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TL;DR;
Problem Montezuma’s Revenge and Vizdoom navigation are too difficult for vanilla reinforcement
learning without curiosity or expert data. Behavioral cloning (surprisingly?) also does not work.
Solution We augment natural gradient actor-critic with expert trajectories to get good performance.

State-of-the-art - Montezuma’s Revenge

Approach Mean
score

Max
score

Trans.
×106

Methods used

ExpAugAC (Garmulewicz et al. [2018]) 27,052 804,900 200 Expert loss based on expert data, approx. natural policy gradient

DQfD (Hester et al. [2017]) 4,740 - 200 750k batches of expert pretraining, 3 additional loss terms,

prioritizing expert data replay

Behavioral cloning (from Hester et al. [2017]) 575 - 24 –

Ape-X DQfD (Pohlen et al. [2018]) 29,384 - 2,500 Methods from DQfD, temporal consistency loss, transformed

Bellman operator

Playing hard YT (Aytar et al. [2018]) 41,098 - 1,000 Auxiliary reward encouraging imitation of videos of expert

gameplays

Learning MR from a Single
Demo (Salimans et al. [2018])

- 74,500 50,000 Decomposing task into a curriculum of shorter subtasks, assumes

ability to set env. state

Unifying Count-Based
Exploration (Bellemare et al. [2016])

3,439 6,600 100 Exploration-based auxiliary reward based on pseudo-count derived

from density model to measure uncertainty, mixing Double

Q-learning target with MC return

Count-based exploration (Ostrovski et al.

[2017])

3705 3705 150 Advanced neural density model for images used to generate

extrinsic reward based on pseudo-count.

Self-imitation learning (Oh et al. [2018]) 1,100 2,400 50 Past good experience imitation loss terms based on transitions

sampled from a replay buffer.

Exploration by Random Network
Distillation (Burda et al. [2018])

11,347 17,500 2,000 Exploration bonus equal to the error of a NN predicting features of

the observations given by a fixed random neural network.

Learning to Control Visual
Abstractions (Ionescu et al. [2018])

2350 2450 250 Discrete pixel grouping model used to derive geometric intrinsic

reward and learn policies to control them.

Table 1: The state of the art for Montezuma’s Revenge.

Relation to Self-Imitation Learning
Actor-critic methods have been combined in [1] with prioritized replay of past good trajectories.
Authors of this work theoretically justify that policy gradient estimator, in conjunction with the
value function estimator, jointly expressed by loss

Lsil = Es,a,R∈D
[
− log πθ(a|s)(R− Vθ(s))+ + βsil||(R− Vθ(s))+||2

]
are related to a lower bound of the optimal Q-function under the entropy-regularized RL formalism.
Although in the presented work we do not use this value function estimator, a similar off-policy
value function estimator has proved to be beneficial in our new experiments, focused on Pitfall!.
This theoretical justification partially explains why we ignore that expert samples are off-policy.
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Expert-augmented ACKTR

Figure 1: Visual representation of the algorithm.

We introduce a new term L
expert
t (θ) to the loss function of ACKTR:

Lt(θ) = Eπθ

[
−advt log πθ(at|st) +

1

2
(Rt − Vθ(st))2

]
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LA2C
t (θ)

− λ
k

k∑
i=1

advexpert
i log πθ(a

expert
i |sexpert

i ).︸ ︷︷ ︸
Lexp(θ)

We consider three variants of the expert advantage:

reward: advexpert
t =

∑
s≥0

γsrexpert
t+s critic: advexpert

t =

[∑
s≥0

γsrexpert
t+s − Vθ(st)

]
+

simple: advexpert
t = 1.

where [x]+ = max(x, 0).
Data: Parameter vector θ;
Dataset of expert transitions (sexpert

t , a
expert
t , s

expert
t+1 , r

expert
t )

for iteration← 1 to max steps do
for t← 1 to T do

Perform action at according to πθ(a|st)
Receive reward rt and new state st+1

end
for t← 1 to T do

Compute discounted future reward: R̂t = rt + γrt+1 + ... + γT−t+1rT−1 + γT−tVθ(st)
Compute advantage: advt = R̂t − Vθ(st)

end
Compute A2C loss gradient gA2C = ∇θ

∑T
t=1 advt log πθ(at|st) + 1

2(R̂t − Vθ)
2

Sample mini batch of k expert state-action pairs
Compute expert advantage estimate advexpert

t for each state-action pair.
Compute expert loss gradient gexpert = ∇θ 1k

∑k
i=1 advexpert

i log πθ(a
expert
i |sexperti )

Update ACKTR inverse Fisher estimate.
Plug in gradient g = gA2C + λexpertgexpert into ACKTR Kronecker optimizer.

end
Algorithm 1: Expert-augmented ACTKR

Results - Montezuma’s Revenge

Figure 2: Left: interestingly, our algorithm discovered a bug, which manifests through scores exceeding 800, 000 in
some evaluation rollouts (these are excluded when we calculate the mean evaluation score). Center: a performance
comparison between various advantage estimators. Right: scores for optimized hyper-parameters, that is we apply
γ = 0.995, the critic advantage estimator and selected values of λexpert.

Results - ViZDoom

Figure 3: Left: In ViZDoom behavior is similar for all expert advantage estimators. Right: performance of a curricu-
lum learning in MyWayHome compared to our expert-augmented algorithm. The curriculum consists in re-spawning
the agent in random locations. We experimentally verified that the ACKTR algorithm without the curriculum was
unable to solve the MyWayHome task. This echoes observations made for another actor-critic model-free algorithm in
[2]. Our behavioral cloning experiments also failed to solve this task. The curiosity-based method described in [2]
achieves an average score 0.7 after 10M of frames.

Conclusions
Based on the experimental results we claim that
the algorithm presented in this work is a prac-
tical method of getting good performance in
cases when multiple interactions with the envi-
ronment are possible and good quality expert
data is available. It could be particularly use-
ful in settings such as Montezuma’s Revenge,
where neither supervised learning from expert
data nor random exploration yield good results.

Figure 4: Left: our agent in Pitfall! trained on an expert
trajectory which achieves the perfect score. The expert
trajectory and our agent run only above the ground. Right:
the agent falls into the lower level and is unable to return
to the expert trajectory.
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