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We present TigerGraph’s vision for extending its GSQL query language to support simultaneous querying of graph 
and relational data in a fashion that brings out the commonalities between the two models. 

Towards easy adoption by SQL programmers,  we continue to advocate a syntax and semantics that start from 
standard SQL, extending it as seamlessly as possible to graph data.  The extension is syntactically parsimonious, in 
the sense that we avoid the introduction of new keywords for concepts that already have an SQL counterpart.

The proposed language features

yy The extension of the SQL FROM clause to support the specification of patterns to be matched against the 
graph, thus providing bindings for the pattern variables along with the standard SQL tuple variables.

yy The uniform treatment of FROM variables in the remaining clauses, regardless of whether they were 
introduced as graph pattern variables or standard tuple variables.

yy Full compositionality in the sense that wherever standard SQL allows a nested subquery, this subquery 
may take graphs as input.

While none of these extensions are currently supported in GSQL, they are part of the GSQL evolution roadmap.

A MINIMAL EXTENSION TO THE  FROM CLAUSE  

In addition to standard SQL constructs, the FROM clause may mention atoms of general form

GraphName AS? pattern

where 

yy the AS keyword is optional

yy <GraphName> is the name of a graph, and 

yy <pattern> is a pattern given by a regular path expression with variables.

This is in analogy to standard SQL, in which a FROM clause atom

TableName AS? Alias

specifies a collection (a bag of tuples) to the left of AS and introduces an alias to the right. This alias can be viewed 
as a simple pattern that introduces a single tuple variable. In the graph setting, the collection is the graph and the 
pattern may introduce several variables.

We detail our proposal for patterns in Section 6 but illustrate first with the following example. 

Example 1. Assume Company ACME maintains a human resource database stored in an RDBMS containing a 
relational table “Employee”. It also has access to a graph named “LinkedIn” containing the professional network of 
LinkedIn users. 

The following query joins relational HR employee data with LinkedIn graph data to find the employees who have 
made the most LinkedIn connections outside the company since 2016:

SELECT	 e.email, e.name, count (outsider) as outsideConnections
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FROM	 Employee AS e,  

	 LinkedIn AS Person: p  -(Connection: c)-  Person: outsider

WHERE	 e.email = p.email AND  

	 outsider.currentCompany NOT LIKE “ACME” AND

	 c.since >= 2016

GROUP	 BY  e.email, e.name

Notice the pattern  

Person: p -(Connection: c)- Person: outsider

to be matched against the LinkedIn graph (while numerous syntactic choices are possible for specifying patterns, 
in this document we adopt GSQL’s style). The pattern variables are “p”, “c” and “outsider”, binding respectively to a 
vertex typed “Person”, an edge typed “Connection” and a vertex typed “Person”.  

Once the pattern is matched, its variables can be used just like standard SQL tuple aliases. Indeed notice that 
neither the WHERE clause nor the SELECT clause syntax discriminate among aliases, regardless of whether they 
range over tuples, vertices or edges.

The lack of an arrowhead accompanying the edge sub-pattern  

-(Connection: c)-

denotes that the “Connection” relationship is symmetric, being represented by an undirected edge. (For the purpose 
of compatibility with the current status of this working group which has not yet tackled undirected edges, we can 
also interpret the arrow-less edge sub-pattern to match a directed edge regardless of its direction).  

MULTIPLE PATTERNS IN FROM CLAUSE SUPPORT CROSS-GRAPH JOINS

To support cross-graph joins, the proposed FROM clause extension allows the mention of multiple graphs, 
analogously to how the standard SQL FROM clause may mention multiple tables.

Example 2 (Cross- Graph and Relation Joins). Assume we wish to gather information on employees, including 
how many tweets about their company and how many LinkedIn connections they have. The employee info resides 
in a relational table “Employee”, the LinkedIn data is in the graph named “LinkedIn” and the tweets are in the graph 
named “Twitter”. Notice the join across the two graphs and the relational table in the query below:

SELECT 			  e.email, e.name, e.salary,  

		  count (other) as connectionCount, 

   		  count (t) as tweetsAboutCo

FROM			   Employee AS e,  

					    LinkedIn AS Person: p -(Connected)- Person: other, 

					    Twitter AS User: u -(tweets>)- Tweet: t

WHERE  	   	 e.email = p.email AND p.email = u.email AND  

					    t.text CONTAINS e.company

GROUP BY  e.email, e.name

Also notice the arrowhead in the edge sub-pattern ranging over the Twitter graph,
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-(tweets>)-

which matches only directed edges pointing from the “User” vertex to the “Tweet” vertex.         

SUPPORT FOR NESTED QUERIES

The queries expressed using the extended FROM clause return tables, thus preserving compositionality. This yields 
the natural SQL semantics for nesting sub-queries wherever tables are expected.

We view Extension 1 above as key towards seamless integration of relational and graph querying capabilities. 
Extensions 2 and 3 follow naturally from Extension 1 and do not require the introduction of new keywords. Moreover, 
they enable a modular specification of the semantics based on standard relational tables.

ACCUMULATORS

We next revisit the GSQL concept of accumulators, in order to introduce the GSQL extensions that ensure 
compositionality even in the presence of accumulators.

Accumulators are data containers that store an internal value and take inputs that are aggregated into this internal 
value using a binary operation.  The accumulator abstraction was introduced in the Green-Marl system [HCS+12] 
and it was adapted as a high-level first-class citizen in GSQL. Accumulators support  

yy the concise specification of multiple simultaneous aggregations by distinct grouping criteria, and 

yy the computation of vertex-stored side-effects to speed up multi-pass and iterative algorithms.

Accumulators are GSQL’s design choice for expressing multiple reduce operations in the sense of the map-reduce 
paradigm (or fold operations in the spirit of the classical map-fold paradigm from functional programming).

Vertex Accumulators are attached to vertices, with each vertex storing its own local accumulator instance. They 
are useful in aggregating data encountered during the traversal of path patterns and in storing the result distributed 
over the visited vertices. Alternatively, global accumulators have a single instance and are useful in computing 
global aggregates.

Accumulators are polymorphic, being parameterized by the type of the internal value V, the type of the inputs I, and 
the binary composition operation ⊕: V x I → V. Accumulators implement two assignment operators. Denoting with 
Acc.val the current internal value of accumulator Acc,

yy Acc   = i sets Acc.val to the provided input i; 

yy Acc += i aggregates the input i into Acc.val using ⊕, i.e. sets Acc.val to   

	 Acc.val ⊕ i.

In the following we use a GSQL-inspired syntactic style to illustrate accumulator usage. For a comprehensive 
documentation on GSQL accumulators, see the developer’s guide at https://www.tigergraph.com/developers/. Here, 
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we explain accumulators by example.

Example 3 (Multiple Aggregations by Distinct Grouping Criteria). Consider a graph named “SalesGraph” in which 
the sale of a product p  to a customer c is modeled by a directed edge of type “Bought” from the “Customer”-typed 
vertex modeling c to the “Product”-typed vertex modeling p.  The number of product units bought, as well as the 
discount at which they were offered are recorded as attributes of the edge. The list price of the product is stored as 
attribute of the corresponding “Product” vertex

We wish to simultaneously compute  

yy the sales revenue per product from the “Toy” category,

yy the toy sales revenue per customer, and

yy the overall total toy sales revenue.

Note that writing this query in standard SQL fashion requires performing two GROUP BY operations, one by 
customer and one by product. Towards conciseness (and to facilitate optimization), we propose the following GSQL-
inspired alternative. 

We define a vertex accumulator type for each kind of revenue. The revenue for product p will be aggregated 
at the vertex modeling p by vertex accumulator “revenuePerProduct”, while the revenue for customer c will be 
aggregated at the vertex modeling c by the vertex accumulator “revenuePerCustomer”. The total sales revenue will 
be aggregated in a global accumulator called “totalRevenue”.							     
We declare these accumulators as follows:

SumAccum<float> @revenuePerProduct, @revenuePerCustomer, @@totalRevenue,

where SumAccum<float> denotes the type of accumulators that hold an internal floating point scalar value and 
aggregate inputs using the floating point addition operation. Accumulator names prefixed by a single @ symbol 
denote vertex accumulators (one instance per vertex) while accumulator names prefixed by  @@ denote a global 
accumulator (a single shared instance).

Using accumulators, the multi-grouping query above is concisely expressible as

WITH 

	 SumAccum<float> @revenuePerProduct, @revenuePerCustomer, @@totalRevenue

BEGIN

  SELECT	 c

  FROM		  SalesGraph AS Customer: c -(Bought>: b)- Product: p

  WHERE		 p.category = “Toy”

  ACCUM		 ffloat salesPrice = b.quantity * p.listPrice * (100 - b.percentDiscount)/100.0,

		  c.@revenuePerCustomer += salesPrice,

		  p.@revenuePerProduct += salesPrice,

		  @@totalRevenue += salesPrice;

END 

Note the definition of the accumulators using the WITH clause in the spirit of standard SQL definitions.

Also note the ACCUM clause, which specifies inputs to the accumulators. Its first line introduces a local variable 
“salesPrice”, whose value depends on attributes found in both the “Bought” edge and the “Product” vertex. This 
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value is aggregated into each accumulator using the “+=” operator. “c.@revenuePerCustomer” refers to the vertex 
accumulator instance located at vertex “c”.

While the query outputs the customer vertex ids, in this example we are interested in its side effect of annotating 
vertices with the aggregated revenue values and of computing the total revenue using accumulators.  

The scope of the accumulator declaration may cover a sequence of queries, in which case the accumulated values 
computed by a query can be read (and further modified) by subsequent queries, thus achieving powerful side-effect 
composition.

Semantics. The semantics of queries with an ACCUM clause can be given in a declarative fashion analogous to 
SQL semantics: for each distinct match of the FROM clause pattern that satisfies the WHERE clause condition, 
the ACCUM clause is executed once. Note that we do not specify the order in which matches are found and 
consequently the order of ACCUM clause applications. We leave this to the engine implementation in order 
to support optimization. The result is well-defined (input-order invariant) whenever the accumulator’s binary 
aggregation operation ⊕ is commutative and associative. This is certainly the case for addition, which is used in 
Example 3 1

We propose to include into the language a list of predefined accumulator types. TigerGraph’s experience with the 
deployment of GSQL has yielded the short list from Appendix A that covers most use cases we have encountered in 
customer engagements. 

We additionally propose allowing users to define their own accumulators by implementing a simple interface that 
declares the binary combiner operation used for aggregation of inputs into the stored value. This will lead to an 
extensible query language and will facilitate the development of accumulator libraries.

Exporting accumulators into tables. Towards compositionality with SQL queries, we also propose a way to output 
the accumulated values into tables.

If one desires to output the accumulator values in tuples, one can refer to them in the SELECT clause as done for 
regular attributes (using the syntax illustrated in the ACCUM clause in Example 4 below).

More flexibly, a GSQL query Q can be a sequence of blocks, each computing a table (possibly including accumulated 
values), and these tables can be exported to the context in which Q appears by defining these tables via an SQL-
style WITH clause. The WITH clause has general form

WITH

	 (T1, T2,..., Tn) AS  { <Query Q computing tables T1, T2,... Tn> }

BEGIN

	 <Query Qc consuming tables T1, T2,..., Tn>

END

Example 4. Suppose we wish to output the aggregates computed in Example 3 into a table CustRev associating 
customer names with the revenue from toy sales, a table ToyRev associating toy names with their revenue, and a 
table TotalRev containing the total revenue, so a query Q can consume these tables. 

1  Input-order invariance holds for most predefined accumulators from the GSQL library (Sum<numeric>, Or, And, BitwiseOr, BitwiseAnd, Avg, 
Set, Map, Heap). The exceptions are List<T>, Array<T> and Sum<string> (string concatenation), which are sensitive to the order of operations.
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We express this as

	 WITH

	   (CustRev, ToyRev, TotalRev) AS {

		  Query from Example 3;

		  SELECT c.name, c.@revenuePerCustomer INTO CustRev

	 FROM   Customer:c;

	 SELECT p.name, p.@revenuePerProduct INTO ToyRev

	 FROM   Product p

	 WHERE  p.category=”Toy”;

	 TotalRev = @@totalRevenue;

	   }

	 BEGIN

		  Q

	 END                                                                                                                                                  

 

Another prominent use of accumulators is in support of multi-pass and iterative graph algorithms. It involves 
computing per-vertex aggregates and storing them at their vertices to facilitate the next passes of the algorithm. 
See https://doc.tigergraph.com/GSQL-Tutorial-and-Demo-Examples.html for a concise specification of the classical 
PageRank alogorithm in GSQL, making crucial use of vertex accumulators that store the vertex rank at each 
iteration.        

THE POST-ACCUM CLAUSE

The POST-ACCUM clause specifies per-vertex computation that takes as input the result of the ACCUM-specified 
aggregation. 

Example 5. Assume we wish to write a simple toy recommendation system for customer 1. The recommendations 
are ranked in the classical manner: each recommended toy’s rank is a weighted sum of the likes by other customers. 
Each like by customer c is weighted by the similarity of c to customer 1. This similarity is the standard log-cosine 
similarity, which reflects how many toys customers 1 and c like in common. Given two customers x and y, their log-
cosine similarity  is defined as

log(1 + count of common likes for x and y).
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The following query computes for each customer c their log-cosine similarity to customer 1, storing it in c’s vertex 
accumulator @lc. To this end, the ACCUM clause first counts the toys liked in common by aggregating for each 
such toy the value 1 into c’s vertex accumulator @inCommon. The POST-ACCUM clause then computes the 
logarithm and stores it in c’s vertex accumulator @lc. 

WITH

  SumAccum<float> @lc, @inCommon, @rank;  

BEGIN

  SELECT			   DISTINCT  c  INTO OthersWithCommonLikes	

	

  FROM			    SalesGraph AS Customer:one -(Likes>)- Product:t -(<Likes)- Customer:c

  WHERE			   one.id = 1 AND c.id <> 1 AND t.category = “Toy”    	

	

  ACCUM			   c.@inCommon += 1	

  POST-ACCUM	  c.@lc = log (1 + c.@inCommon);

# We can next compute the rank of each toy t by adding up the similarities of all other customers besides # 1 who 
like t. We output the top 10 recommendations:

  SELECT			   t.name, t.@rank AS rank

  FROM			    OthersWithCommonLikes AS r, 

		      SalesGraph AS r.c -(Likes>)- Product:t

  WHERE			   t.category = “Toy” AND c.id <> 1

  ACCUM			   t.@rank += c.@lc

  ORDER BY	  t.@rank DESC

  LIMIT			   10;

END

Notice the input-output composition due to the second query block’s  FROM clause referring to the set 
OthersWithCommonLikes of vertices (represented as single-column table) computed by the first query block. 
Also notice the side-effect composition due to the second block’s ACCUM clause referring to the @lc vertex 
accumulators computed by the first block. Finally, notice how the SELECT clause outputs vertex accumulator values 
(t.@rank) analogously to how it outputs vertex attributes (t.name).

PATTERNS SPECIFIED BY DIRECTION-AWARE REGULAR PATH EXPRESSIONS

We follow the tradition instituted in the mid-90s by a line of classic work on querying graph (a.k.a. semi-structured) 
data which yielded such reference query languages as WebSQL [MMM96], StruQL [FFLS97] and Lorel [AQM+97]. 
Common to all these languages is a primitive that  allows the programmer to specify traversals along paths whose 
structure is constrained by a regular path expression. 

Syntax. Regular path expressions (RPEs) are regular expressions over the alphabet of edge types. They conform to 
the context-free grammar

6
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rpe       →  _ | EdgeType | ‘(‘ rpe ‘)’ | rpe’*’bounds? | rpe ‘.’ rpe | rpe ‘|’ rpe
bounds → N? ‘..’ N?

where EdgeType and N are terminal symbols representing respectively the name of an edge type and a natural 
number. The wildcard symbol “_” denotes any edge type, “.” denotes the concatenation of its pattern arguments, 
and “|” their alternation. The ‘*’ terminal symbol is the standard Kleene star specifying several repetitions of its RPE 
argument. The optional bounds can specify a minimum and a maximum number of repetitions (to the left and right 
of the “..” symbol, respectively). 

Semantics. A path p in the graph is said to satisfy an RPE X if the sequence of edge types read from the source 
node of p to the target node of p spells out a word in the language accepted by X when interpreted as a standard 
regular expression over the alphabet of edge type names.

We refine the RPE formalism, proposing Direction-Aware RPEs (DARPEs). These allow one to also specify the 
orientation of directed edges in the path. To this end, we extend the alphabet to include for each edge type E the 
symbols

yy E, denoting a hop along an undirected E-edge;

yy E>, denoting a hop along an outgoing E-edge (from source to target node);

yy <E, denoting a hop along an incoming E-edge (from target to source node).

Now the notion of satisfaction of a DARPE by a path extends classical RPE satisfaction in the natural way.

DARPEs enable the free mix of edge directions in regular path expressions.                                                                       
For instance, the pattern

- (E>.(F>|<G)*.<H.J) -

matches paths starting with a hop along an outgoing E-edge, followed by a sequence of zero or more hops along 
either outgoing F-edges or incoming G-edges, next by a hop along an incoming H-edge and finally ending in a hop 
along an undirected J-edge.

A well-known semantic issue arises from the tension between RPE expressivity and well-definedness. 

Regarding expressivity, applications need to sometimes specify reachability in the graph via RPEs comprising 
unbounded Kleene repetitions. They also need RPE patterns to be interpreted under bag semantics. That is, a 
pattern :s -(RPE)- :t should have as many matches of variables (s,t) to a given pair of nodes (n1,n2) as there are 
distinct paths from n1 to n2 satisfying the RPE. In other words, the multiplicity of the match of (s,t) to (n1,n2) should 
be the number of such distinct paths.  This is needed to support graph analytics that aggregate data across paths 
via multiplicity-sensitive operators (e.g. count, sum, average).

The two requirements conflict with well-definedness: when the RPE contains Kleene stars, cycles in the graph can 
yield an infinity of distinct paths satisfying the RPE (one for each number of times the path wraps around the cycle), 
thus yielding infinite multiplicities in the query output. Consider the example Person:p1 -(Knows*)- Person:p2 in a 
social network with cycles involving the “Knows” relationship.

Legal paths. Traditional solutions limit the kind of paths that are considered legal, so as to yield a finite number 
thereof. Two popular approaches allow only paths with no repeated vertices/no repeated edges. However under 
these definitions of path legality the evaluation of RPEs is in general notoriously intractable (even checking whether 
a pair of nodes is connected by a path that satisfies the RPE without counting such paths is NP-hard in the size of 
the entire graph [MW95,LMV16]). For this reason we suggest that the standard not mandate intractable semantics 
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or at least, should these semantics be included, that they not be the only options.

We propose the shortest-path legality criterion. That is, among the paths from s to t satisfying a given DARPE, we 
consider legal only the shortest ones. The resulting RPE semantics is known to yield tractable evaluation [AAB+17], 
which extends to DARPEs.

Example 6. To contrast the various semantic flavors, consider the graph topology below, assuming that all edges 
are typed “E” and all vertices are typed “V”. Among all paths from source node 1 to target node 

5 that satisfy the DARPE “E>*”, there are 

yy Infinitely many unrestricted paths, depending on how many times they wrap around the 3-6-7-8-3 cycle;

yy Two non-repeated-vertex paths (1-2-3-4-5 and 1-2-9-10-11-3-4-5);

yy Three non-repeated-edge paths (1-2-3-4-5, 1-2-9-10-11-3-4-5, and 1-2-3-6-7-8-3-4-5);

yy One shortest path (1-2-3-4-5).

Therefore, pattern V:s -(E>*)- V:t will return the binding (s→ 1,t→ 5) with multiplicity 2, 3, or 1 under the non-repeated-
vertex, non-repeated-edge respectively shortest-path legality criterion.

CONCLUSIONS

Towards easy adoption by graph and SQL programmers alike, GSQL was designed to expose the commonalities 
between graph and relational data querying. GSQL is compatible with standard SQL’s type system and syntax, 
requiring only a minimal extension to the FROM clause to accommodate graph reachability queries conforming to 
path patterns. Accumulators are a powerful novel primitive that supports multiple simultaneous aggregations based 
on independent grouping criteria and that facilitates multi-pass and iterative graph algorithms. They elevate GSQL’s 
expressive power from simply querying the graph to specifying sophisticated graph analytics.
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APPENDIX A: GSQL’S MAIN PREDEFINED ACCUMULATOR TYPES

SumAccum<N>		 where N is a numeric type. This accumulator holds an internal value of 
			   type N, accepts inputs of type N and aggregates them into the internal
			   value using addition.

MinAccum<O>		  where O is an ordered type. Computes minimum value of its inputs of type O.

MaxAccum<O>		  As above, for max aggregation.

AvgAccum<N>		  where N is a numeric type. Computes average of its inputs of type N.

OrAccum		  Aggregates its boolean inputs using logical disjunction.

AndAccum		  Aggregates its boolean inputs using logical conjunction.

MapAccum<K,V>	 where K is the type of keys and V the type of values. V can itself be an accumulator type, 		
			   thus specifying how to aggregate values mapped to the same key.

HeapAccum<T>(capacity, field_1 [ASC|DESC], field_2 [ASC|DESC], …, field_n [ASC|DESC])

where	 - T is a tuple type whose fields include field_1 through field_n, each of ordered type,	

	 - capacity is the integer size of the heap, and

	 -field_1 [ASC|DESC], field_2 [ASC|DESC], …, field_n [ASC|DESC] 

specifies a lexicographic order for sorting the tuples in the heap (each field may be used in ascending or   
descending order).  
For details on GSQL’s accumulators and more supported types, see https://doc.tigergraph.com/GSQL-Language-
Reference-Part-2---Querying.html.

https://doc.tigergraph.com/GSQL-Language-Reference-Part-2---Querying.html.
https://doc.tigergraph.com/GSQL-Language-Reference-Part-2---Querying.html.
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