
TIGERGRAPH QUERY RESPONSE
VS NUMBER OF MACHINES

Get the full report with all of the data at www.tigergraph.com/benchmark

TIGERGRAPH LEAPS PAST COMPETITION
In benchmark tests comparing TigerGraph to Neo4j, Amazon Neptune, JanusGraph and ArangoDB, TigerGraph consistently
outperformed all competitors by wide margins. The complete benchmark report is available at www.tigergraph.com/benchmark.

On our test data sets (a synthetic graph from graph500.org and a real-world Twitter graph with 1.47B edges):

 Data Loading Speed: TigerGraph loads data 1.8x to 58x faster than competitors with Neo4j having significantly improved
 their speed for offline loading (where concurrent database operations are not allowed) since last benchmark. Neo4j
 continues to have slow online loading speed.

 Normalized Database Size After Loading:

  Raw data is compressed and stored in TigerGraph resulting in 50% storage savings for the Graph 500 dataset and
 61% storage savings for the Twitter dataset.

  Other graph databases create graphs that are larger than the raw data, demanding 5x to 13x more storage space
 than TigerGraph.

LOADING TIME NORMALIZED DATABASE SIZE

TigerGraph, Neo4j, Neptune, JanusGraph, and ArangoDB
Benchmarking Graph Analytic Systems:

TWO-HOP PATH QUERY

Data Sets

Instructions for reproducing our tests:

https://github.com/tigergraph/graph-database-benchmark/tree/master/benchmark

Developer Edition Download: www.tigergraph.com/developer

Get the full report with all of the data at www.tigergraph.com/benchmark

Two-Hop Path Query Performance:

TigerGraph is 40x to 337x faster than other graph databases owing to its native massively parallel processing (MPP) graph
architecture. You can read more about Native Parallel Graphs at www.tigergraph.com/ebook.

We could not run 3-hop and 6-hop queries for other graph databases, as they returned out-of-memory error or timed out in
many cases.

Query response time vs number of machines:

 TigerGraph achieved 6.7x speedup with 8 machines, scaling almost linearly for PageRank, an iterative algorithm which
 traverses every edge during each iteration and results in a lot communication between the machines, with information
 being sent from one partition to another.

 We were unable to perform the scalability tests on Neo4j or Amazon Neptune. Neo4j must store the full graph on a single
 server and cannot partition a graph across multiple machines. Amazon Neptune also cannot partition a graph across
 multiple machines nor could we find a way to run PageRank.

Graph database/analytics systems:

  TigerGraph Developer Edition 2.1.4

  Neo4j 3.4.4 Community Edition

  Amazon Neptune 1.0.1.0.200233.0

  JanusGraph 0.2.1, with Cassandra as the storage backend

  ArangoDB 3.3.13, with each of two storage engines, MMFiles and RocksDB

TigerGraph, Neo4j, Neptune, JanusGraph, and ArangoDB
Benchmarking Graph Analytic Systems:

	TigerGraph Benchmark One Page 1
	TigerGraph Benchmark One Page 2

