
Employee spongebob = new Employee("Spongebob", birthday, 10.5m, "Burger flipper");
lblEmployee.Text = spongebob.ToString();

10 13.4 Properties

This code actually creates two objects. First, a DateTime object is created for May 1, 1999. This

is assigned to the variable birthday. Then, an Employee object is created using the birthday object

and several other pieces of data. This is assigned to the spongebob variable. Finally, the ToString

method is called on the spongebob object, and the result is assigned to the Text property of the

label you added to the user interface above.

Run the program and you should see the description of the Employee object displayed on the

form, as shown in Figure 13-7.

Figure 13-7: First object created

To make sure you understand how the object is created and displayed, add a Breakpoint on the

second line of code in the EmployeeForm_Load event handler. Once the debugger stops on that

line, examine the variables available at that point.

Next, step into the Employee constructor, and see how the values are initialized in the object.

Once you return to the Form object, reexamine the variables. You should now see that the

spongebob variable has values associated with each of the fields.

Continue stepping into the ToString method, and notice that you are back in the Employee class

looking at the spongebob object.

It’s time to practice! Do Step 1-8 and Exercise 13-1 at the end of the chapter.

Step 1-8: Add a second label and create a new Employee object with different values and show the new

object on the new label.

13.4 Properties

So far, you have seen fields and methods in a class. The fields contain the state of the object, and the

methods implement the object’s behavior. Because of encapsulation, the fields are always kept private so

as not to allow other parts of the system to access the fields directly. However, in many cases we want to

be able to expose the fields and be able to read and change them in a controlled manner. For instance, it is

easy to imagine that you could create a form with controls for all the fields for the Employee class and

allow a user to enter values into the controls and assign those values to the fields. But because the fields

are private, this would not be possible. You can try right now in the program you created previously to

see if you can assign a different value to one of the variables in the spongebob object after it has been

created by adding this line after creating the object:

spongebob.name = “Spongebob Squarepants”;

You will get a syntax error from trying this, because name is declared as private in the Employee class, so

go ahead and comment out that line of code.

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

11 Chapter 13: Object-Oriented Programming

So, how can we allow the fields to remain private but still change their values? The C# language to a

large extent was created by Microsoft as an improved version of Java. The best way to understand why

C# has a concept of properties is to go back to the Java language.

In Java we would create public “getters” and “setters” to retrieve and change the field values. For the

field, name, these would look like this:

public string getName()
{
 return this.name; //return the value of the name field
}
public void setName(string value)
{
 this.name = value; //assign a value to the name field
}

If a programmer wanted to not allow for changing a field, he/she would simply not write the set method.

By keeping the fields private, access to them could be controlled through the getters and setters. For

instance, if it was necessary to do any kind of conversion, like splitting the name into last and first names,

this could be done in the getters and setters.

If you implemented these methods, you could change the name with this line of code:

Spongebob.setName(“Spongebob Squarepants”);

However, one problem with this approach is that getters and setters are not a part of the Java language;

they are merely a convention that most Java programmers follow. So, the C# language designers decided

to introduce the concept of a Property that takes the place of the getters and setters in Java. Here is a

property that provides the same functionality as the getters and setters above:

public string Name
{
 get
 {
 return this.name; //return the value of the name field
 }
 set
 {
 this.name = value; //assign a value to the name field
 }
}

This is a single construct called Name that includes a get section and a set section. The get simply returns

the value in the named field. The set uses the reserved key word value to provide the value to be stored in

the field. Just like with getters and setters in Java, you can add any valid C# code to the properties. You’re

not restricted to just assigning and returning values from fields. You could do conversions or have

properties whose values are calculated and do not have an associated field.

Once the property has been added, you can change the name in this way:

spongebob.Name = “Spongebob Squarepants”;

This is very similar to your first attempt at changing the name, but because the property is declared

public, it will actually work.

12 13.4 Properties

How do you retrieve the name? You have seen many examples throughout this book of using properties,

as they are very common with user interface controls and other parts of the .Net framework, so a single

additional example here should suffice. Imagine a form that has a label called lblName and a TextBox

named txtName:

lblName.Text = spongebob.Name;
spongebob.Name = txtName.Text;

In the first statement, the Name property of the spongebob object retrieves the value of the name field

using the get section of the property. The value is assigned to the Text property of the Label.

In the second statement, the content of the textbox is retrieved using the Text property of the txtName

object and assigned to the Name property of the spongebob object. When a value is assigned to a

property, the set section of the property is used to assign the value to the field through the value keyword

in the set section of the property. So, the content of txtName is assigned to the name field of spongebob

object.

The naming convention for properties is to change the first letter of the corresponding field to uppercase.

If you wanted to have a read-only property, you would simply leave out the set section.

Automatic Properties

One final note about properties is that very often there is a lot of boilerplate code when creating a class:

 A private field

 A public property that simply gets and sets the values for the fields

When this is the case, the field and property code can be written using a simplified version, called an

Automatic Property. Here’s the Name property from earlier using the automatic Property:

public string Name { get; set; }

This one line of code replaces the following private field and the property code:

 private string name;
public string Name
{
 get
 {
 return this.name;
 }
 set
 {
 this.name = value;
 }
}

As you can see, Automatic properties are much shorter and easier to read. The usage remains the same as

you saw above, except the field can no longer be accessed directly inside the property or in the rest of the

class.

With an automatic property, the compiler will automatically create a backing field of the correct type and

implement the standard get and set code you saw for the fully implemented property. So, the only

difference is that it is much shorter to write and to read. When you use automatic properties, you have to

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

13 Chapter 13: Object-Oriented Programming

remember that you cannot implement any conversion or other code in the get and set sections. You must

also supply both get and set, so you cannot create automatic read-only or write-only properties.

Review Questions

13.6 What are the advantages and disadvantages of automatic properties?

13.7 Why should fields always be marked as private?

13.8 Why did the C# language designers choose to introduce properties instead of getters and setters

like in Java?

Tutorial 2: User Interface and Properties

In this tutorial you will learn how to store multiple objects in a ListBox and retrieve them. This will help

you understand how to work with references to objects. By the end of this tutorial, you will have a form

where the user can enter information on an employee and click a button to create an Employee object.

Multiple Employee objects will be created and displayed in a ListBox where the user can select one to be

modified. Figure 13-8 shows the final user interface for Tutorial 2.

Figure 13-8: Final user interface for Tutorial 2

Step 2-1: Create a user interface form.

Continue working with the project from Tutorial 1. Move the Label you added earlier to the

bottom of the Employee form and add controls to the EmployeeForm in the project so it looks

like Figure 13-9.

14 13.4 Properties

Figure 13-9: Employees form

Name the controls on the right as follows (from top to bottom): txtName, dtpBirthday,

txtJobTitle, txtPayRate, and btnSave.

Step 2-2: Code the button to create an object and display it in the label:

Double click the Save button to go to the code for the form.

Comment out the code you added to the Form_Load method and add the following code to the

btnSave_Click method:

private void btnSave_Click(object sender, EventArgs e)
{
 string name = txtName.Text;
 DateTime birthday = dtpBirthday.Value;
 string title = txtJobTitle.Text;
 decimal hourlyRate = Decimal.Parse(txtPayRate.Text);
 Employee employee = new Employee(name, birthday, hourlyRate, title);
 lblEmployee.Text = "Employee: " + employee.ToString();
}

The code is fairly straightforward. First, all the values are read from the user interface; then an Employee

object is created using the new key word. Finally, the lblEmployee’s Text property is set to the result of

calling the ToString method on the employee object.

Run the program and add values to the form fields. Click the Save button, and notice that the label at the

bottom of the form is updated with information about the object, as shown in Figure 13-10.

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

15 Chapter 13: Object-Oriented Programming

Figure 13-10: Output from creating a single object

Step 2-3: To help save multiple objects, add a ListBox and add objects to the ListBox with the ToString

method.

Remove the lblEmployee label from the form and replace it with a ListBox named lstEmployees.

Now instead of adding each object to the label and losing them, we will add them to the ListBox

and explore some ways to interact with them again later.

Remove the last line of code in the btnSave_Click method and replace it with this line of code:

 lstEmployees.Items.Add(employee);

This line will add the employee object to the Items collection in the ListBox. Previously, when

you have worked with ListBoxes, you added string objects to the Items collection. In this case,

you have added an entire Employee object with several pieces of data included. However, when

the ListBox is being displayed, it will automatically call the ToString method on each of the

objects in its Items collection, and will then display the return value (string) from calling the

method.

Run the code again, and you should see that the employee objects show up one after the next in

the ListBox each time you click Save, as shown in Figure 13-8.

Step 2-4: To make it possible to change the values of the object, add properties to the Employee class.

So far, you can only add objects to the list, and there is no way to edit an existing object. To fix

this, you will have to allow the user to select an item in the ListBox and then display the values of

the fields for the object in the form. The behavior of the Save button must be changed to

recognize whether an employee has been selected and then modify the selected object rather than

create a new one. However, all the fields are private in the Employee class, so the first thing you

need to do is to expose them as properties, so you can read and modify them as needed.

16 13.4 Properties

Comment out all the fields in the Employee class except taxRate and replace them with the

following code:

//private string name;
public string Name { get; set; }
//private DateTime birthday;
public DateTime Birthday { get; set; }
//private decimal hourlySalary;
public decimal HourlySalary { get; set; }
//private string jobTitle;
public string JobTitle { get; set; }
private decimal taxRate;
public decimal TaxRate { get { return taxRate; } }

Now the code in the constructor and ToString is broken because the fields no longer exist. The properties

are declared public and as such are always named with a starting uppercase letter. The fields were private

and, as such, named with a lowercase initial letter. Because C# is case sensitive, the two are not

interchangeable.

Because the code uses automatic property for all attributes, except taxRate, there is no explicit declaration

of fields for those attributes. The taxRate field was left unchanged and a property added. We didn’t use an

automatic property for taxRate because we wanted to make it a read-only property so that the tax rate is

not allowed to be changed.

Step 2-5: Fix the problems by changing the lowercase initial letter to uppercase for each of the errors in

the constructor and ToString method (look for the squiggly red lines). See Figure 13-11 for the

updated code. Run the form to test the code.

Figure 13-11: Updated constructor and ToString method in Employee

Step 2-6: Recall the object from the ListBox and display in the user interface form.

Switch to the design view of the form and select the ListBox. Switch the Properties window to

events by clicking the lightning bolt. Then find the SelectedIndexChanged event and double click

in the field next to it (see Figure 13-12).

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

17 Chapter 13: Object-Oriented Programming

Figure 13-12: SelectedIndexChanged event for the ListBox

In the generated event handler, enter the following code:

 private void lstEmployees_SelectedIndexChanged(object sender, EventArgs e)
 {
 Employee employee = (Employee)lstEmployees.SelectedItem;
 txtName.Text = employee.Name;
 txtPayRate.Text = employee.HourlySalary.ToString();
 dtpBirthday.Value = employee.Birthday;
 txtJobTitle.Text = employee.JobTitle;
 }

The first statement in the event handler will get the item that the user selected in the ListBox

(SelectedItem property). This item, which is of type object, is then cast to an Employee and assigned to

the employee variable. The last four lines then change the user interface controls based on the values in

the object. Notice how the properties in the Employee class are used to extract the values from the object.

Items in the ListBox are stored in a collection called Items. When you add an object to that collection, the

ListBox will display it by calling the ToString method to display it in the ListBox. Since you have been

storing Employee objects, you can get that entire object back and interact with it.

A common mistake when working with ListBoxes is to add a string describing the object, such as the

name of the employee. Then, to retrieve it, you would have to get the index it was stored at to be used to

find the object in some other collection. However, this approach is error prone because it assumes that the

ListBox and the collection are kept in sync, with no objects added or deleted or any sorting applied to one

but not the other. By saving the entire object to the ListBox, it doesn’t matter what happens to the other

collection.

Step 2-7: Save object values.

Once the object is displayed in the form fields, we need to be able to save any changes the user

makes back into the object rather than have it save as a new object when the Save button is

clicked. To do this, you will use the properties again to save the values. However, first you have

to find the right object to save into. In the previous step, the employee variable only has scope

within the lstEmployees_SelectedIndexChanged method, so it cannot be accessed once that

method finishes executing. However, the object is still selected in the ListBox, so you can check

to see if an item is selected and then save the values into the selected item’s object. Otherwise, if

no object is selected, create a new object and add to the list.

The first step is to recall the object and update the properties. Revise the btnSave_Click method,

as shown in Figure 13-13.

18 13.4 Properties

Figure 13-13: Making changes to object properties

Line 44 declares a variable of type Employee, which is populated in one of two ways—either by the

employee selected in the ListBox (line 49) or as a new object (line 59).

The if statement in Line 45 checks whether an item is selected in the ListBox. If selected, the object is

retrieved (line 49) and the object values are updated with the updated data (lines 50–53); if not, a new

Employee object is created in line 59 and added as a new item to the ListBox in line 60.

If you run the program after making the changes in the above step, the ListBox doesn’t behave as it

should. When clicking Save after updating an existing employee, the corresponding employee

information displayed in the ListBox doesn’t update. So if you select an employee that has been

previously updated, the ListBox and the user interface fields won’t show the same thing. There are a few

ways to fix this, but the simplest is to keep a List (a collection) of the Employees as a field in the

EmployeeForm class. Then every time a new Employee object is created, it is added to the List, and

Employee objects in the List are updated without adding new objects. Every time the List is updated, you

can clear the items out of the ListBox and refresh with the items in the List.

Step 2-8: Refresh the ListBox.

To refresh the ListBox, first create a private field called employees at the top of the

EmployeeForm class and instantiate it in the EmployeeForm constructor as shown in line 20 of

Figure 13-14.

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

19 Chapter 13: Object-Oriented Programming

Figure 13-14: List for storing Employee objects

Line 15 declares a List that can hold Employee objects, and line 20 creates the List object.

Next, update the code in btnSave_Click as shown in Figure 13-15.

Figure 13-15: Using a List to store Employee objects

Line 60 has been replaced by line 61, which adds the newly created Employee object to the List.

Note that an object is added to the List only if it is a newly created object.

20 13.4 Properties

Lines 50–53 update the object in the selected item of the ListBox. It is important to note that if the

selected object from the ListBox is updated, there is no need to add it to the List, because both the

ListBox and List refer to the same set of objects, as explained below through Figure 13-16. When you

update an object from the ListBox, the List that refers to the same object is also updated.

Line 64 clears out any existing items from the ListBox, and line 66 then adds all the Employee objects in

the employees List to the ListBox. The AddRange method requires an array, but the List class

conveniently provides a ToArray method that returns the contents of the List as an Array. Clearing the

ListBox and Adding the entire List to the ListBox refreshes the display of the updated object in the

ListBox.

Run the program again and you should be able to manipulate existing objects and add new ones.

You can refer to Figure 13-16 to help you understand which objects are in the system and define the

relationships between them. Each box in this diagram represents an object in the system at a point in time

(and represents the situation shown in Figure 13-8). The diagram starts with the object that represents the

form itself. This object has a reference to the lstEmployees ListBox (among many other references to all

the user interface elements) as well as to the employees List. The ListBox has a reference called Items to

a ListBox.ObjectCollection, which in turn references the two Employee objects, just like the List does.

What this shows is that when the objects are inserted into both the ListBox and the List, you can retrieve

from either one and work on the object. Any changes made to the object will be reflected anywhere the

object is referenced, since there is only a single copy of the object.

Figure 13-16: Object diagram showing objects in the system

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

21 Chapter 13: Object-Oriented Programming

It’s time to practice! Do Steps 2-9 and 2-10.

Step 2-9: Add the ability to delete an Employee from the list.

Step 2-10: Change the Employee class to store both a first and last name. Then change the rest of the

code to reflect this change. (Add fields to the form and the code that interacts with the form and

the Employee objects.)

13.5 Calling Methods (Sending Messages to Objects)

The primary way to interact with an object is to call a method on it or, said in another way, to send a

message to that object. Imagine you have an Order object. You could then send messages to that object

asking for the customer who placed the order, the total value of the order (calculated by the value of each

of the related order line objects), the products in the order, etc. Because the order is an object that knows

its own state, you can ask any question related to that state—or the state of related objects.

As an example, we could send a message to an Employee object to add another pay period in this way:

emp1.AddPayPeriod(payPeriod);

This line of code calls the method AddPayPeriod on an Employee object represented by the emp1

variable passing a parameter represented by the variable payPeriod. When calling a method on an object,

you always start with a reference to the object followed by a dot and then the method name and a pair of

parentheses surrounding any parameter values.

If a method returns an object, you can then immediately call a method on that return value. This is

sometimes called dotting. Here’s an example:

emp1.ToString().ToUpper();

In this example, the ToString method is called on emp1. The resulting string is then used for the call to

ToUpper, which transforms the resulting string to uppercase letters. There is no limit to how many times

you can dot your way to making calls. However, it is sometimes advantageous to create intermediate

variables, like this:

string empString = emp1.ToString();
string upper = empString.ToUpper();

While this code does take up more space, it can be easier to read, and it allows you to examine the value

assigned to the intermediate result when debugging.

In the next tutorial you will see how you can call methods on objects and create methods in forms that can

be called.

Tutorial 3: Calling Methods and Passing Data between Forms

When testing a program, have you found it tedious to have to enter a new employee every time you

launch the program to test some new aspect of it? This can be fixed by hard coding a few Employee

objects and passing them as parameters to the form to make them available every time you launch the

program. It should be noted that hard coding data generally makes programs difficult to maintain. Here

we use it to show how to pass data to a form.

22 13.5 Calling Methods (Sending Messages to Objects)

This tutorial also illustrates how the Form class is just like any other class and can be modified to your

liking using object-oriented techniques. We will illustrate this in the tutorial by having you modify the

constructor for the Form class to accept parameters. This will allow you to select a value on one Form and

pass that value to another form to be displayed. You will also see how to pass values back from a child

form opened from a parent form. This can be done by creating a public method in the parent form and

passing a reference to the parent object to the constructor of the child form.

Passing a List of Objects to a Form

A List of Employee objects can be passed to EmployeeForm by adding the List as a parameter to the

constructor of the form.

Step 3-1: Modify Program.cs to create Employee objects, add them to a List, and pass the List to

EmployeeForm.

Open the Program.cs class and add the following lines of code at the beginning of the Main

method:

List<Employee> employees = new List<Employee>();
DateTime birthday = new DateTime(1999, 5, 1);
employees.Add(new Employee("Spongebob", birthday, 10.5m, "Burger flipper"));
birthday = new DateTime(1995, 4, 18);
employees.Add(new Employee("Squidward Tentacles", birthday, 12.56m, "Cashier"));

There isn’t much new here. The code creates a List to hold Employee objects and then creates

two Employee objects and adds them to the List.

Next, modify the last line of the Main method like this:

Application.Run(new EmployeeForm(employees));

You have added the employees List as a parameter to the constructor of the EmployeeForm class. This

will pass a reference to the List to the constructor so it can be used in the EmployeeForm. You will get a

red squiggly line because the constructor hasn’t yet been modified to accept a List. This will be fixed in

the next step.

Step 3-2: Modify the EmployeeForm constructor to work with the Employee List.

Open EmployeeForm.cs to code view. Previously, you added a field named employees (see

Figure 13-14), of type List<Employee>. Now you just need to assign the List<Employee> that is

passed from Program.cs (when the EmployeeForm object is created) to the employees field in the

EmployeeForm class. Figure 13-17 illustrates the changes that need to be made to the constructor.

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

23 Chapter 13: Object-Oriented Programming

Figure 13-17: Modified EmployeeForm constructor

This is all pretty simple. Notice that in line 17 a parameter is added to the constructor, so it

matches up with what you did in Program.cs. Then, in line 20–23, we ensure that the List has

been instantiated. Line 24 assigns the List, which is passed from Program.cs to the employees

field. Finally, in line 25, the List is added to the ListBox using the AddRange method that you

saw previously in Figure 13-15.

You may get a confusing error message that says something about inconsistent accessibility in the

constructor. This is likely because the constructor in the form is public, whereas the Employee

class doesn’t have an access modifier (public/private). If no access modifier is specified, a class is

given the access protected, which is in between public and private, and thus the class is less

accessible than the form’s constructor. Fix this, if necessary, by making the Employee class

public.

Run the program and check that the two Employees show up in the form.

Creating a Child Form and Passing Data from Parent Form

Next, we will take a look at having multiple objects interact by introducing a PayPeriod class. The idea is

that an Employee object would keep a list of PayPeriod objects, as shown in Figure 13-18.

Figure 13-18: Class diagram

24 13.5 Calling Methods (Sending Messages to Objects)

Figure 13-19 shows the code to create the PayPeriod class.

Figure 13-19: PayPeriod class

This class stores the total number of minutes worked in the pay period in the minutesWorked field. This

field is modified by the AddTime method, which is called for each period worked to add the number of

minutes to the pay period. The HoursWorked property (line 17) converts minutesWorked from integer

minutes to decimal hours by dividing the minutes by 60. This way, the implementation is kept as minutes,

but any client can request the time in fractional hours instead of minutes.

It’s also worth noting that the properties MinutesWorked and HoursWorked are read-only. The actual

time worked can only be changed by calling the AddTime method (lines 28–31). The reason for this

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

25 Chapter 13: Object-Oriented Programming

restriction is to illustrate a situation where an employee would periodically add more time to their work

record. It wouldn’t be good if the amount of time could just be set to some arbitrary number. This

approach is commonly used in transaction-oriented systems.

The properties StartDate and Employee (lines 18–19) are also read-only but cannot be changed once they

are initialized in the constructor (lines 21–26).

The relationship between the two classes is implemented through the employee field (line 14). The data

type for this variable is the Employee class. This means that each PayPeriod object has a variable that

points to an Employee object. This allows each employee to have multiple pay periods.

Step 3-3: Add PayPeriod class.

Add the code shown in Figure 13-19 to create a PayPeriod class in the project.

Step 3-4: Modify Employee class to hold PayPeriod objects.

See Figure 13-20 for what to modify in the Employee class in the next steps.

First, add a private field called payPeriods, as shown in line 18. Initialize the variable in the

constructor (line 27). This variable is a List that can hold multiple PayPeriod objects. This allows

each Employee object to easily access all the employee’s pay periods.

Figure 13-20: Employee class with List of PayPeriods

26 13.5 Calling Methods (Sending Messages to Objects)

Step 3-5: Add method to add PayPeriods to Employees.

Add the AddPayPeriod method as shown in lines 30–33. This method calls the Add method on

the List object to add a new pay period.

Passing Data to Child Form

Next, we will take a look at how you can work with multiple forms as objects and pass data back and

forth between them. Figure 13-21 shows a new form named PayPeriodForm that will be launched when

the user clicks a button on the Employees form. The information about the selected Employee will be

passed to the PayPeriodForm, where the pay periods can be added to the employee.

Figure 13-21: Employee and PayPeriodForm forms

Step 3-6: Create PayPeriod form.

Start by adding a new form named PayPeriodForm to the project.

Add the controls you see in Figure 13-21. The controls are named as follows: lblEmployee,

dtpStartDate, txtHoursWorked, btnSave, and lstPayPeriods.

Launching a child form

To launch the PayPeriodForm from Employee form, you need to add a button to the Employee form and

add the code shown in Figure 13-22 to the Click event handler of the button.

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

27 Chapter 13: Object-Oriented Programming

Figure 13-22: Launching the PayPeriodForm from the Employee form

The code will create a PayPeriodForm object in line 81 if an employee has been selected. Two parameters

are passed to the constructor: references to the selected employee as well as a reference to the

EmployeeForm object (this). Those two references will be used in the PayPeriodForm object, as you will

see later. You have a syntax error in the call to the PayPeriodForm constructor in line 81, because by

default the constructor doesn’t take any parameters. You will fix this by modifying the PayPeriodForm

constructor. Line 82 makes the Pay Period Form visible.

Step 3-7: Add a button to Employee Form, and add the code to launch the PayPeriodForm.

Switch to the EmployeeForm and add a button named btnPayPeriods with the text Pay Periods.

To launch the PayPeriodForm, double click the button in the designer and add the code shown in

Figure 13-22 to the generated method.

Step 3-8: In this step, you will add parameters to the constructor of PayPeriodForm, and add code to

display the current employee’s information in PayPeriodForm and save PayPeriod objects in the

current employee object. In addition, you will add code to display all pay periods for the current

employee in a ListBox on the PayPeriodForm.

Switch to the code for PayPeriodForm.cs and add private fields and adjust the constructor as

shown in Figure 13-23.

Figure 13-23: PayPeriodForm constructor

Next, switch to design view and double click the Save button. Then enter the code shown in

Figure 13-24 to save a PayPeriod in the current employee object.

28 13.5 Calling Methods (Sending Messages to Objects)

Figure 13-24: Saving a new PayPeriod

The method reads a fractional number of hours and converts to minutes (line 32) for storing in the

PayPeriod object. Line 33 creates a PayPeriod object, and line 34 adds that object to the employee that the

form is working on. Notice how you can call a method on an object and pass parameters to the method.

The call to updateListBox in line 36 is throwing an error because the method hasn’t been created yet; this

will happen in the next step.

Step 3-9: Update the ListBox.

Hover over updateListBox() and click the lightbulb; then select the Generate method option. This

will generate a new method. Replace the body of the method with the code shown in Figure 13-

25.

Figure 13-25: Updating the ListBox

The core of this method is a foreach loop that goes through all the PayPeriod objects in the

employee and adds a string for the pay period to the ListBox. There is one problem, as you can

see—the PayPeriods property doesn’t yet exist in the Employee class, so switch to the Employee

class and add the following read-only property:

 public List<PayPeriod> PayPeriods { get { return payPeriods; } }

 Run the program and select an employee then add some pay periods to each of the employees.

It’s time to practice! Do the following step:

Step 3-10: Modify the constructor in PayPeriodForm to display any existing pay periods for an employee

when the form is first loaded.

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

29 Chapter 13: Object-Oriented Programming

Sending Messages to the Parent Form

You have seen how to pass data from a parent form to a child form as a parameter in the constructor. But

what about the other way—how can you pass information back or call methods in the parent form if

needed? Passing data back to the parent form is as simple as modifying a reference to an object on the

child form. If the parent form also has a reference to the object, then the changes will be available on the

main form without any further action. This is what you did in the previous part of the tutorial; every time

you added a PayPeriod to an Employee on the child PayPeriodForm, that change was automatically

reflected on the parent EmployeeForm because both the parent and child forms had references to the

Employee object.

The following is an example of how to call a method on a parent form. Some of the work is already done.

To launch the PayPeriodForm from Employee form, you added a button to the Employee form, and added

the code shown in Figure 13-22 to the Click event handler of the button.

In Figure 13-22 and Figure 13-23, you set up a reference in the child form to the parent form. That

reference can then be used to access any public method or property from the child form.

What you will do in this tutorial is calculate the average gross income for all employees year-to-date and

then display the difference between the average and the income for the employee that is currently

displayed on the PayPeriod form. To do this, you first need to add a method to the Employee class that

will calculate the YTD gross income for one employee:

public decimal YTDGross()
{
 decimal result = 0m;
 foreach (PayPeriod p in payPeriods)
 {
 if (p.StartDate.Year == DateTime.Now.Year)
 {
 result += p.GrossPay();
 }
 }
 return result;
}

This method follows a fairly standard pattern for working with collections of objects. It uses a foreach

loop to go through all the objects in the collection and then compares the year of the start date to the

current year. If they match, the pay period’s gross pay is added to a temporary variable, whose value is

returned when the loop has gone through all the pay periods.

Step 3-11: Calculate the year to date gross income for an employee.

 Add the code to create the YTDGross method shown above.

Next, call this method to compute the average gross income.

30 13.5 Calling Methods (Sending Messages to Objects)

Step 3-12: Calculate average gross income.

Add the following method to EmployeeForm.cs:

public decimal YTDAverageGross()
{
 decimal sum = 0m;
 foreach (Employee e in employees)
 {
 sum += e.YTDGross();
 }
 return sum / (decimal)employees.Count;
}

This method follows a similar pattern by going through all the Employee objects in the employee

collection and calling the method you just created to calculate the average gross income.

Step 3-13: Display averages on the PayPeriod form.

Add a Label below the ListBox on the PayPeriod form and name it lblCompareAverage. Leave

the Text property blank.

Add lines 49–50 in Figure 13-26 to the updateListBox method in PayPeriodForm.cs.

Figure 13-26: Comparing the averages

Line 49 makes a call on the parent object to the YTDAverageGross() method that you created in

EmployeeForm. Line 50 then calls the YTDGross() method that you created in the Employee

class and calculates the difference between the two values, which is then displayed on the form.

Run the program and observe how the average is calculated and updated as you switch between

the forms, and add pay periods to each of the employees.

It’s time to practice! Do exercises 13.8, 13.9, and 13.10 at the end of the chapter.

The following figures contain the full code for the project in Tutorial 3.

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

31 Chapter 13: Object-Oriented Programming

Figure 13-27: Program.cs

static class Program
{
 /// <summary> The main entry point for the application. </summary>
 [STAThread]
 static void Main()
 {
 List<Employee> employees = new List<Employee>();
 DateTime birthday = new DateTime(1999, 5, 1);
 employees.Add(new Employee("Spongebob", birthday, 10.5m, "Burger flipper"));
 birthday = new DateTime(1995, 4, 18);
 employees.Add(new Employee("Squidward Tentacles", birthday, 12.56m, "Cashier"));

 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new EmployeeForm(employees));
 }
}

Figure 13-28: Employee.cs

public class Employee
{
 public string Name { get; set; }
 public DateTime Birthday { get; set; }
 public decimal HourlySalary { get; set; }
 public string JobTitle { get; set; }
 private decimal taxRate;
 public decimal TaxRate { get { return taxRate; } }

 private List<PayPeriod> payPeriods;
 public List<PayPeriod> PayPeriods { get { return payPeriods; } }

 public Employee(string name, DateTime birthday, decimal hourlySalary, string jobTitle)
 {
 this.Name = name;
 this.Birthday = birthday;
 this.HourlySalary = hourlySalary;
 this.JobTitle = jobTitle;
 taxRate = 0.25m;
 payPeriods = new List<PayPeriod>();
 }

 public void AddPayPeriod(PayPeriod payPeriod)
 {
 payPeriods.Add(payPeriod);
 }

 public override string ToString()
 {
 return string.Format("Name: {0}, Birthday: {1:d}, Hourly Salary: {2:c}, Job Title: {3}",
 Name, Birthday, HourlySalary, JobTitle);
 }

 public decimal YTDGross()
 {
 decimal result = 0m;
 foreach (PayPeriod p in payPeriods)
 {
 if (p.StartDate.Year == DateTime.Now.Year)
 {
 result += p.GrossPay();
 }
 }
 return result;
 }

32 13.5 Calling Methods (Sending Messages to Objects)

 public decimal YTDTax()
 {
 return YTDGross() * taxRate;
 }

 public decimal YTDNet()
 {
 return YTDGross() - YTDTax();
 }
}

Figure 13-29: EmployeeForm.cs

public partial class EmployeeForm : Form
{
 private List<Employee> employees;

 public EmployeeForm(List<Employee> employees)
 {
 InitializeComponent();
 if (employees == null)
 {
 employees = new List<Employee>();
 }
 this.employees = employees;
 lstEmployees.Items.AddRange(employees.ToArray());
 }

 private void btnSave_Click(object sender, EventArgs e)
 {
 //Grab values from the form
 string name = txtName.Text;
 DateTime birthday = dtpBirthday.Value;
 string title = txtJobTitle.Text;
 decimal hourlyRate = Decimal.Parse(txtPayRate.Text);
 Employee employee;
 if (lstEmployees.SelectedIndex >= 0)
 {
 //If an employee is selected in the ListBox, get reference
 //to that employee and update the properties
 employee = (Employee)lstEmployees.SelectedItem;
 employee.Name = name;
 employee.Birthday = birthday;
 employee.JobTitle = title;
 employee.HourlySalary = hourlyRate;
 }
 else
 {
 //If no employee is selected, create a new Employee object
 //based on values in the form.
 employee = new Employee(name, birthday, hourlyRate, title);
 //lstEmployees.Items.Add(employee); //Add new objext to ListBox
 employees.Add(employee); //Add new object to collection
 }
 //Clear all items from the ListBox
 lstEmployees.Items.Clear();
 //Add all items from the employees collection to the ListBox
 lstEmployees.Items.AddRange(employees.ToArray());
 }

 private void lstEmployees_SelectedIndexChanged(object sender, EventArgs e)
 {
 Employee employee = (Employee)lstEmployees.SelectedItem;
 txtName.Text = employee.Name;
 txtPayRate.Text = employee.HourlySalary.ToString();
 dtpBirthday.Value = employee.Birthday;
 txtJobTitle.Text = employee.JobTitle;
 }

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

33 Chapter 13: Object-Oriented Programming

 private void btnPayPeriods_Click(object sender, EventArgs e)
 {
 Employee employee = (Employee)lstEmployees.SelectedItem;
 if (employee != null)
 {
 PayPeriodForm payPeriodForm = new PayPeriodForm(employee, this);
 payPeriodForm.Show();
 }
 }

 public decimal YTDAverageGross()
 {
 decimal sum = 0m;
 foreach (Employee e in employees)
 {
 sum += e.YTDGross();
 }
 return sum / (decimal)employees.Count;
 }

}

Figure 13-30: PayPeriod.cs

public class PayPeriod
{
 //Instance variables:
 private int minutesWorked;
 private DateTime startDate;
 private Employee employee;
 //Properties:
 public int MinutesWorked { get { return minutesWorked; } }
 public decimal HoursWorked { get { return minutesWorked / 60m; } }
 public DateTime StartDate { get { return startDate; } }
 public Employee Employee { get { return employee; } }
 //Constructor:
 public PayPeriod(int minutesWorked, DateTime startDate, Employee employee)
 {
 this.minutesWorked = minutesWorked;
 this.startDate = startDate;
 this.employee = employee;
 }
 //Methods:
 public void AddTime(int minutes)
 {
 minutesWorked += minutes;
 }

 public decimal GrossPay()
 {
 return HoursWorked * employee.HourlySalary;
 }

 public decimal TaxWithholding()
 {
 return GrossPay() * employee.TaxRate;
 }

 public decimal NetPay()
 {
 return GrossPay() - TaxWithholding();
 }
}

34 13.6 Introduction to Inheritance

Figure 13-31: PayPeriodForm.cs

public partial class PayPeriodForm : Form
{
 private Employee employee;
 private EmployeeForm parent;

 public PayPeriodForm(Employee employee, EmployeeForm parent)
 {
 InitializeComponent();
 this.employee = employee;
 this.parent = parent;
 lblEmployee.Text = employee.ToString();
 updateListBox();
 }

 private void btnSave_Click(object sender, EventArgs e)
 {
 Decimal hours;
 if (Decimal.TryParse(txtHoursWorked.Text, out hours))
 {
 DateTime startDate = dtpStartDate.Value;
 int minutesWorked = (int)Math.Round(hours * 60);
 PayPeriod pp = new PayPeriod(minutesWorked, startDate, employee);
 employee.AddPayPeriod(pp);
 updateListBox();
 }
 }

 private void updateListBox()
 {
 lstPayPeriods.Items.Clear();
 foreach (PayPeriod pp in employee.PayPeriods)
 {
 string pString = String.Format("{0:d} // {1} hours // Gross: {2:c} // Tax: {3:c} // Net: {4:c} // ",
 pp.StartDate, pp.HoursWorked, pp.GrossPay(), pp.TaxWithholding(), pp.NetPay());
 lstPayPeriods.Items.Add(pString);
 }
 decimal average = parent.YTDAverageGross();
 lblCompareAverage.Text = string.Format("{0:c}", employee.YTDGross() - average);
 }
}

13.6 Introduction to Inheritance

In programming, we often need to modify already created code to add additional features or behaviors.

For instance, having created a payroll system with an Employee class, we might recognize that there are

significant differences in how salary is calculated between salaried and hourly employees. While we

could add a variable to the class to hold the type of employee, the calculations would become rather

complex, with many if statements checking on which type the employee is. A better approach is to use the

concept of inheritance.

Inheritance allows us to extend the functionality of an existing class by inheriting from that existing class.

This allows us to modify some parts of a class and keep other parts intact. Conceptually, inheritance

allows us to describe relationships between different classes. We can use inheritance to express that some

entity is a specialized version of another entity. For instance, we can say that a Dog is a specialized

version of Mammal, which itself is a specialized version of Animal. In this way, we create a hierarchy of

classes (see Figure 13-32).

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

35 Chapter 13: Object-Oriented Programming

Figure 13-32: Inheritance hierarchy

As you look at the relationship between two adjacent classes in the hierarchy, you can see the lower one is

a more specialized version of the class above it—a Snake is a Reptile with additional characteristics that

are not common to all Reptiles. Similarly, a Reptile is an Animal. Of course, it follows from this that

Snakes are Animals. This relationship is often referred to as an is-a relationship (the lower class is-a

higher class). We also say that the higher-level class is a superclass of the lower-level class, which is a

subclass. In C#, the superclass is also called a base class. In UML diagramming, the inheritance

relationship is shown with an empty triangle pointing to the superclass.

The is-a relationship exists between classes, not between objects. It expresses that all Dolphins are

Mammals and thus have all the properties and behaviors described by Mammal. The alternative to

inheritance is object composition or aggregation, where one object is made up of other objects. For

instance, a car might be said to be made up of four wheels, an engine, two or more doors, etc. Object

composition is implemented with a variable in one class, holding a reference to one or more objects of a

different class as you saw with the relationship between Employee and PayPeriod in the previous section.

In object composition, multiple objects exist to represent the relationship.

However, with inheritance, only a single object is created, even when the object is of one of the

subclasses. If a Dog object is created, there will not be a Mammal object or Animal object. However, the

Dog will contain all the properties and methods implemented in the Mammal and Animal classes.

Review Questions

13.9 Indicate whether the following concepts represent inheritance. If so, which is the superclass and

which is the subclass?

 Oven and Kitchen

 Rectangle and Square

 Vehicle and Truck

 Batman and Superhero

 Student and Person

36 13.7 Implementing Inheritance

 Student and Employee

 Order and Customer

 Ferrari and Engine

13.10 Identify at least two subclasses for each of the following classes:

 Car

 Student

 Order

 Account

 Book

 Person

13.7 Implementing Inheritance

Returning to our example, consider the Employee class and two subclasses, as shown in Figure 13-33.

This simplified hierarchy has two subclasses of Employee: HourlyEmployee and SalariedEmployee. We

will use this hierarchy to calculate the gross pay (before any deductions, taxes, etc.) for each of the two

types of employees. Hourly Employees’ gross pay is calculated as the number of hours worked multiplied

by the hourly pay rate, whereas the gross pay for Salaried Employees is calculated based on the annual

salary and the number of days in the pay period. To keep things simple, we will use a two-week pay

period and assume fifty-two weeks in a year.

Figure 13-33: Employee inheritance hierarchy

When implementing inheritance, you specify that the subclass inherits from the superclass as shown in

line 1 of Figure 13-34. The superclass is specified after the class name, separated by a colon.

Any constructor in a subclass must call a superclass constructor. This is done in the signature line of the

constructor, where you put a colon and then the method name base (line 11). Notice that parameters show

that this constructor in Subclass takes a string and an integer as parameters. The int parameter is then

passed to the constructor in Superclass, which would use it to initialize some field declared in SuperClass.

We can thus infer from this that Superclass has a constructor that takes a single integer. If you need to call

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

37 Chapter 13: Object-Oriented Programming

a specific method in the superclass, you can use the key word base in a similar way to the key word this,

as shown in line 18.

Figure 13-34: Implementing a subclass

The next tutorial will show how to implement the employee Inheritance hierarchy.

Tutorial 4: Creating Subclasses

In this tutorial you will create a superclass and several of its subclasses to give you some good experience

with inheritance.

Step 4-1: Create a project and classes.

Start by creating a new Visual Studio Windows Forms project named Payroll-Inheritance. Once

the project is created, add the following three classes by right clicking the project folder in

Solution Explorer: Employee, HourlyEmployee, and SalariedEmployee.

Step 4-2: Implement Employee class.

Refer to Figure 13-35 for implementation of the Employee class. This class is very simple, with

an automatic property for name and a constructor that initializes the name property.

Figure 13-35: Employee class code

Step 4-3: Set up inheritance in SalariedEmployee.

Switch to SalariedEmployee class and implement the class as shown in Figure 13-36.

38 Tutorial 4: Creating Subclasses

You’ll note that this class does not have a property to store a name, but as you will see later, this

is available through the Employee class. Line 9 specifies that Employee is the superclass of this

class. Note that the SalariedEmployee class doesn’t have a property for name.

Line 12 has the call to the constructor in Employee, passing the name parameter on to the

superclass. Notice the difference between the two sets of parentheses in line 12: The first one

declares two parameters—that is, it specifies that this constructor takes a string and a decimal.

However, the second set contains a value passed to the constructor in Employee. Even though it

looks a little strange with that “base” key word, this is just a regular call to the superclass

constructor. As such, we could have specified any string for the parameter passed to the

superclass, or even written one, like “Smith,” directly in the code. It is common that, in addition

to taking parameters for its own fields, a subclass constructor also takes all the parameters of its

superclass and simply passes them through.

Figure 13-36: SalariedEmployee code

Step 4-4: Instantiate objects.

Switch to the Program.cs and add the following two lines of code at the beginning of the Main

method, which will create two separate objects: an Employee object and a SalariedEmployee

object.

Employee emp1 = new Employee("Spongebob");
SalariedEmployee salEmp2 = new SalariedEmployee("Clark Kent", 45000);

It is assumed that Spongebob is neither a salaried nor an hourly employee. If, for example,

Spongebob was a salaried employee, you won’t create a superclass (Employee) object for

Spongebob. You only would create a subclass (SalariedEmployee) object, as in the case of Clark

Kent.

Add a breakpoint in the first of the two lines above and start the debugger (F5). Once you hit the

breakpoint, click on Step Into (F11) and you should find that execution has moved to the

Employee class. You can step through the program and notice that everything works as it

normally does when creating an object. The string “Spongebob” gets assigned to the Name

property inside the constructor.

Continue stepping until you get back to Main; then step into the constructor for

SalariedEmployee. In the constructor, execution will move to the end of line 12 as shown in

Figure 13-37. Pay attention to the values in the name variables. They should be the same—

namely, “Clark Kent” as was entered when the object was created in the Main method. If you

expand this in the Locals window, you should also see that Name is defined in this object, even if

it isn’t in the code of SalariedEmployee. However, because it is in the superclass, it shows up

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

39 Chapter 13: Object-Oriented Programming

here. It’s important to note that when a SalariedEmployee object is created, there isn’t a

corresponding Employee object. With inheritance, only one object is created, but this object

contains all the properties of its superclass.

Figure 13-37: Debugging SalariedEmployee

Keep clicking Step Into in the debugger until you find yourself in the Employee class where the

Name property is set to Clark Kent. Expand this again, and note that even though you are in the

Employee class, you can still see the AnnualSalary property, because you are really in the middle

of creating a SalariedEmployee object, and not an Employee object. As you continue, you will

return to the SalariedEmployee constructor where AnnualSalary is initialized to 45,000.

When you are back in the Main method, examine the two objects, carefully noting that both the

Employee object and the SalariedEmployee object contain a Name property but only

SalariedEmployee contains an AnnualSalary property. Once you have examined the two objects,

you can click the Stop debugging button.

Repeat the debugging until you are comfortable with the relationship between the classes and

objects created.

Now that you have a good understanding of how subclasses work, we add a second subclass to

see how two different subclasses inherit common elements from their superclass but can add their

own special elements.

Step 4-5: Implement HourlyEmployee.

Use the class diagram in Figure 13-33 as a guide in implementing the HourlyEmployee class

(code is in Figure 13-38).

Start by making the class a subclass of Employee (line 9). Then add the PayRate property and the

private field, minutesWorked. These are the pieces of data needed to be stored for the

HourlyEmployee objects, which are different from both Employee and SalariedEmployee.

Next, following the example of what you did with SalariedEmployee, create the constructor (lines

14–18), passing the name to the superclass constructor and setting the property and field values.

40 Tutorial 4: Creating Subclasses

Finally, add the two methods specific to the HourlyEmployee class. AddTime (lines 20–23)

updates the minutesWorked field by adding the value of minutes parameter to the existing value

of minutesWorked. HoursWorked (lines 25–28) converts the minutes worked and returns as

fractional hours worked.

Figure 13-38: Code for HourlyEmployee class

Step 4-6: Test HourlyEmployee class.

Open Program.cs and add the following three lines of code following the creation of the

SalariedEmployee object that you added previously:

HourlyEmployee hourlyEmp3 = new HourlyEmployee("Batman", 40.0m);
hourlyEmp3.AddTime(30);
decimal hours = hourlyEmp3.HoursWorked();

The first line creates an HourlyEmployee object in the same way that you created a

SalariedEmployee object previously. The second line calls the AddTime method on this object,

and the last line calls the HoursWorked method on the object.

Remove your previous breakpoint; then place a new breakpoint on the first of these lines, and use

the debugger to step into each of the method calls to ensure you understand which code gets

called and the result. Note again that no Employee object is created and that the SalaredEmployee

and HourlyEmployee objects are entirely independent of each other. Changing the state of the

hourlyEmp3 object has no impact on the state of the salEmp2 object.

It’s also important to note that you cannot call the AddTime and hoursWorked methods on the

emp1 and salEmp2 objects, as those methods are declared in the HourlyEmployee class.

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

41 Chapter 13: Object-Oriented Programming

Try it by adding these lines to the Main method:

emp1.AddTime(60);
decimal h2 = emp1.HoursWorked();
salEmp2.AddTime(90);
decimal h3 = salEmp2.HoursWorked();

You will get red squiggly lines and error messages saying that Employee and SalariedEmployee

don’t contain a definition for the methods you’re trying to call. This means that you cannot call

methods declared in an object’s subclasses or an object’s sibling classes.

However, you can call methods that are declared in a superclass (as long as they are declared

public). Comment out the four lines you just added and add these lines instead:

string n1 = emp1.Name;
string n2 = salEmp2.Name;
string n3 = hourlyEmp3.Name;

You shouldn’t get any syntax errors, and if you use the debugger and step through, you will see

that n1, n2, and n3 get the Name values for each of the three object (Spongebob, Clark Kent, and

Batman).

It’s Time to Practice! Do the following steps.

Step 4-7: Create a Person class as a superclass of Employee; then move the Name property to Person.

Note that you should not need to make any changes outside of the Employee and Person classes

to have the system function as it did before.

Step 4-8: Add a Customer class as a subclass of Person. Include a property for a Credit Limit. (Each

customer may be able to buy up to their credit limit before having to pay.) Create several

Customer objects and display on the form.

13.8 Using Subclasses and Superclasses

When you have superclasses and subclasses, you can start doing some more flexible things with variables.

For instance, as you have just seen, you can call on properties (and any other public methods) declared in

a superclass as if they were declared in the same class as the current object. However, this can be taken

further. You can in fact declare a variable to be of a superclass type but then assign that variable an object

that is of a subclass type, like this:

Employee employee;
employee = new HourlyEmployee("Batman", 40.0m);
employee = new SalariedEmployee("Clark Kent", 45000);

Here you see a variable, employee, that is of the declared type Employee, but is assigned first an

HourlyEmployee object and then a SalariedObject. When you declare objects like that, you can call any

method on the object that is available in the declared type of the variable. So in the above example, you

would be able to call on the Name property but not HoursWorked or AddTime—even when it’s the

HourlyEmployee object that is assigned to the variable. Thus, this method is appropriate when you work

with subclass objects and need to use the properties and methods only on the superclass.

One common usage for this is to declare a generic collection to hold objects of a supertype and then at

runtime be able to add a mix of subtype objects to the collection and call methods available in the

42 13.9 Overriding Methods

superclass on all or some of the objects in the collection. For instance, you might have a collection like

this, containing the emp1, salEmp2, and se3 objects that were declared in the previous tutorial:

List<Employee> employees = new List<Employee>();
employees.Add(emp1);
employees.Add(salEmp2);
employees.Add(hourlyEmp3);

With a collection like this, you can have a loop that goes through all the objects in the collection and takes

some action for all of them. For instance, if we wanted to create a list of all the names of the employees,

we could have a loop like this:

string names = "";
foreach(Employee e in employees)
{
 names += e.Name + " ";
}

This goes through all the items in the List and then accesses the Name property for each one. Since all the

objects in the list are subclasses of Employee, which has the Name property, this will work.

13.9 Overriding Methods

Sometimes a subclass may need to modify the behavior of a method in a superclass. This is called

overriding. Overriding allows you to specify more specific behavior in a subclass. Often you can specify

at a superclass level that a particular behavior is needed, but you cannot specify how this behavior will be

implemented in a subclass. For instance, in the animal example earlier in the chapter, we could specify

that all animals must have a Move behavior, but each kind of animal will have very different ways of

moving, so the implementation of the Move behavior will be different in each class. For employees, you

will see in the next tutorial that all employees will have a way to calculate how much money they get paid

out for a pay period, but the calculation is done differently depending on whether someone is an hourly or

salaried employee.

In order to override a method, you write the same method signature in the subclass that you had in the

superclass but add the key word override. It is common to override the ToString method, which is

actually implemented in a class called object—an implicit superclass of every other class. So, in the

Employee class, we might have this ToString method:

public override string ToString()
{
 return Name;
}

The ToString method in HourlyEmployee could look like this:

public override string ToString()
{
 return base.ToString() + " Pay Rate: " + PayRate;
}

Both of these methods override the version of the method implemented in the superclass. It isn’t

necessary to have a version in the immediate superclass. If Employee didn’t implement ToString,

HourlyEmployee could still implement it and would then override the Object version.

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

43 Chapter 13: Object-Oriented Programming

Note the call to base.ToString() in the HourlyEmployee version. This calls the method in the superclass.

So in this case, the HourlyEmployee ToString method would return the Name along with the pay rate.

The key word base works much like the key word this, except that base refers to the superclass and this

refers to the current object. The key word base is used in two different ways: as a way to call the

superclass constructor from the subclass constructor and as a way to access any method or property in the

superclass.

If the ToString method is implemented in both the Employee class and its subclasses, you might be

confused as to which version of the method is actually called at runtime. This is especially confusing if a

variable is declared of the supertype but you assign an object of a subtype. For instance, assume you have

implemented ToString in Employee and HourlyEmployee, as discussed above, but not in

SalariedEmployee. What will happen in the following code?

Employee employee;
string empStatus;
employee = new HourlyEmployee("Batman", 40.0m);
empStatus = employee.ToString();
employee = new SalariedEmployee("Clark Kent", 45000);
empStatus = employee.ToString();

Here we declare a variable employee of type Employee but then assign an object of type HourlyEmployee

to that variable (which works because HourlyEmployee is a subclass of Employee). Then we call

ToString on the employee variable and assign it to the string empStatus. After that, we assign a

SalariedEmployee object and call ToString again. While the two lines with the call to ToString are

identical, they will produce different outputs because the actual objects assigned to employee are

different.

When you call an overridden method, the runtime environment will always look for the implementation

of the method defined in the class in the inheritance hierarchy that is closest to the actual object at

runtime. Thus, the first call to ToString will call the version in HourlyEmployee, but the second version

will call the version in Employee because SalariedEmployee class doesn’t override the ToString method.

Rules for Overriding Methods

When you create an overridden version of a method in a subclass, you have to follow a few rules:

 The methods must have the same signature—the same method name and the number and types of

arguments must be the same.

 The return types have to be the same.

 The access modifier (public, private, protected) has to be the same.

 The overridden method must include the override key word.

Overriding versus Overloading

Overriding is often confused with overloading, as both are ways to create different implementations of a

method with the same name. The big difference between the two is that overriding only occurs when a

subclass implements the same method as a superclass. Overloading, meanwhile, allows you to have

methods with the same name in the same class. However, when overloading, you must give the methods

different signatures—that is, the number and/or types of parameters for the methods must be different

44 13.9 Overriding Methods

enough that the compiler can determine which one is intended to be called. With overloading, you can

also provide different return types and can have different access modifiers.

Review Questions

13.11 If class A is a superclass of class B, which is a superclass of class C, which of the following are

allowed?

 A q = new A();

 A x = new B();

 B y = new A();

 C z = new A();

13.12 Given the classes (A, B, C) in the previous question, explain why the following is allowed:

List<A> letters = new List<A>();

letters.Add(new A());

letters.Add(new B());

letters.Add(new C());

13.13 Given the classes (A, B, C) in the previous question, if class B implements a method P that is

overridden in C, which version (in B or C) will be called in each of the following code snippets?

C c = new C();

c.P();

A a = new B();

a.P();

B b = new C();

b.P();

13.14 Given the classes (A, B, C) in the previous question, if class A implements a method Q that is

overridden in C (but not in B), which version (in A or C) will be called in each of the following

code snippets?

C c = new C();

c.Q();

A a = new B();

a.Q();

B b = new C();

b.Q();

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

45 Chapter 13: Object-Oriented Programming

Tutorial 5: Implementing the GrossPay Method

Let’s return to the Employee example and the GrossPay method, which we discussed earlier. The

GrossPay method will calculate the gross pay for a single two-week pay period for an employee.

However, this calculation is done differently, depending on whether the employee is an hourly or salaried

employee.

When we are done, we would like to be able to add both types of Employees to a collection and calculate

the gross pay for all of them, regardless what type they are, with code that might look like this:

decimal totalGrossPay = 0m;
foreach (Employee emp in employees)
{
 totalGrossPay += emp.GrossPay();
}

We first have to determine which class(es) to implement the GrossPay method in. We have several

options:

 In the Employee class only—With this option, we can’t distinguish between the different kinds of

employees in order to provide a different implementation of the method.

 In the HourlyEmployee and SalariedEmployee classes—This allows us to provide different

implementations, but then the loop above wouldn’t work and we can’t have a collection with both

types of employees.

Both of these options could be made to work, but the code becomes much less elegant and harder to

maintain. A third option is

 Implement the method in Employee and each of the two subclasses—This allows for collections

of both types of employees, and different implementations for the two types of employees, and

the loop above will work.

There is only one drawback to this last option: We can’t provide a meaningful implementation for the

method in the Employee class, since we don’t have any information about salary, hours worked, etc.

in an object of type Employee. We could simply have this method return a predefined value (perhaps

zero or a large negative value) as a signal that the method is undefined, but if the method is used in

calculating statistics across many employees, this will likely not be noticed and the statistics will be

off.

One solution to this dilemma is to declare that the method is abstract. When a method is abstract, no

implementation is provided and only the method signature is included in the class. It would look like

this for GrossPay in Employee:

public abstract decimal GrossPay();

Notice the key word abstract, indicating that the method is abstract, with the semicolon at the end of

the method indicating there is no body to this method.

46 Tutorial 5: Implementing the GrossPay Method

Step 5-1: Add GrossPay method in Employee class.

Go ahead and add the abstract GrossPay method as shown above to the Employee class. You will

get a red squiggly line under the GrossPay method name. This is because once you have an

abstract method in a class, the class itself must also be declared abstract.

When a class is abstract, you cannot create objects from this class. But in this case, that is exactly

what we want. We were unable to provide an implementation of the GrossSalary method in the

Employee class because we didn’t have any data to allow us to make the calculation. This is a

strong indication that we would never create Employee objects, but always either

HourlyEmployee or SalariedEmployee objects—that is, we assume that every employee is

salaried or hourly.

Step 5-2: Make Employee abstract.

Add the abstract key word to the class declaration line, like this:

public abstract class Employee

Step 5-3: Add GrossPay to the SalariedEmployee class.

Switch to SalariedEmployee.cs and you will notice that this class has an error. This is because

when you inherit from an abstract class, which this class does, now that you made Employee

abstract, you must either declare the subclass abstract or provide an implementation for all

abstract methods.

Add the following method anywhere in the SalariedEmplyee class:

public override decimal GrossPay()
{
 return AnnualSalary / 52 * 2;
 //Gross pay is simply two weeks of annual salary (52 weeks in a year)
}

Step 5-4: Implement GrossPay in HourlyEmployee.

Add the following code to HourlyEmployee.cs:

public override decimal GrossPay()
{

 return HoursWorked() * PayRate;
}

You also need to make sure the Person class’s access modifier is set as public, since you made the

Employee class public. (A superclass can never be less accessible than any of its subclasses.)

If you build the system now, you may get some errors if you have created any Employee objects

anywhere. Go through and comment all those lines out so the system builds. You might find some

of these in the Main method in Program.cs.

Step 5-5: Test the inheritance structure.

To test the system, we will create a number of hourly and salaried employee objects, then

calculate the total and average gross pay across all the employees and output this to Labels on a

form. Start by adding the code in Figure 13-39 to the Main method in Program.cs to set up the

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

47 Chapter 13: Object-Oriented Programming

data to be used for the test. Note that Form1.cs has been renamed to

EmployeeInheritanceForm.cs.

Figure 13-39: Creating test data for inheritance

In this code, you start by setting up a random number generator (line 17) that will be used to generate

random numbers for test purposes.

The names for the employees are put into an array (lines 19–20) and a loop (lines 21–37) generates an

employee object for each name. This object is declared in line 23 and added to the list in line 36. We

picked an arbitrary limit of seven characters in the name to determine if the employee is an hourly or

salaried employee.

For hourly employees (lines 26–29), the pay rate is determined as a random number between 10 and 30.

In line 28, a random number of minutes is added to the employee to have worked. Because we need to

call AddTime on the hourly employee, we can’t use the variable e, which is of type Employee. As

discussed earlier, you can assign an object of a subclass to a variable of a superclass type, but in that case

you can only use the methods and properties defined in the superclass. So, we declare a variable of the

type HourlyEmployee (line 27). Line 29 then assigns the HourlyEmployee to the Employee variable. This

works because Employee is a superclass of HourlyEmployee.

For salaried employees, we just need to determine a salary, which is determined as a random integer

between 40,000 and 80,000.

Line 41 has been modified to call the EmployeeInheritanceForm constructor with the employees list as an

argument. However, because the constructor hasn’t been modified yet, you will get an error.

48 Tutorial 5: Implementing the GrossPay Method

Step 5-6: Modify Form constructor.

Switch to EmployeeInheritanceForm.cs and add the code as shown in line 15, 17, and 19 in

Figure 13-40. Line 15 sets up a field to hold the list of employees that is passed into the

constructor (line 17) and assigned in line 19.

Figure 13-40: Code in EmployeeInheritanceForm

Step 5-7: Set up Form for output.

Open the Form in design view and add seven labels, as shown in Figure 13-41.

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

49 Chapter 13: Object-Oriented Programming

Figure 13-41: Form design for testing inheritance

Step 5-8: Implement code for output.

Switch back to the code file and add the three methods shown in lines 28–51 and the rest of the

constructor in lines 22–25 in Figure 13-40.

The most interesting thing here is the totalGrossPay method, as it illustrates how you can use inheritance

to write very simple code that does something fairly powerful. The core of the method is a loop over the

list of employees. On each Employee object, we call the method GrossPay, which returns the gross pay

for that employee. However, remember that there is no implementation of the GrossPay method in the

Employee class, so this will call the version in either SalariedEmployee or HourlyEmployee. Since the

employees list contains both salaried and hourly employees, at runtime, the proper version of the method

will be chosen based on the actual type of the object in the list. Note that because the Employee class is

abstract, there could not be any plain Employee objects that aren’t either salaried or hourly.

Step 5-9: Run program to test.

Run the program and you should see output similar to Figure 13-42. Notice that your salary

numbers will be different since they are randomly generated.

It’s time to practice! Do the following step:

Step 5-10: To ensure you understand what is happening, set a breakpoint in line 30 of Figure 13-40 and

step through the code and into the GrossPay method. Notice that you will go into

HourlyEmployee for some objects and SalariedEmployee for other objects.

50 13.10 Polymorphism

Figure 13-42: Output from testing inheritance

13.10 Polymorphism

We have been discussing the concept of polymorphism, which means “many forms.” This works in a

couple different ways here. First, an object can be considered to be of several different types, both its

declared type and the actual type, which could be of a subclass of the declared type, as you saw when you

created HourlyEmployee and SalariedEmployee objects and assigned them to an Employee variable.

Second, you also used polymorphism when you defined a method in a superclass and an overridden

version in the subclass. You saw how the actual method called was the one in the actual type of the

object. For example, in line 33 of Figure 13-40, the GrossPay method that called for an hourly employee

was the method in the HourlyEmployee class and the method that called for a salaried employee was the

one in the SalariedEmployee class, even though the declared type was Employee. The process used to

determine the actual method called is called polymorphic dispatch.

Polymorphism is one of the most powerful concepts of inheritance. It allows you to create objects of

different types and call a method on all of them, but have the actual action taken be different depending

on the actual type of the object, as you saw when calculating the total gross pay across all employees

above.

We have covered a number of object oriented principles and techniques in this chapter. As you have seen,

it allows you to write very powerful and simple code. But we have only scratched the surface of what you

can do with it—and have even left a good number of topics out in order to simplify the coverage and keep

the page number reasonable in a single chapter. We encourage you to continue studying and using the

object oriented material you have learned here to further improve your coding skills.

Fundamentals of C# Programming for Information Systems by Philip & Iversen -- Chapter 13.
© Prospect Press, 2017.

51 Chapter 13: Object-Oriented Programming

Exercises

Exercise 13.1

Imagine you are creating a computer application to keep track of the work you need to do for your

classes. Identify several classes that would be relevant to include in the application, and several objects

for each class.

Exercise 13.2

Choose one of the classes from the previous exercise and identify several attributes and methods for that

class.

Exercise 13.3

Create a new project that can track cars and the repairs on the cars. You will need two classes: Car and

Repair. Start by creating a Car class with a few simple properties like Make, Model, and Year. Add a

form that can be used to create and modify Car objects and display them in a ListBox.

Exercise 13.4

Add a Repair class to the project. Repairs have a description and an amount for the repair (e.g., oil

change, $30). Create a form that can be used to add a repair to a selected car.

Exercise 13.5

Add ability to calculate total amount for all repairs for a car, as well as simple statistics across cars, such

as total for all cars, average repair amount, and average per car.

Exercise 13.6

Add two classes as subclasses of Repair: ListRepair and TimeAndMaterialRepair. A ListRepair is a

predefined repair that has a fixed price, so it is similar to Repair in that it simply has a description and an

amount. The TimeAndMaterialRepair instead has an amount that is calculated based on the time that a

mechanic works on a car and any materials are used in the repair. Add forms to allow for working with

both ListRepair and TimeAndMaterialRepairs and associate them with specific cars. By keeping an

Amount property in the Repair class, you should not need to modify any of the code calculating statistics

related to the amount on each repair. Each of the two classes should also include overridden ToString

methods that provide some specifics of the detail of each object.

Exercise 13.7

Create a Book class that has the following attributes: Author, Title, Year published, and the year of the

most recent edition. Add code to ensure that the year published is higher than 1440, when Gutenberg

invented the printing press, and no more than one higher than the current year. Also ensure that the year

of the most recent edition isn’t higher than the published year. Create several Book objects to demonstrate

how this works.

52 Exercises

Exercise 13.8

Add labels to the Employee Form to show the Gross Earnings, Tax Withholdings, and Payment for the

currently selected employee.

Exercise 13.9

Add more labels to show the difference in Gross Earnings, Tax Withholdings, and Net Payment between

the currently selected employee, and the averages for all employees.

Exercise 13.10

Add a method to the Employee form that calculates the number of employees with Gross Earnings above

the average. Display this value on the form.

Exercise 13.11

Rewrite Programming Assignment 2 but use objects to represent an AutoType car and a Rental. You will

need to create classes for each of the AutoType and Rental. When you read the data from the database,

you pass the data from each record to the constructor of the class in order to create an object. To facilitate

saving objects, you can have a method in the class that converts the data of an object to a proper form to

be saved and returns it as a string. This string can then be saved in some other part of the program.

