HP 3D High Reusability PA 12

Engineering-grade thermoplastics, optimized for 3D printing efficiency

Picture taken after graphite post-processing

Fine detail and high dimensional accuracy

Get precise small features and detail such as small fine holes, walls and shafts with dimensional accuracy thanks to HP's unique Multi-Agent printing process

Reduce Total Cost of Ownership and produce quality parts with HP 3D High Reusability PA12, a strong, multi-purpose thermoplastic that enables industry-leading surplus powder reusability.¹

Picture taken after dye post-processing

Produce strong quality parts

Robust thermoplastic that optimizes part quality with cost, producing strong structures

Picture taken after dye post-processing

Produce complex parts and lattice

Ideal for complex assemblies, housings, enclosures and connectors

Lowest Cost-Per-Part²

- $\bullet \ Optimize \ cost \ and \ part \ quality, \ ^2with \ a \ cost-efficient \ material \ that \ offers \ industry-leading \ reusability. \ ^1$
- No need to throw away reused powder anymore.3
- Produce quality parts batch-after-batch reusing surplus powder time after time.1
- Achieve minimal powder wastage between production cycles.
- No need to track powder history. Stable performance with only 20% refresh rate.1

Optimized for HP Multi Jet Fusion: the best balance between strength and reusability

- A strong thermoplastic for functional prototyping and final parts.
- Optimized for HP's Multi Jet Fusion platform to increase printer safety and deliver truly functional parts.
- Produce high-density parts, with balanced property profiles.
- Excellent chemical resistance to oils, greases, aliphatic hydrocarbons and alkalies.
- Optimal for post finishing processes.

Technical specifications4

Category	Measurement	Value	Method
General Properties	Powder melting point (DSC)	187 °C/369 °F	ASTM D3418
	Particle size	60 µm	ASTM 03451
	Bulk density of powder	0.425 g/cm ³	ASTM D1895
	Density of parts	1.01 g/cm ³	ASTM D792
Mechanical Properties	Tensile Strength, Max Load⁵- XY	48 MPa/6960 psi	ASTM D638
	Tensile Strength, Max Load⁵ - Z	48 MPa/6960 psi	ASTM D638
	Tensile Modulus ⁵ - XY	1700 MPa/245 ksi	ASTM D638
	Tensile Modulus ⁵ - Z	1800 MPa/260 ksi	ASTM D638
	Elongation at Break⁵ - XY	20%	ASTM D638
	Elongation at Break⁵ - Z	15%	ASTM D638
Thermal Properties	Heat Deflection Temperature (@ 0.45 MPa) - Z	175 °C/350 °F	ASTM D648
	Heat Deflection Temperature (@ 1.82 MPa) - Z	95 °C/205 °F	ASTM D648

Ordering Information

Productname	HP 3D High Reusability PA 12
ProductNumber	V1R10A
Weight	13 kg
Compatibility	HP Jet Fusion 3D 4200/3200 Printing Solution
Dimensions	Box: 600 x 333 x 301.8 mm

Eco Highlights

- Powders and agents are not classified as hazardous⁶
- Enclosed printing system and automated powder management, including
- post-processing, for a cleaner and more comfortable environment⁷
- Minimum waste thanks to high reusability of powder¹

Find out more about HP sustainable solutions at hp.com/ecosolutions

- 1. TheHPJetFusion3DPrintingSolutionwithHPHighReusabilityPA12hasthehighestpost-productionsurpluspowderreusabilitywith80%reusabilityvsanyotherpowder based 3DP technology using PA 12 material. Stable performance with only 20% powder refresh rate.
- 2. Based on internal testing and public data, HP Jet Fusion 3D printing solution average printing cost-per-part is half the average cost of comparable FDM & SLS printer solutions from \$100,000 USD to \$300,000 USD, when averaged together and not taken individually, on market as of April 2016. Cost analysis based on: standard solution configuration price, supplies price, and maintenance costs recommended by manufacturer. Cost criteria: printing 1 build chamber per day/ 5 days per week over 1 year of 30-gram parts at 10% packing density using HP 3D High Reusability PA 12 material, and the powder reusability ratio recommended by manufacturer.
- 3. Per packing densities >20%.
- 4. The following technical information should be considered representative of averages or typical values and should not be used for specification purposes.
- 5. Test results realized under the ASTM D638, speciments type V.
- 6. The HP powder and agents do not meet the criteria for classification as hazardous according to Regulation (EC) 1272/2008 as amended.
- 7. The term "cleaner" does not refer to any indoor air quality requirements and/or consider related air quality regulations or testing that may be applicable.

Learn more at

hp.com/go/3DMaterials

© Copyright 2017 HP Development Company, L.P.

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

